Data-Streams and Histograms

Sudipto Guha*

ABSTRACT

Histograms have been used widely to capture data distri-
bution, to represent the data by a small number of step
functions. Dynamic programming algorithms which provide
optimal construction of these histograms exist, albeit run-
ning in quadratic time and linear space. In this paper we
provide linear time construction of 1 4 € approximation of
optimal histograms, running in polylogarithmic space.

Our results extend to the context of data-streams, and in
fact generalize to give 1 + € approximation of several prob-
lems in data-streams which require partitioning the index
set into intervals. The only assumptions required are that
the cost of an interval is monotonic under inclusion (larger
interval has larger cost) and that the cost can be computed
or approximated in small space. This exhibits a nice class of
problems for which we can have near optimal data-stream
algorithms.

1. INTRODUCTION

Histograms capture distribution statistics in a space ef-
ficient fashion. They have been designed to work well for
numeric value domains, and have long been used to support
cost-based query optimization [22, 11, 12, 25, 27, 26, 23,
14, 13, 15, 20, 17], approximate query answering [7, 2, 1, 29,
28, 24], data mining [16] and map simplification [3].

Query optimization is a problem of central interest to
database systems. A database query is translated by a
parser into a tree of physical database operators (denot-
ing the dependencies between operators) that have to be
executed and form the query answer. Each operator when
executed incurs a cost (in terms of disk accesses) and the
task of the query optimizer is to form the minimum cost
execution plan. Histograms are used to estimate the cost
of physical database operators in a query plan. Many op-

“AT&T Research. Email: sudipto@research.att.com
TAT&T Research. Email: koudas@research.att.com

fComputer Science Department and AITRC, KAIST.
EMail: shim@cs.kaist.ac.kr

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on thefirst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

STOC' 01, July 6-8, 2001, Hersonissos, Crete, Greece.

Copyright 2001 ACM 1-58113-349-9/01/0007 ...$5.00.

Nick Koudast

471

Kyuseok Shim:

erators of interest exist, the most common being select and
join operators. A select operator commonly corresponds to
an equality or a range predicate that has to be executed on
the database and various works deal with the construction
of good histograms for such operations [22, 11, 23, 15, 13,
20, 17]. The result of such estimation through the use of a
histogram represents the approximate number of database
tuples satisfying the predicate (commonly referred to as a
selectivity estimate) and can determine whether a database
index should be used (or constructed) to execute this opera-
tor. Join operators are of profound importance in databases
and are costly (in the worst case quadratic) operations. Sev-
eral proposals exist for the construction of good histograms
to estimate the cost of join operations [12, 26, 14]. The
estimates derived from such an estimation are used to de-
termine the order with which multiple join operators should
be applied in the database tables involved.

Histograms have also been used in approximate query an-
swering systems, where the main objective is to provide a
quick but approximate answer to a user query, providing er-
ror guarantees. The main principle behind the design of such
systems is that for very large data sets on which execution
of complex queries is time consuming, is much better to pro-
vide a fast approximate answer. This is very useful for quick
and approximate analysis of large data sets [2]. Research has
been conducted on the construction of histograms for this
task [7, 1] as well as efficient approximations of datacubes
[8] via histograms [28, 29, 24].

An additional application of histograms is data mining
of large time series datasets. Histograms are an alternate
way to compress time series information. Through the ap-
plication of the minimum description length principle it is
possible to quickly identify potentially interesting deviations
in the underlying data distribution [16]. All the above ap-
plications share a common property, that the histograms
are constructed on a dataset that is fully known in advance.
Thus algorithms can construct good histograms by perform-
ing multiple passes on the data set.

The histogram approach is also useful in curve simplifica-
tion, and specially in transmission of subsequent refinements
of a distribution [3]. Fixing the initial transmission size, re-
duces the problem to approximating the distribution by a
histogram. Subsequent transmissions carry more informa-
tion. This has a similar flavor to approximating the data
by wavelets, used in [28] amongst others. Haar wavelets are
in fact very simple histograms, and this approach allows us
to minimize some objective fit criterion, than storing the k
highest coefficients of a wavelet decomposition.

A data stream is an ordered sequence of points that can
be read only once or a small number of times. Formally, a
data stream is a sequence of points x1,... ,;,... , T, read
in increasing order of the indices i. The performance of an
algorithm that operates on data streams is measured by the
number of passes the algorithm must make over the stream,
when constrained in terms of available memory, in addition
to the more conventional measures. Such algorithms are of
great importance in many networking applications. Many
data sources belonging to mission critical network compo-
nents produce vast amounts of data on a stream, which re-
quire online analysis and querying. Such components in-
clude router link interfaces, router fault monitors and net-
work aggregation points. Applications such as dynamic traf-
fic configuration, fault identification and troubleshooting,
query the data sources for properties of interest. For exam-
ple, a monitor on a router link interface commonly requests
for the total number of bytes through the interface within
arbitrary windows of interest.

One of the first results in data streams was the result of
Munro and Paterson [21], where they studied the space re-
quirement of selection and sorting as a function of the num-
ber of passes over the data. The model was formalized by
Henzinger, Raghavan, and Rajagopalan [9], who gave several
algorithms and complexity results related to graph-theoretic
problems and their applications. Other recent results on
data streams can be found in [6, 18, 19, 5, 10]. The work of
Feigenbaum et al [5, 10] constructs sketches of data-streams,
under the assumption that the input is ordered by the ad-
versary. Here we intend to succinctly capture the input data
in histograms, thus the attribute values are assumed to be
indexed in time. This is mostly motivated from concerns of
modeling time series data, its representation, and storage.

. Most of these histogram problems can be solved offline us-
ing dynamic programming. The best known results require
quadratic time and linear space to construct the optimal
solution. We are assuming that the size of histogram is
a small constant. We provide a 1 + ¢ approximation that
runs in linear time. Moreover, our algorithm works in the
data-stream model with space polylogarithmic in the num-
ber of items. The saving in space is a significant aspect
of construction of histograms, since typically the number of
items is large, and hence the requirement of approximate
description. We then generalize the least square histogram
construction to a broader class of partitioning in intervals.
The only restriction we have is that the cost of approxi-
mating intervals is monotonic under inclusion, and can be
computed from a small amount of information. This allows
us to apply the result immediately to get approximations for
splines, block compression amongst others. It is interesting
that such a nicely described class can be approximated un-
der data-streams algorithms.

Organization of the Paper: . In the next section we dis-
cuss the better known histogram optimality criteria, and
in Section 3 we show how to reduce the construction time
from quadratic to linear for the least squares error fit (V-
histogram). We then generalize the result to a fairly generic
error condition in Section 4.

472

2. PROBLEM STATEMENT

In this paper we will be considering serial histograms. Let
us assume that the data is a sequence of non-negative inte-
gers vi, ... ,v,. We are to partition the index set 1..n into k
intervals or buckets minimizing Zp VAR, where VAR, is the
variance of the values in the p’th bucket. In a sense we are
approximating a curve by a k-step function and the error is
the least square fit. This is known as V-optimal histogram
or V-histogram. We will concentrate on this problem for the
most part. In the context of databases this arises due to the
sum of the squares of errors in answering point queries on
the database, the histogram provides an estimate for v;. A
similar question can be posed in terms of answering aggre-
gate queries, trying to estimate), v;.

Several other relevant measures of histogram exist, see
[26]. Instead of minimizing the least square fit, it can be
the area of the symmetric difference (sum of differences as
opposed to their squares), related to the number of distinct
values in a bucket (compressed histograms, biased or un-
biased). The dual problem of minimizing the number of
buckets, while constraining the error has been considered in
[15, 23].

Previous Results. In [15] a straightforward dynamic pro-
gramming algorithm was given to construct the optimal V-
histogram. The algorithm runs in time O(nk) and required
O(n) space. The central part of the dynamic programming
approach is the following equation:

OpT[k,n] = r$n<i£1 {OpT[k — 1,2] + VAR[(x + 1)..n]} (1)
In the above equation, OPT[p,q] represents the minimum
cost of representing the set of values indexed by 1..g by a
histogram with p levels. VAR[a..b] indicates the variance of
the set of values indexed by a..b.

The index z in the above equation can have at most n
values, thus each entry can be computed in O(n) time. With
O(nk) entries, the total time taken is O(n’k). The space
required is O(n); since at any step we would only require
information about computing the variance and OPT[p, z] and
Opt[p + 1,z] for all z between 1 and n. The variance can
be computed by keeping two O(n) size arrays storing the
prefixed sums) _, v; and > ;_, v7.

3. FASTERCONSTRUCTION OF NEAR OP-
TIMAL V-HISTOGRAMS

In this section we will demonstrate a 1+¢ approximation of
the optimal V-histogram, which will require linear time and
only polylogarithmic space. Of course throughout the paper
we will assume that k, the number of levels in the histogram,
is small since that is the central point of representation by
histograms. In the first step we will explain why we expect
the improvement, and then proceed to put together all the
details. We will also explain why the result immediately
carries over to a data-stream model of computation.

Intuition of Improvement

Let us reconsider equation 1. The first observation we can
make is:

Fora <z <b, VAR[a..n] > VAR[z..n] > VAR[b..n]

And since any solution for the index set 1..b also gives a
feasible (may not be optimal) solution for the index set 1..x

for any = < b, the second observation is
Fora <z <b, Opr[p,a] < OpT[p,z] < OPT[p, b]

This is a very nice situation, we are searching for the
minimum of the sum of two functions, one of which is non-
increasing (VAR) and the other non-decreasing (OPT[p, z] as
x increases). A natural idea would be to use the monotonic-
ity to reduce the searching to logarithmic terms. However
this is not true, it is easy to see that to find the true mini-
mum we have to spend Q(n) time.

To see this, consider a set of non-negative values vy, . ..
Let f(¢) = > '_, vr. Consider the two functions f(¢) and
g(%), where g(i) is defined to be f(n)— f(i—1). The function
f(i) and g(i) are monotonically increasing and decreasing
respectively. But to find the minimum of the sum of these
two functions, amounts to minimizing f(n) + v;, or in other
words minimizing v;.

However the redeeming aspect of the above example is
the f(n) part, picking any 7 gives us a 2 approximation. In
essence this is what we intend to use, that the searching can
be reduced if we are willing to settle for approximation. Of
course we will not be interested in a 2 approximation but
a factor of 1 + ¢; the central idea would be the reduction
in search. We will later see that this would generalize to
optimizations over contiguous intervals of the indices.

Putting Details Together

We now provide the full details of the 1 + € approximation.
We will introduce some small amount of notation. Our al-
gorithm will construct a solution with p levels for every p
and z with 1 <z <mnand 1 <p < k. Let SoL[p, z] denote
the cost of our solution with a p level V-histogram over the
values indexed by 1..z.

The algorithm will inspect the values indexed in increasing
order. Let the current index being considered is n. Let v;
be the value of the i’th item (indexed by). The parameter
6 will be fixed later. The algorithm will maintain intervals,
for every 1 < p <k, (af,b]), ..., (a?,b}), such that

1. The intervals are disjoint and cover 1..n. Therefore
ay =1, and b = n. Moreover, by +1 =a?,, for j <I.
It is possible that a? = b.

2. We maintain SoL[p,b?] < (1 + d)SoL[p, af].

3. Thus we will store SoL[p,a’] and SoL[p,b?] for all j
and p. We will also store 3./, v; and >_/_, v} for
each 7 € Up,;{{a}} U {b7}}.

4. Clearly the number of intervals [would depend on p.
We will use [instead of I(p), to simplify the notation.
The appropriate p will be clear from the context. It
is important to observe that the value of [is not fixed
and is as large as required by the above conditions.

The algorithm on seeing the n+1’st value v,41, will com-
pute SoL[p,n + 1] for all p between 1 and k, and update
the intervals (af,b7),. .., (a?,b]). We discuss the later first.
In fact the algorithm has to update only the last interval
(a?,b?), either setting b = n+1, or creating a new interval
I+1, with a7, =b7,;, = n+ 1, depending on SoL[p,n + 1].
This brings us to the computation of SoL[p, n + 1].

For p = 1, the value of SOL[p, n+1] is simply VAR[1..n+1]
which can be computed from the prefixed sums), v; and

) Un, .

473

> v?. To compute SoL[p+ 1,n+ 1], we will find the j such
that

SoL[p, bj] + VAR[(D} +1)..(n + 1)]

is minimized. This minimum sum will be the value of SOL[p+
1,n+1].

The algorithm is quite simple. We will now show how
the optimum solution behaves. But first observe that we
are not referring to a value which we have not stored, hence
the algorithm applies to the data-stream model modulo the
storage required. The following theorem will prove the ap-
proximation guarantee.

THEOREM 3.1. The above algorithm gives a (1 +)P ap-
prozimation to OPT[p + 1,n + 1].

PrOOF. The proof will be by double induction. We will
solve by induction on n fixing p first. Subsequently assuming
the theorem to be true for all p < k — 1, we will show it to
hold for all n with p = k.

For p = 1, we are computing the variance, and we will
have the exact answer. Thus the theorem is true for all n,
for p=1.

We assume that the theorem is true for all n for p = k—1.
We will show the theorem to be true for all n for p = k.

Consider equation 1 (altering it to incorporate n + 1 in-
stead of n) and let be the value which minimizes it. In fact
(z+1)..(n+1) is the last interval in the optimum’s solution
to OpT[k,n + 1]. Consider OpPT[k — 1, z], and the interval
(ak=1, bf_l) in which z lies. From the monotonicity of OPT

J
it follows that:

0Ptk — 1,a*'] < OPT[k — 1,2] < OPT[k — 1,657
And by induction hypothesis, we have:
SoLfk — 1,641 < (1 + 8)SoL[k — 1,ak 1] <
(1+6) [+6)*~20pr[k — 1,05 1]

Now we also have, VAR[(b;-“*1 +1)..(n +1)] < Var[(z +
1)..(n 4+ 1)]. Therefore putting it all together,

Optlk,n + 1] = OpPT[k — 1, 2] + VAR[(z + 1)..(n + 1)]
> (14 6)*SoLk — 1,bf '] + VAR[(B; ™! +1)..(n + 1)]

Our solution will be at most SoL[k—1,b! ']+ VAR[(bf '+
1)..(n 4+ 1)]. This proves the theorem. []

We will set § such that (1 4+ §)¥ < 1+ e Thus setting
log(1 + &) = €/k is sufficient. The space required will be
O(klog OpT[k,n + 1]/ log(1 + 8)). Observe that if the opti-
mum is 0, it will correspond to k different sets of contigu-
ous integers, which will correspond to the intervals (af,b}).
Thus we will require log OPT[p, n+1]/log(1+0) + 1 intervals
for this p. Thus the total space requirement is (k?/e) times
O(log OpT[k, n+1]). Now the optimum can be at most nR>
where R is the maximum value, and log R will be the space
required to store this number itself. Thus log OpPT[k,n + 1]
will correspond to storing logn + 2 numbers, the algorithm
takes an incremental O((k?/¢) log n) time per new value. We
can claim the following theorem:

THEOREM 3.2. We can provide a (1 + €) approzimation
for the optimum V-histogram with k levels, in O((k? /¢) logn)
space and time O((nk®/€)logn), in the data-stream model.

4. LINEAR PARTITIONING PROBLEMS

Consider a class of problems which can expressed as fol-
lows, that given a set of values vi,...,v,, it requires to
partition the set into k£ contiguous intervals. The objective
is to minimize a function (for example, the sum, max, any
¢, norm amongst others) of a measure on the interval. In
the case of V-histograms, the function is the sum and the
measure on each interval is the variance of the values.

If the measure can be approximated upto a factor p for
the interval, dynamic programming will give a p approxi-
mation for the problem. Moreover if this computation can
be performed in constant time (for example the variance,
from knowing 3, v; and Y, v;) the dynamic programming
will require only quadratic time. In case of histograms, the
variance, was computed exactly and we had an optimal al-
gorithm. We will claim a meta-theorem below, which gener-
alizes the previous section, and see what results follow from
it.

THEOREM 4.1. The algorithm in the last section gener-
alizes to give us a (1 + €)p algorithm in time O(nk®[¢) for
data-streams.

We will use the theorem repeatedly in several situations,
first we will consider a case where we cannot compute the
error in a bucket exactly (in case of streams).

Approximating the error within a bucket

Consider the objective function where instead of minimizing
the variance over an interval, we minimize). |v; — z| where
z is the value stored in the histogram for this interval. In
this case the value of z is the median of the (magnitude of)
values. This corresponds to minimizing the area of the sym-
metric difference of the data and the approximation. This
is an £; norm instead of variance which is the square of /5.
Using the results of [18], we can find an element of rank
n/2 + ne (assuming this interval has n elements) in space
O(logn/e). Thus with the increase in space, we have an
(1 + €) approximation. (Actually we need to choose space
according to €/3, for the factor to work out.)

THEOREM 4.2. In case of ¢1 error, we can approzimate
the histogram upto a factor of 1+¢ in space O((k/€)? log® n),
and time O(n(k/e)? log® n) for data-streams.

Approximating by piecewise splines

Another example of Theorem 4.1 will be to approximate by
piecewise splines of small fixed degree instead of piecewise
constant segments. The objective would be to minimize sum
of squares fit for the points. We can easily convince our-
selves that given a set of n values indexed by some integer
range a..b, we can construct the coefficients of the best fit
curve in time independent of n by maintaining prefix sums
appropriately.

Consider the case of piecewise linear functions. Given a
set of values v; over a range i € a..b, if the function is s-i+t¢,
it is not difficult to see that setting ¢ to the mean and stor-
ing 3", iv; along with 3" v; and 3°, v7 we can minimize the
expression by varying s. This generalizes to degree d splines;
we claim the following without the calculations details,

474

THEOREM 4.3. By storing 3, i%v;, ..., >, vi and 3, v}
the above algorithm allows to compute a 1 + € approrima-
tion in time O((dnk®/¢)logn) and space O((dk®/e)logn)
for data streams.

Relaxing unifor mity within buckets

Suppose we want to divide into partitions such that each
part has approximately the same number of distinct values,
and we want to minimize the maximum number of different
values in a partition. This appears in cases where we are re-
luctant to make the uniformity assumption that any value in
a bucket is equally likely. In such cases each bucket is tagged
with a list of the values present, this helps in compression
of the stream; this is typically the compressed histogram
approach [26].

THEOREM 4.4. We can approzimate the above upto (1+¢)
fraction if the (integer) values occur in a bounded range (say
1..R), in space O((RKk?/¢)logn), for a data-stream.

However in these approaches often biased histograms are
preferred in which the highest occurring frequencies are stored
(under belief of zipfian modeling, that they constitute most
of the data) and the rest of the values are assumed uniform.
Even this histogram can be constructed upto 1 + € factor,
under the assumption of a bounded range of values. Un-
der the unbounded assumption, estimating the number of
distinct values itself is quite hard [4].

Finding block boundariesin compression

In text compression (or compressing any discrete distribu-
tion) in which few distinct values appear in close vicinity, it
is conceivable that partitioning the data in blocks, and com-
pressing each partition is beneficial. The Theorem 4.1 allows
us to identify the boundaries (upto 1+ ¢) loss in the optimal
space requirement. This is because the space required by
an interval obeys the measure property we require, namely
that the cost of an interval is monotonic under inclusion.

Aggregate queries and histograms

The aggregate function can be treated as a curve, and we can
have a 1 + € approximation by a V-histogram with k levels.
However there is a problem with this approach. If we con-
sider the distribution implied by the data, it approximates
the original data to k values nonzero values; since the aggre-
gate will have only k steps. It appears more reasonable to
approximate the aggregate by piecewise linear functions. In
fact for this reason, most approaches prefer to approximate
the data by a histogram, and use it for aggregate purposes.
However it is not difficult to see that a V-histogram need not
minimize the error. The V-histogram sums up the square
errors of the point queries, our objective function would be
to sum up square errors of aggregate queries. Thus if we
approximate vg,... ,v, by z (in the data) and a shift ¢, the
sum of square error for aggregate queries is

Z(Z vi—i-z—t)°

g<i<r ¢<j<i

Of course this assumes that any point is equally likely for
the aggregate, and that we are answering aggregate from
the first index. This is the same as in Section 3 except the
incoming values can be thought of as v; = >~ v;.

Thus we can have a 1+ ¢ approximation for this objective.
In fact we can optimize a linear combination of the errors

of point queries and the aggregate queries, where the z is
provided as an answer to a point query and z¢ + ¢ as an
answer to the aggregate. This may be useful in cases where
the mix of the types of queries are known. These queries
have been referred to as prefix queries in [17] in context of
hierarchical range queries and were shown to computable in
O(n’k) time.

Acknowledgements

We would like to thank S. Kannan, S. Muthukrishnan, V.
Teague for many interesting discussions.

5.
(1]

2]

(3]

[4]

[9]

[10]

[11]

[12]

[13]

REFERENCES

S. Acharya, P. Gibbons, V. Poosala, and

S. Ramaswamy. Join Synopses For Approximate
Query Answering. Proceedings of ACM SIGMOD,
pages 275-286, June 1999.

S. Acharya, P. Gibbons, V. Poosala, and

S. Ramaswamy. The Aqua Approximate Query
Answering System. Proceedings of ACM SIGMOD,
pages 574-578, June 1999.

M. Bertolotto and M. J. Egenhofer. Progressive vector
transmission. Proceedings of the Tth ACM symposium
on Advances in Geographical Information Systems,
1999.

S. Chaudhuri, R. Motwani, and V. Narasayya.
Random sampling for histogram construction: How
much is enough ? Proceedings of ACM SIGMOD,
1998.

J. Feigenbaum, S. Kannan, M. Strauss, and

M. Vishwanathan. An approximate ['—difference
algorithm for massive data sets. Proceedings of 40th
Annual IEEE Symposium on Foundations of
Computer Science, pages 501-511, 1999.

P. Flajolet and G. N. Martin. Probabilistic counting.
Proceedings of 24th Annual IEEE Symposium on
Foundations of Computer Science, pages 76-82, 1983.
P. Gibbons, Y. Mattias, and V. Poosala. Fast
Incremental Maintenance of Approximate Histograms.
Proceedings of VLDB, pages 466-475, 1997.

J. Gray, A. Bosworth, A. Leyman, and H. Pirahesh.
Data Cube: A Relational Aggregation Operator
Generalizing Group-by, Cross Tab and Sub Total.
Proceedings of ICDE, pages 152-159, 1996.

M. R. Henzinger, P .Raghavan, and S. Rajagopalan.
Computing on data streams. Technical Report
1998-011, Digital Equipment Corporation, Systems
Research Center, May, 1998.

P. Indyk. Stable distributions, pseudorandom
generators, embeddings and data stream computation.
Proceedings of 41st Annual Symposium on
Foundations of Computer Science, 2000.

Y. Ioannidis. Universality of Serial Histograms.
Proceedings of VLDB, pages 256-277, 1993.

Y. Ioannidis and S. Christodoulakis. Optimal
Histograms for Limiting Worst-Case Error
Propagation in the Size of Join Results. ACM
Transactions on Database Systems, Vol. 18, No. 4,
pages 709-748, December 1993.

Y. Ioannidis and V. Poosala. Histogram Based
Approximation of Set Valued Query Answers.

475

[14]

[15]

[26]

[27]

Proceedings of VLDB, pages 174-185, 1999.

Y. Ioannidis and V. Poosala. Balancing Histogram
Optimality and Practicality for Query Result Size
Estimation. Proceedings of ACM SIGMOD, 1995.

H. V Jagadish, N. Koudas, S. Muthukrishnan,

V. Poosala, K. C. Sevcik, and T. Suel. Optimal
Histograms with Quality Guarantees. Proceedings of
VLDB, 1998.

H. V. Jagadish, Nick Koudas, and S. Muthukrishnan.
Mining Deviants in a Time Series Database.
Proceedings of VLDB, 1999.

N. Koudas, S. Muthukrishnan, and D. Srivastava.
Optimal histograms for hierarchical range queries.
Proceedings of ACM PODS, 2000.

G .S .Manku, S. Rajagopalan, and B. Lindsay.
Approximate medians and other quantiles in one pass
with limited memory. Proceedings of the ACM
SIGMOD, 1998.

G .S .Manku, S. Rajagopalan, and B. Lindsay.
Random sampling techniques for space efficient online
computation of order statistics of large databases.
Proceedings of ACM SIGMOD, 1999.

Y. Matias, J. Scott Vitter, and M. Wang.
Wavelet-Based Histograms for Selectivity Estimation.
Proceedings of ACM SIGMOD, 1998.

J. I. Munro and M. S. Paterson. Selection and sorting
with limited storage. Theoretical Computer Science,
pages 315-323, 1980.

M. Muralikrishna and D. J. DeWitt. Equi-depth
histograms for estimating selectivity factors for
multidimension al queries. Proceedings of ACM
SIGMOD, 1998.

S. Muthukrishnan, V. Poosala, and T. Suel. On
Rectangular Partitioning In Two Dimensions:
Algorithms, Complexity and Applications. Proceedings
of ICDT, 1999.

V. Poosala and V. Ganti. Fast Approximate Answers
To Aggregate Queries On A Datacube. SSDBM, pages
24-33, 1999.

V. Poosala and Y. Ioannidis. Estimation of
Query-Result Distribution and Its Application In
Parallel Join Load Balancing. Proceedings of VLDB,
1996.

V. Poosala and Y. Ioannidis. Selectivity Estimation
Without the Attribute Value Independence
Assumption. Proceedings of VLDB, 1997.

V. Poosala, Y. Ioannidis, P. Haas, and E. Shekita.
Improved Histograms for Selectivity Estimation of
Range Predicates. Proceedings of ACM SIGMOD,
1996.

J. Vitter and M. Wang. Approximate computation of
multidimensional aggregates on sparse data using
wavelets. Proceedings of ACM SIGMOD, 1999.

J.S. Vitter, M. Wang, and B. R. Iyer. Data Cube
Approximation and Histograms via Wavelets.
Proceedings of the 1998 ACM CIKM Intern. Conf. on
Information and Knowledge Management, 1998.

