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Sampling From a Moving Window Over Streaming Data 

B r i a n  B a b c o c k  * M a y u r  D a t a r  * R a j e e v  M o t w a n i  *t 

A b s t r a c t  
We in t roduce  the  problem of sampling from a moving 
window of recent items from a data stream and develop 
two algorithms for this problem. The first algorithm, 
"chain-sample", extends reservoir sampling to deal with the 
expiration of data elements f~om the sample. The expected 
memory usage of our algorithm is O(k) when maintaining 
a sample of size k over a window of the n most recent 
elements from the data stream, and with high probability 
the algorithm requires no more than O(k log n) memory. 

When the number of elements in the window is variable, as 
is the case when the size of the window is defined as a time 
duration rather than as a fixed number of data elements, the 
sampling problem becomes harder. Our second algorithm, 
"priority-sample", works even when the number of dements 
in the window can vary dynamically over time. With high 
probability, the "priority-sample" algorithm uses no more 
than O(k log n) memory. 

1 I n t r o d u c t i o n  

In many applications, the timeliness of data is impor- 
tant, and the most recent data is considered to be most 
interesting. Outdated data is "expired" and no longer 
used when evaluating queries. We consider the problem 
of maintaining a uniform random sample of a specified 
size k over a "moving window" of the most recent ele- 
ments in a data stream. (For an overview of the stream- 
ing data  model, see [2].) We present memory-efficient 
algorithms for this problem under two definitions of a 
moving window. A sequence-based window of size n con- 
sists of the n most recent data  elements to arrive, while 
a timestamp-based window of duration t consists of all 
data elements whose arrival timestamp is within a time 
interval t of the current time. 

The problem of how to maintain a sample of a 
specified size k over data that  arrives online has been 
studied in the past. The standard solution is to 
use Vitter 's reservoir sampling techniques developed in 
[4]. Reservoir sampling works well when the incoming 
data contains only inserts and updates but  runs into 
difficulties if the data contains deletions, as is the case 
when data  expires. The solution used in [5] is to 
periodically regenerate the sample when there have been 
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too many deletions by an expensive scan of the entire 
database. The approach for dealing with deletions in 
[6] is to keep counts of the most common data elements 
using probabilistic counting rather than attemping to 
maintain a random sample. 

2 S e q u e n c e - B a s e d  W i n d o w s  

One algorithm for sampling with a sequence-based mov- 
ing window is to maintain a reservoir sample for the first 
n data elements in the stream, and thereafter to stop 
maintaining the sample except that when the arrival of 
a new data element causes an element present in the 
sample to expire, the expired element is replaced with 
the newly-arrived element. This algorithm maintains 
a uniform random sample over a window of the last n 
elements while requiring only enough memory to store 
k data elements, but it has the disadvantage that it is 
highly periodic: if the data  element with sequence num- 
ber i is included in the sample, then so will be the data 
element with sequence number i + cn for all integers 
c > 0. This regularity makes this technique unaccept- 
able for many applications. 

Another simple algorithm is to add each new data 
element to a "backing sample" with probability 2ok los n Tt 
and generate the sample of size k by down-sampling 
from the backing sample. As data  elements expire they 
are removed from the backing sample. An argument 
using Chernoff bounds shows that the size of the backing 
sample will be between k and 4cklogn, except with 
probability dn -~. With high probability, the algorithm 
will both keep a large enough backing sample to supply 
the desired sample of size k and also use only O(klogn) 
memory. 

The expected memory usage of the previous al- 
gorithm is O(klogn); a novel technique that we call 
"chain-sample" improves this to O(k) while preserving 
the same high-probability upper bound of O(k log n). 
(The chain-sample algorithm described below generates 
a sample of size 1. To produce a sample of size k, main- 
tain k independent chain-samples. 1) 

TMaintaining k independent samples of size I results in a with- 
replacement sample of size k. Sampling without replacement 
can be simulated by maintaining enough additional independent 
samples to ensure that with high probability there will be at  
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In the "chain-sample" algorithm, when the i th  
element arrives it is chosen to become the sample with 
probability 1/Min(i, n). If the i th  element is chosen as 
the sample, the algorithm also selects the index of the 
element that  will replace it when it expires (assuming 
tha t  it is still present in the sample when it expires). 
This index is picked uniformly at random from the 
range i + 1 . . .  i -t- n, representing the range of indexes of 
the elements that  will be active when the i th  element 
expires. When the element with the selected index 
arrives, the algorithm stores it in memory and chooses 
the index of the element that  will replace it when it 
expires, etc., building a chain of elements to use in case 
of the expiration of the current element in the sample. 

The expected length of the chain of elements when 
the element in the sample is the i th  oldest non-expired 
element is given by the recurrence: 

TIll 

T[i + 11 

---- 1 
i 

= I + I ~ T [ j ] -  
n 

j~-I 

which bounds the expected length by T[n] < e. 
We can also derive an O(logn) high-probability 

upper bound on the memory usage for a single chain. 
The number of possible chains of elements with more 
than  x data  elements is bounded by the number of 
partitions of n into x ordered integer parts, which is 
(~). Since each such chain has probability n -=, the 
probability of any such chain occuring is less than  
( : ) n  -x, which by Stirling's approximation is less than 
(3)e =. When x = O(log n) this probability is less than  
n -c  for constant c. 

3 T i m e s t a m p - B a s e d  W i n d o w s  

The techniques described in the previous section will not 
work for timestamp-based windows because the number 
of data  elements in the moving window may vary over 
time. We have developed an algorithm we call "priority- 
sample" for use with timestamp-based windows. As 
each data element arrives, it is assigned a randomly- 
chosen priority between 0 and 1. The element selected 
for inclusion in the sample is the "active" (non-expired) 
element with the highest priority. (To maintain a 
sample of size k, generate k priorities P l . . . P k  for each 
element and choose the element with the highest p~ for 
each i.) 

The only data elements that  we need to store in 
memory are those for which there is no element with 
both a later t imestamp and a higher priority, since only 

I'6~-UK--distinct data elements  a m o n g  the samples. Assuming that 
/c <~< n the  n u m b e r  of addi t iona l  samples  required is small .  

these elements can ever be used in the sample. We can 
easily maintain a linked list of all elements with this 
property, ordering the linked list by decreasing priority 
and increasing timestamp. 

The linked list maintained by the algorithm is 
analogous to the right spine of a "treap" where the 
timestamps are fully ordered and the priorities are 
heap ordered. Therefore, by the argument in [1], 
the expected length of this list when there are n 
active elements is H(n) ,  the n th  harmonic number. 
Furthermore, an application of the Chernoff bound on 
the harmonic distribution (see [3]) demonstrates tha t  
the probability tha t  the length of the list will exceed 
2e lnn  + 1 when there are n active elements is less 
than  2(n/e)-Cln(c/e). Thus O(klogn) is both the 
expected memory usage of "priority-sample" and also 
a high-probability upper bound on the memory usage. 
Note tha t  although the memory requirements for the 
"priority-sample" algorithm are expressed in terms of 
the maximum number of elements n that  are active 
at  the same time, the algorithm does not require prior 
knowledge of the value of n. 
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