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ABSTRACT
Histograms have been used widely to capture data distri-
bution, to represent the data by a small number of step
functions. Dynamic programming algorithms which provide
optimal construction of these histograms exist, albeit run-
ning in quadratic time and linear space. In this paper we
provide linear time construction of 1 + � approximation of
optimal histograms, running in polylogarithmic space.
Our results extend to the context of data-streams, and in

fact generalize to give 1 + � approximation of several prob-
lems in data-streams which require partitioning the index
set into intervals. The only assumptions required are that
the cost of an interval is monotonic under inclusion (larger
interval has larger cost) and that the cost can be computed
or approximated in small space. This exhibits a nice class of
problems for which we can have near optimal data-stream
algorithms.

1. INTRODUCTION
Histograms capture distribution statistics in a space ef-

�cient fashion. They have been designed to work well for
numeric value domains, and have long been used to support
cost-based query optimization [22, 11, 12, 25, 27, 26, 23,
14, 13, 15, 20, 17], approximate query answering [7, 2, 1, 29,
28, 24], data mining [16] and map simpli�cation [3].
Query optimization is a problem of central interest to

database systems. A database query is translated by a
parser into a tree of physical database operators (denot-
ing the dependencies between operators) that have to be
executed and form the query answer. Each operator when
executed incurs a cost (in terms of disk accesses) and the
task of the query optimizer is to form the minimum cost
execution plan. Histograms are used to estimate the cost
of physical database operators in a query plan. Many op-
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erators of interest exist, the most common being select and
join operators. A select operator commonly corresponds to
an equality or a range predicate that has to be executed on
the database and various works deal with the construction
of good histograms for such operations [22, 11, 23, 15, 13,
20, 17]. The result of such estimation through the use of a
histogram represents the approximate number of database
tuples satisfying the predicate (commonly referred to as a
selectivity estimate) and can determine whether a database
index should be used (or constructed) to execute this opera-
tor. Join operators are of profound importance in databases
and are costly (in the worst case quadratic) operations. Sev-
eral proposals exist for the construction of good histograms
to estimate the cost of join operations [12, 26, 14]. The
estimates derived from such an estimation are used to de-
termine the order with which multiple join operators should
be applied in the database tables involved.
Histograms have also been used in approximate query an-

swering systems, where the main objective is to provide a
quick but approximate answer to a user query, providing er-
ror guarantees. The main principle behind the design of such
systems is that for very large data sets on which execution
of complex queries is time consuming, is much better to pro-
vide a fast approximate answer. This is very useful for quick
and approximate analysis of large data sets [2]. Research has
been conducted on the construction of histograms for this
task [7, 1] as well as eÆcient approximations of datacubes
[8] via histograms [28, 29, 24].
An additional application of histograms is data mining

of large time series datasets. Histograms are an alternate
way to compress time series information. Through the ap-
plication of the minimum description length principle it is
possible to quickly identify potentially interesting deviations
in the underlying data distribution [16]. All the above ap-
plications share a common property, that the histograms
are constructed on a dataset that is fully known in advance.
Thus algorithms can construct good histograms by perform-
ing multiple passes on the data set.
The histogram approach is also useful in curve simpli�ca-

tion, and specially in transmission of subsequent re�nements
of a distribution [3]. Fixing the initial transmission size, re-
duces the problem to approximating the distribution by a
histogram. Subsequent transmissions carry more informa-
tion. This has a similar avor to approximating the data
by wavelets, used in [28] amongst others. Haar wavelets are
in fact very simple histograms, and this approach allows us
to minimize some objective �t criterion, than storing the k
highest coeÆcients of a wavelet decomposition.
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A data stream is an ordered sequence of points that can
be read only once or a small number of times. Formally, a
data stream is a sequence of points x1; : : : ; xi; : : : ; xn read
in increasing order of the indices i. The performance of an
algorithm that operates on data streams is measured by the
number of passes the algorithm must make over the stream,
when constrained in terms of available memory, in addition
to the more conventional measures. Such algorithms are of
great importance in many networking applications. Many
data sources belonging to mission critical network compo-
nents produce vast amounts of data on a stream, which re-
quire online analysis and querying. Such components in-
clude router link interfaces, router fault monitors and net-
work aggregation points. Applications such as dynamic traf-
�c con�guration, fault identi�cation and troubleshooting,
query the data sources for properties of interest. For exam-
ple, a monitor on a router link interface commonly requests
for the total number of bytes through the interface within
arbitrary windows of interest.
One of the �rst results in data streams was the result of

Munro and Paterson [21], where they studied the space re-
quirement of selection and sorting as a function of the num-
ber of passes over the data. The model was formalized by
Henzinger, Raghavan, and Rajagopalan [9], who gave several
algorithms and complexity results related to graph-theoretic
problems and their applications. Other recent results on
data streams can be found in [6, 18, 19, 5, 10]. The work of
Feigenbaum et al [5, 10] constructs sketches of data-streams,
under the assumption that the input is ordered by the ad-
versary. Here we intend to succinctly capture the input data
in histograms, thus the attribute values are assumed to be
indexed in time. This is mostly motivated from concerns of
modeling time series data, its representation, and storage.

. Most of these histogram problems can be solved o�ine us-
ing dynamic programming. The best known results require
quadratic time and linear space to construct the optimal
solution. We are assuming that the size of histogram is
a small constant. We provide a 1 + � approximation that
runs in linear time. Moreover, our algorithm works in the
data-stream model with space polylogarithmic in the num-
ber of items. The saving in space is a signi�cant aspect
of construction of histograms, since typically the number of
items is large, and hence the requirement of approximate
description. We then generalize the least square histogram
construction to a broader class of partitioning in intervals.
The only restriction we have is that the cost of approxi-
mating intervals is monotonic under inclusion, and can be
computed from a small amount of information. This allows
us to apply the result immediately to get approximations for
splines, block compression amongst others. It is interesting
that such a nicely described class can be approximated un-
der data-streams algorithms.

Organization of the Paper: . In the next section we dis-
cuss the better known histogram optimality criteria, and
in Section 3 we show how to reduce the construction time
from quadratic to linear for the least squares error �t (V-
histogram). We then generalize the result to a fairly generic
error condition in Section 4.

2. PROBLEM STATEMENT
In this paper we will be considering serial histograms. Let

us assume that the data is a sequence of non-negative inte-
gers v1; : : : ; vn. We are to partition the index set 1::n into k
intervals or buckets minimizing

P
p
Varp where Varp is the

variance of the values in the p'th bucket. In a sense we are
approximating a curve by a k-step function and the error is
the least square �t. This is known as V-optimal histogram
or V-histogram. We will concentrate on this problem for the
most part. In the context of databases this arises due to the
sum of the squares of errors in answering point queries on
the database, the histogram provides an estimate for vi. A
similar question can be posed in terms of answering aggre-
gate queries, trying to estimate

P
i
vi.

Several other relevant measures of histogram exist, see
[26]. Instead of minimizing the least square �t, it can be
the area of the symmetric di�erence (sum of di�erences as
opposed to their squares), related to the number of distinct
values in a bucket (compressed histograms, biased or un-
biased). The dual problem of minimizing the number of
buckets, while constraining the error has been considered in
[15, 23].

Previous Results. In [15] a straightforward dynamic pro-
gramming algorithm was given to construct the optimal V-
histogram. The algorithm runs in time O(n2k) and required
O(n) space. The central part of the dynamic programming
approach is the following equation:

Opt[k; n] = min
x<n

fOpt[k � 1; x] + Var[(x+ 1)::n]g (1)

In the above equation, Opt[p; q] represents the minimum
cost of representing the set of values indexed by 1::q by a
histogram with p levels. Var[a::b] indicates the variance of
the set of values indexed by a::b.
The index x in the above equation can have at most n

values, thus each entry can be computed in O(n) time. With
O(nk) entries, the total time taken is O(n2k). The space
required is O(n); since at any step we would only require
information about computing the variance and Opt[p; x] and
Opt[p + 1; x] for all x between 1 and n. The variance can
be computed by keeping two O(n) size arrays storing the
pre�xed sums

Px

i=1 vi and
Px

i=1 v
2
i .

3. FASTER CONSTRUCTION OF NEAR OP-
TIMAL V-HISTOGRAMS

In this section we will demonstrate a 1+� approximation of
the optimal V-histogram, which will require linear time and
only polylogarithmic space. Of course throughout the paper
we will assume that k, the number of levels in the histogram,
is small since that is the central point of representation by
histograms. In the �rst step we will explain why we expect
the improvement, and then proceed to put together all the
details. We will also explain why the result immediately
carries over to a data-stream model of computation.

Intuition of Improvement
Let us reconsider equation 1. The �rst observation we can
make is:

For a � x � b ; Var[a::n] � Var[x::n] � Var[b::n]

And since any solution for the index set 1::b also gives a
feasible (may not be optimal) solution for the index set 1::x
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for any x � b, the second observation is

For a � x � b ; Opt[p; a] � Opt[p; x] � Opt[p; b]

This is a very nice situation, we are searching for the
minimum of the sum of two functions, one of which is non-
increasing (Var) and the other non-decreasing (Opt[p; x] as
x increases). A natural idea would be to use the monotonic-
ity to reduce the searching to logarithmic terms. However
this is not true, it is easy to see that to �nd the true mini-
mum we have to spend 
(n) time.
To see this, consider a set of non-negative values v1; : : : ; vn.

Let f(i) =
Pi

r=1
vr. Consider the two functions f(i) and

g(i), where g(i) is de�ned to be f(n)�f(i�1). The function
f(i) and g(i) are monotonically increasing and decreasing
respectively. But to �nd the minimum of the sum of these
two functions, amounts to minimizing f(n) + vi, or in other
words minimizing vi.
However the redeeming aspect of the above example is

the f(n) part, picking any i gives us a 2 approximation. In
essence this is what we intend to use, that the searching can
be reduced if we are willing to settle for approximation. Of
course we will not be interested in a 2 approximation but
a factor of 1 + �; the central idea would be the reduction
in search. We will later see that this would generalize to
optimizations over contiguous intervals of the indices.

Putting Details Together
We now provide the full details of the 1 + � approximation.
We will introduce some small amount of notation. Our al-
gorithm will construct a solution with p levels for every p
and x with 1 � x � n and 1 � p � k. Let Sol[p; x] denote
the cost of our solution with a p level V-histogram over the
values indexed by 1::x.
The algorithm will inspect the values indexed in increasing

order. Let the current index being considered is n. Let vi
be the value of the i'th item (indexed by i). The parameter
Æ will be �xed later. The algorithm will maintain intervals,
for every 1 � p � k, (ap1; b

p
1); : : : ; (a

p
l ; b

p
l ), such that

1. The intervals are disjoint and cover 1::n. Therefore
ap1 = 1, and bpl = n. Moreover, bpj +1 = apj+1 for j < l.
It is possible that apj = bpj .

2. We maintain Sol[p; bpj ] � (1 + Æ)Sol[p; apj ].

3. Thus we will store Sol[p; apj ] and Sol[p; bpj ] for all j

and p. We will also store
Pr

i=1 vi and
Pr

i=1 v
2
i for

each r 2 [p;jffa
p
j g [ fb

p
jgg.

4. Clearly the number of intervals l would depend on p.
We will use l instead of l(p), to simplify the notation.
The appropriate p will be clear from the context. It
is important to observe that the value of l is not �xed
and is as large as required by the above conditions.

The algorithm on seeing the n+1'st value vn+1, will com-
pute Sol[p; n + 1] for all p between 1 and k, and update
the intervals (ap1; b

p
1); : : : ; (a

p
l ; b

p
l ). We discuss the later �rst.

In fact the algorithm has to update only the last interval
(apl ; b

p
l ), either setting bpl = n+1, or creating a new interval

l+ 1, with apl+1 = bpl+1 = n+ 1, depending on Sol[p; n+ 1].
This brings us to the computation of Sol[p; n+ 1].
For p = 1, the value of Sol[p; n+1] is simply Var[1::n+1]

which can be computed from the pre�xed sums
P

i vi and

P
i v

2
i . To compute Sol[p+1; n+1], we will �nd the j such

that

Sol[p; bpj ] + Var[(bpj + 1)::(n+ 1)]

is minimized. This minimum sumwill be the value of Sol[p+
1; n+ 1].
The algorithm is quite simple. We will now show how

the optimum solution behaves. But �rst observe that we
are not referring to a value which we have not stored, hence
the algorithm applies to the data-stream model modulo the
storage required. The following theorem will prove the ap-
proximation guarantee.

Theorem 3.1. The above algorithm gives a (1 + Æ)p ap-
proximation to Opt[p+ 1; n+ 1].

Proof. The proof will be by double induction. We will
solve by induction on n �xing p �rst. Subsequently assuming
the theorem to be true for all p � k � 1, we will show it to
hold for all n with p = k.
For p = 1, we are computing the variance, and we will

have the exact answer. Thus the theorem is true for all n,
for p = 1.
We assume that the theorem is true for all n for p = k�1.

We will show the theorem to be true for all n for p = k.
Consider equation 1 (altering it to incorporate n + 1 in-

stead of n) and let x be the value which minimizes it. In fact
(x+1)::(n+1) is the last interval in the optimum's solution
to Opt[k; n + 1]. Consider Opt[k � 1; x], and the interval
(ak�1j ; bk�1j ) in which x lies. From the monotonicity of Opt
it follows that:

Opt[k � 1; ak�1j ] � Opt[k � 1; x] � Opt[k � 1; bk�1j ]

And by induction hypothesis, we have:

Sol[k � 1; bk�1j ] � (1 + Æ)Sol[k � 1; ak�1j ] �

(1 + Æ)
h
(1 + Æ)k�2Opt[k � 1; ak�1j ]

i

Now we also have, Var[(bk�1j + 1)::(n + 1)] � Var[(x +
1)::(n+ 1)]. Therefore putting it all together,

Opt[k; n+ 1] = Opt[k � 1; x] + Var[(x+ 1)::(n+ 1)]

� (1 + Æ)�kSol[k � 1; bk�1j ] + Var[(bk�1j + 1)::(n+ 1)]

Our solution will be at most Sol[k�1; bk�1j ]+Var[(bk�1j +
1)::(n+ 1)]. This proves the theorem.

We will set Æ such that (1 + Æ)k � 1 + �. Thus setting
log(1 + Æ) = �=k is suÆcient. The space required will be
O(k logOpt[k; n+ 1]= log(1 + Æ)). Observe that if the opti-
mum is 0, it will correspond to k di�erent sets of contigu-
ous integers, which will correspond to the intervals (ap1; b

p
1).

Thus we will require log Opt[p; n+1]= log(1+Æ)+1 intervals
for this p. Thus the total space requirement is (k2=�) times
O(log Opt[k; n+1]). Now the optimum can be at most nR2

where R is the maximum value, and logR will be the space
required to store this number itself. Thus log Opt[k; n+ 1]
will correspond to storing log n+ 2 numbers, the algorithm
takes an incremental O((k2=�) log n) time per new value. We
can claim the following theorem:
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Theorem 3.2. We can provide a (1 + �) approximation
for the optimum V-histogram with k levels, in O((k2=�) log n)
space and time O((nk2=�) log n), in the data-stream model.

4. LINEAR PARTITIONING PROBLEMS
Consider a class of problems which can expressed as fol-

lows, that given a set of values v1; : : : ; vn, it requires to
partition the set into k contiguous intervals. The objective
is to minimize a function (for example, the sum, max, any
`p norm amongst others) of a measure on the interval. In
the case of V-histograms, the function is the sum and the
measure on each interval is the variance of the values.
If the measure can be approximated upto a factor � for

the interval, dynamic programming will give a � approxi-
mation for the problem. Moreover if this computation can
be performed in constant time (for example the variance,
from knowing

P
i vi and

P
i v

2
i ) the dynamic programming

will require only quadratic time. In case of histograms, the
variance, was computed exactly and we had an optimal al-
gorithm. We will claim a meta-theorem below, which gener-
alizes the previous section, and see what results follow from
it.

Theorem 4.1. The algorithm in the last section gener-
alizes to give us a (1 + �)� algorithm in time ~O(nk2=�) for
data-streams.

We will use the theorem repeatedly in several situations,
�rst we will consider a case where we cannot compute the
error in a bucket exactly (in case of streams).

Approximating the error within a bucket
Consider the objective function where instead of minimizing
the variance over an interval, we minimize

P
i jvi� zj where

z is the value stored in the histogram for this interval. In
this case the value of z is the median of the (magnitude of)
values. This corresponds to minimizing the area of the sym-
metric di�erence of the data and the approximation. This
is an `1 norm instead of variance which is the square of `2.
Using the results of [18], we can �nd an element of rank
n=2 � n� (assuming this interval has n elements) in space
O(log n=�). Thus with the increase in space, we have an
(1 + �) approximation. (Actually we need to choose space
according to �=3, for the factor to work out.)

Theorem 4.2. In case of `1 error, we can approximate
the histogram upto a factor of 1+� in space O((k=�)2 log2 n),
and time O(n(k=�)2 log2 n) for data-streams.

Approximating by piecewise splines
Another example of Theorem 4.1 will be to approximate by
piecewise splines of small �xed degree instead of piecewise
constant segments. The objective would be to minimize sum
of squares �t for the points. We can easily convince our-
selves that given a set of n values indexed by some integer
range a::b, we can construct the coeÆcients of the best �t
curve in time independent of n by maintaining pre�x sums
appropriately.
Consider the case of piecewise linear functions. Given a

set of values vi over a range i 2 a::b, if the function is s �i+t,
it is not diÆcult to see that setting t to the mean and stor-
ing
P

i ivi along with
P

vi and
P

i v
2
i we can minimize the

expression by varying s. This generalizes to degree d splines;
we claim the following without the calculations details,

Theorem 4.3. By storing
P

i i
dvi; : : : ;

P
i vi and

P
i v

2
i

the above algorithm allows to compute a 1 + � approxima-
tion in time O((dnk2=�) log n) and space O((dk2=�) log n)
for data streams.

Relaxing uniformity within buckets
Suppose we want to divide into partitions such that each
part has approximately the same number of distinct values,
and we want to minimize the maximum number of di�erent
values in a partition. This appears in cases where we are re-
luctant to make the uniformity assumption that any value in
a bucket is equally likely. In such cases each bucket is tagged
with a list of the values present, this helps in compression
of the stream; this is typically the compressed histogram
approach [26].

Theorem 4.4. We can approximate the above upto (1+�)
fraction if the (integer) values occur in a bounded range (say
1::R), in space O((Rk2=�) log n), for a data-stream.

However in these approaches often biased histograms are
preferred in which the highest occurring frequencies are stored
(under belief of zip�an modeling, that they constitute most
of the data) and the rest of the values are assumed uniform.
Even this histogram can be constructed upto 1 + � factor,
under the assumption of a bounded range of values. Un-
der the unbounded assumption, estimating the number of
distinct values itself is quite hard [4].

Finding block boundaries in compression
In text compression (or compressing any discrete distribu-
tion) in which few distinct values appear in close vicinity, it
is conceivable that partitioning the data in blocks, and com-
pressing each partition is bene�cial. The Theorem 4.1 allows
us to identify the boundaries (upto 1+�) loss in the optimal
space requirement. This is because the space required by
an interval obeys the measure property we require, namely
that the cost of an interval is monotonic under inclusion.

Aggregate queries and histograms
The aggregate function can be treated as a curve, and we can
have a 1 + � approximation by a V-histogram with k levels.
However there is a problem with this approach. If we con-
sider the distribution implied by the data, it approximates
the original data to k values nonzero values; since the aggre-
gate will have only k steps. It appears more reasonable to
approximate the aggregate by piecewise linear functions. In
fact for this reason, most approaches prefer to approximate
the data by a histogram, and use it for aggregate purposes.
However it is not diÆcult to see that a V-histogram need not
minimize the error. The V-histogram sums up the square
errors of the point queries, our objective function would be
to sum up square errors of aggregate queries. Thus if we
approximate vq ; : : : ; vr by z (in the data) and a shift t, the
sum of square error for aggregate queries is

X
q�i�r

(
X

q�j�i

vi � i � z � t)2

Of course this assumes that any point is equally likely for
the aggregate, and that we are answering aggregate from
the �rst index. This is the same as in Section 3 except the
incoming values can be thought of as v0i =

P
vi.

Thus we can have a 1+� approximation for this objective.
In fact we can optimize a linear combination of the errors
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of point queries and the aggregate queries, where the z is
provided as an answer to a point query and zi + t as an
answer to the aggregate. This may be useful in cases where
the mix of the types of queries are known. These queries
have been referred to as pre�x queries in [17] in context of
hierarchical range queries and were shown to computable in
O(n2k) time.
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