
Approximate Counts and Quantiles over Sliding Windows

Arvind Arasu
Stanford University

arvinda@cs.stanford.edu

Gurmeet Singh Manku
Stanford University

manku@cs.stanford.edu

ABSTRACT
We consider the problem of maintaining ε-approximate
counts and quantiles over a stream sliding window using
limited space. We consider two types of sliding windows de-
pending on whether the number of elements N in the window
is fixed (fixed-size sliding window) or variable (variable-size
sliding window). In a fixed-size sliding window, both the
ends of the window slide synchronously over the stream. In
a variable-size sliding window, an adversary slides the win-
dow ends independently, and therefore has the ability to
vary the number of elements N in the window.

We present various deterministic and randomized algorithms
for approximate counts and quantiles. All of our algorithms
require O(1

ε
polylog(1

ε
, N)) space. For quantiles, this space

requirement is an improvement over the previous best bound
of O(1

ε2
polylog(1

ε
, N)). We believe that no previous work

on space-efficient approximate counts over sliding windows
exists.

1. INTRODUCTION
Data streams arise in several application domains like high-
speed networking, finance, and transaction logs. For many
applications, recent elements of a stream are more important
than those that arrived a long time ago. This preference
for recent elements is commonly expressed using a sliding
window [2], which identifies a portion of the stream that
arrived between “now” and some recent time in the past.

Computation of various statistics over the current contents
of the window is an important operation [3, 9, 14, 17]. For
many statistics, computing an exact answer requires the
storage of the entire current window, which is infeasible for
many practical stream rates and window sizes. Also, exact
answers are not crucial for many applications; approximate
answers suffice.

This paper considers the problem of approximate, space-
efficient computation of two important statistics over sliding

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODS 2004 June 14-16, 2004, Paris, France.
Copyright 2004 ACM 1-58113-858-X/04/06 . . . $5.00.

windows—frequency counts and quantiles. We believe that
frequency-counts over sliding windows have not been studied
before. Approximate quantiles over sliding windows have
been studied by Lin et al [17]. Our algorithms beat the
algorithms by Lin et al in terms of space complexity.

2. DEFINITIONS
Frequency Counts
An ε-approximate frequency count (or simply count) for a

bag1 B of N elements is a set of 〈e, f̃e〉 pairs (e ∈ B) such

that: (1) the approximate count f̃e is smaller than the true
frequency fe of e in B, but by at most εN , i.e., (fe − εN) ≤

f̃e ≤ fe; (2) any element e ∈ B with a frequency fe ≥ εN
appears in the set; other elements may or may not. Clearly,
there could be more than one set that satisfies the above
two properties.

Approximate counts are important because they can be used
to solve approximate frequent elements problem, which has
applications in data mining and network monitoring [18].
The frequent elements problem over a bag B seeks the set
of elements of B whose frequency exceeds sN for a given
threshold parameter s. The ε-approximate frequent ele-
ments problem allows some false positives—elements whose
frequency is greater than (s − ε) can appear in the answer.
However, no false negatives are allowed; all elements whose
frequency is greater than sN must appear in the answer. It
can be verified that an ε-approximate count for B can be
used to find ε-approximate frequent elements of B if s ≥ ε.

Quantiles
Consider a bag B of N elements. The rank of an element
is its position in a sorted arrangement of elements of B.
The rank of the minimum element is 1, while that of the
maximum element is N . The φ-quantile (φ ∈ (0, 1]) of B
is the element with rank dφNe. The 0.5-quantile is called
the median. An element is said to be an ε-approximate φ-
quantile if its rank is between d(φ − ε)Ne and d(φ + ε)Ne;
clearly there could be many elements that qualify.

Streams and Sliding Windows
A data stream is a continuously arriving sequence of elements
drawn from some ordered domain. At any point in time, a
sliding window over a stream is a bag of last N elements

1A bag is simply a multi-set, allowing multiple occurrences
of an element.

of the stream seen so far, for some nonnegative integer N .
Our algorithms neither assume any advance knowledge of
the domain, nor rely upon the distribution of elements.

We consider two types of sliding windows based on whether
N is fixed (fixed-size sliding window) or variable (variable-
size sliding window). Formally, both types of windows are
modeled using an adversary who can insert a new element
into the window or delete the oldest element from the win-
dow, at each time step. For fixed-size windows, the adver-
sary is constrained so that each insertion is followed by a
deletion, except at the beginning of the stream when the
adversary is required to insert exactly N elements without
a deletion. For variable-size windows, the adversary can ar-
bitrarily interleave insertions and deletions, as long as dele-
tions are performed over nonempty windows.

Example 1. Consider the stream 15, 7, 6, 24, 21, 24, A
fixed-size sliding window over this stream with size N =
3 produces the following sequence of bags: {15}, {15, 7},
{15, 7, 6}, {7, 6, 24}, {6, 24, 21}, {24, 21, 24}, One pos-
sible sequence of bags for a variable-size window over this
stream is the following: {15}, {15, 7}, {7}, {7, 6}, {7, 6, 24},
{7, 6, 24, 21}, {6, 24, 21}, 2

Fixed- and variable-size sliding windows abstract the essen-
tial features of many common types of sliding windows like
tuple-based windows [22], time-based windows [22], and n-of-
N windows [17]. In other words, most algorithms designed
for fixed- or variable-size windows can be easily adapted to
work for the other types of windows. We present details on
how our algorithms can be extended to these other window
types in Section 8.

Problem Statement
The problem of maintaining a ε-approximate counts (resp.
quantiles) over sliding windows can be stated as follows:
Maintain “sufficient state” so that, at any point in time,
ε-approximate counts (resp. φ-quantiles, for any φ ∈ (0, 1])
over the current contents of the sliding window can be com-
puted using the maintained state. The goal is to minimize
the space required for maintaining the state.

An algorithm for maintaining ε-approximate statistics
(counts/quantiles) has advance knowledge of ε. An algo-
rithm over fixed-size windows has advance knowledge of N ,
the size of the window. The input to an algorithm is the se-
quence of new element insertions into the window and oldest
element deletions from the window. For deletions, the iden-
tity of the oldest element is not provided as input to the
algorithm: the algorithm is simply informed that the win-
dow boundary has moved.

3. RELATED WORK
Frequency Counting Algorithms
For data streams, the earliest deterministic algorithm for ε-
approximate frequency counts is by Misra and Gries [21].
Their algorithm requires 1

ε
space and O(1) amortized pro-

cessing time per element. The same algorithm has been re-
discovered recently by Demaine et al [10] and Karp et al [16],
who reduced the processing time to O(1) in the worst case.
Manku and Motwani [18] presented lossy counting, a de-
terministic algorithm that requires O(1

ε
log εN) space.

Though the space requirements are worse than the Misra-
Gries algorithm, lossy counting is superior when the in-
put is skewed. Further, the algorithm can be adapted to
compute association rules [1] over data streams.

In a random sample of size O(1
ε2

log (εδ)−1), the relative
frequency of any element in the sample differs from its true
frequency in the base dataset by at most ε. This obser-
vation can be exploited to obtain approximate frequency
counts in a single pass such that the space requirements
are independent of N . For example, Toivonen [26] identi-
fies a candidate set of frequent itemsets in the context of
association rule mining [1]. For data streams, Manku and
Motwani [18] presented sticky sampling, a randomized al-
gorithm that requires only O(1

ε
log(εδ)−1) space, beating the

sampling bound. Cormode and Muthukrishnan [7] recently
presented randomized algorithms for identifying frequency
counts in the presence of both additions and deletions. Their
algorithm is not directly applicable to sliding windows where
the oldest element is implicitly deleted.

In this paper, we propose deterministic and randomized
algorithms for approximate frequency counts over sliding
windows. Our randomized algorithms are adaptations of
sticky sampling. For fixed-size and variable-size windows,
we require O(1

ε
log(εδ)−1) and O(1

ε
log(εδ)−1 log εN) space

respectively. Our deterministic algorithms use the Misra-
Gries algorithm as a black-box. For fixed-size and variable-
size windows, we require O(1

ε
log2 1

ε
) and O(1

ε
log2 1

ε
log εN)

space respectively.

Deterministic Quantile-Finding Algorithms
The history of quantile-finding algorithms dates back to the
early days of computer science. Early work focused on main
memory datasets. The celebrated paper of Blum, Floyd,
Pratt, Rivest and Tarjan[5], shows that selecting the kth
largest element among N elements requires at least 1.5N
and at most 5.43N comparisons. For an account of progress
since then, see the survey by Paterson [24].

For large datasets in external memory, Pohl [25] established
that any deterministic algorithm that computes the exact
median in one pass needs to store at least N/2 data ele-
ments. Munro and Paterson [23] generalized the idea and

showed that for p ≥ 2, memory to store Θ(N 1/p) elements
is necessary and sufficient for finding the exact median (or
any φ-quantile) in p passes.

For large-sized data streams, where only one pass is allowed,
the lower bound of N/2 for the exact median [25] motivated
the definition of approximate quantiles in the hope of re-
ducing space to o(N). Manku et al [19] defined the notion
of ε-approximate quantiles and devised a deterministic one-
pass algorithm that requires only O(1

ε
log2 εN) space. How-

ever, the algorithm requires advance knowledge of an upper
bound for N . Greenwald and Khanna [15] improved the
space requirements to O(1

ε
log εN). Their algorithm does

not require advance knowledge of N . Moreover, experiments
indicate that their algorithm requires only O(1

ε
) space if the

input is a random permutation of elements.

For sliding windows, Lin et al [17] recently devised the
first algorithms for ε-approximate quantiles. Their space

bounds are O(1
ε2

+ 1
ε

log(ε2N)) for fixed-size windows and

O(1
ε2

log2(εN)) for variable-size windows. In this paper, we
improve upon both bounds, our space requirements being
O(1

ε
log 1

ε
log N) and O(1

ε
log 1

ε
log εN log N) respectively.

Randomized Quantile-Finding Algorithms
For identifying exact quantiles in main memory, a simple
linear time randomized algorithm was presented by Floyd
and Rivest [12]. For approximate quantiles, randomization
reduces the space requirements significantly. The key insight
is the well-known fact that the φ-quantile of a random sam-
ple of size O(1

ε2
log (εδ)−1) is an ε-approximate φ-quantile

of N elements with probability at least 1− δ. This observa-
tion has been exploited, for example, by DeWitt et al [11]
to identify splitters of large datasets in the context of dis-
tributed sorting. For data streams, a randomized quantile-
finding algorithm was proposed by Manku et al [20] that
requires only O(1

ε
log2(1

ε
log(εδ)−1)) space, beating the sam-

pling bound. Further improvement in space is possible, as
described in Section 6. Recently Cormode and Muthukrish-
nan [8] proposed a sketching technique called CM-sketches
that can be used to maintain ε-approximate quantiles over
streams and updateable relations. Their approach requires
an advance knowledge of the domain U from which the ele-
ments of the stream are drawn. The space requirement for
their approach is O(1

ε
log2 |U | log(|U | /(εδ))), where |U |

denotes the size of the domain U .

Related Problems
A problem related to approximate counting is the top-k
problem, also known as the Hot Item problem, where the
goal is to identify k items which are most frequent. Algo-
rithms for the problem over data streams have been devel-
oped by Charikar et al [6], Cormode and Muthukrishnan [7]
and Gibbons and Matias [13].

Sliding window algorithms have been developed for a variety
of problems: bit-counting (Datar et al [9]), sampling (Bab-
cock et al [3]), variance and k-medians (Datar et al [4], dis-
tinct values and bit-counts (Gibbons and Tirthapura [14])
and quantiles (Lin et al [17]).

4. SLIDING-WINDOW SKETCHES
Our presentation focuses on the data structures maintained
by our algorithms, which we call sliding-window sketches. In
this section, we define two general classes of sliding window
sketches called unbounded-window sketches and
bounded-window sketches. We then describe how
these sketches can be used to derive algorithms for main-
taining approximate statistics over fixed- and variable-size
windows.

Recall from Section 2 that a sliding window can be defined
as a sequence of two operations: insertion of a new stream
element into the window when it arrives, and deletion of the
oldest element in the window.

Intuitively, a sliding-window sketch is maintained over a
stream and allows some approximate statistic to be com-
puted over a sliding window of the stream. Specifically, a
sliding-window sketch supports three operations: (1) query,
which computes approximate statistics over the current con-

tents of the window; (2) insert, which updates the sketch
when a new element is inserted into the window; and (3)
delete, which updates the sketch when the oldest element
is deleted from the window.

For the definitions that follow, assume that the sketches are
maintained over the stream of elements e1, e2, e3,

Definition 1. An unbounded-window sketch S is defined
using a fixed error parameter ε, and is denoted Sε. Sε allows
ε-approximate statistics to be computed over a variable-size
window of the stream. The contents of Sε, when the current
size of the stream is m and the current size of the window
is N , is denoted Sε(m, N). Sε(m, N) supports three opera-
tions:

1. query: Returns ε-approximate value of the maintained
statistic over the bag of elements {em−N+1, em−N+2,
. . . , em}.

2. insert: Constructs Sε(m + 1, N + 1) from Sε(m,N)
and the inserted element em+1.

3. delete: Constructs Sε(m,N − 1) from Sε(m,N).

Definition 2. A bounded-window sketch S is defined using
two parameters—an error parameter ε and a max-window
parameter W—and is denoted SW,ε. SW,ε allows approxi-
mate statistics to be computed over a variable-size window
of the stream, but the size of the window N is constrained
to be ≤ W . The contents of SW,ε, when the current size of
the stream is m and the current size of the window is N , is
denoted SW,ε(m, N). SW,ε(m, N) supports three operations:

1. query: Returns (εW/N)-approximate value of the
maintained statistic over the bag of elements {em−N+1,
em−N+2, . . . , em}.

2. insert: Constructs SW,ε(m+1,N+1) from SW,ε(m, N)
and the inserted element em+1, if N + 1 ≤ W .

3. delete: Constructs SW,ε(m, N − 1) from SW,ε(m, N).

Both bounded- or unbounded-window sketches allows ap-
proximate statistics to be computed over variable-size win-
dows. For bounded-window sketches, the size of the window
is constrained to be less than a fixed max-window parame-
ter W , while there are no such constraints for unbounded-
window sketches.

We can use bounded- and unbounded-window sketches to
derive algorithms for maintaining statistics over sliding win-
dows as follows: An ε-approximate algorithm over a fixed-
size window of size N uses a bounded-window sketch SN,ε

(i.e., the max-window parameter W = N). Insertions to the
window are handled using the insert operation and dele-
tions using the delete operation of the sketch. From the
definition of fixed-size windows, it follows that after m ≥ N

L = log2(4/ε) Highest level

ε` = ε
2(2L+2)

2L−` Error at level `

N` = εW
4

2` Size of level-` block

Table 1: List of symbols used by CW,ε and QW,ε.

elements of the stream have been seen, the sketch main-
tained by the algorithm is of the form SN,ε(m, N). By def-
inition, this sketch allows εN/N = ε-approximate statistics
to be computed over the previous N elements2.

Similarly, an ε-approximate algorithm over variable-size win-
dows uses an unbounded-window sketch Sε, and handles in-
sertions and deletions from the window using the insert

and delete operations, respectively. Therefore, when the
current size of the stream is m and the current size of the
window is N , the sketch maintained by the algorithm is
Sε(m, N). By definition, this sketch allows ε-approximate
statistics to be computed over the current elements in the
window.

Note that the definition of bounded-window sketches is more
general than required by our fixed-size window algorithms.
For example, SW,ε(m, N) allows N to vary between 0 and
W , while the fixed-size window algorithms always maintain
W = N . The generality is in fact, exploited for constructing
unbounded-window sketches from bounded-window
sketches, as we will describe in Section 7.

We can define randomized versions of these two types of
sketches in a straightforward manner: A randomized bounded-
window sketch SW,ε,δ(m,N) is similar to a bounded-window
sketch SW,ε(m, N) except that the approximation guaran-
tee of the query operation holds with probability at least
(1− δ). A randomized unbounded-window sketch Sε,δ(m, N)
is defined similarly.

5. DETERMINISTIC, BOUNDED-WINDOW
SKETCHES

In this section, we present two deterministic, bounded-window
sketches for counts and quantiles called CW,ε and QW,ε, re-
spectively, where W denotes the maximum window width
and ε the error parameter.

We assume that both 1/ε and W are powers of 2 to avoid
floors and ceilings in expressions. In order to design CW,ε

for arbitrary W and ε, we identify W ′ and ε′ such that: (a)
W ′ and 1/ε′ are powers of 2; (b) W ≤ W ′ ≤ 2W ; and (c)
W ′ε′ ≤ Wε. We then use the sketch CW ′,ε′ in the place of
CW,ε. By construction, CW ′,ε′ is more accurate than CW,ε,
and we can show that both have the same asymptotic space
complexity. We also assume that W � (1/ε). Otherwise,
a simple construction of CW,ε and QW,ε is to store all the
elements in the current window, and use these to compute
exact counts and quantiles.

2The sketch does not allow ε-approximate statistics to be
computed until m ≥ N elements are seen. In order to be
able to compute ε-approximate sketches at all times, the
algorithm should use an unbounded-sketch for the first N
elements and switch to a bounded-sketch subsequently.

Let S denote the stream over which the sketches CW,ε and
QW,ε are maintained, and let e1, e2, . . . denote the sequence
of elements of S. Therefore, CW,ε(m, N) (resp. QW,ε(m,N))
denotes the contents of the sketch CW,ε (resp. QW,ε) when
the current size of S is m and the current window size is N .

CW,ε and QW,ε conceptually make L+1 copies of the stream,
where L = log2(4/ε). We say that these copies are at dif-
ferent levels, which are numbered sequentially as 0, 1, . . . , L.
For each level, the copy of the stream for that level is divided
into non-overlapping blocks. Within each level-`, all blocks
have the same size. We denote the size of level-` blocks by
N`. We set N0 = εW

4
3 and for ` ≥ 1, N` = 2N`−1. It fol-

lows that N` = 2`N0 = εW
4

2`. Note that NL = W . Within
a level, blocks are numbered 0, 1, 2, . . .; smaller numbered
blocks contain older elements. For example, in level-0 block
0 contains the first εW

4
elements, block 1 the next εW

4
, and

so on. In general, block b in level-` contains the bag of ele-
ments ei, i ∈ [b2` εW

4
+1, (b+1)2` εW

4
]. Figure 1 schematically

illustrates blocks and levels.

At any given point in time, a block is assigned to one of
four states, depending on m, the number of elements of S
so far, and N , the current window size. Consider block b of
level-`, which contains the bag of elements ei, i ∈ [b2` εW

4
+

1, (b + 1)2` εW
4

] = [l, r]. This block is active if all its ele-
ments belong to the current window (m − N < l < r ≤ m),
expired if at least one of its elements is older than the last
N elements (l ≤ m − N), under-construction if some of
its elements belong to the current window, and all the re-
maining, yet to arrive (m − N < l ≤ m and r > m), and
inactive if none of its elements has arrived (l > m). Each
block (upto level-L) goes through the sequence of states in-

active, under-construction, active, and expired.

CW,ε(m, N) and QW,ε(m, N) are collections of block-level
sketches, one sketch per block that is currently active or
under-construction (i.e., when the current size of the
stream is m and the current size of the window is N).

A sketch for a level-` active block has an associated error
parameter ε` = ε

2(2L+2)
2(L−`), and allows ε`-approximate

statistics (counts/quantiles) to be computed over the ele-
ments belonging to that block. The error parameter de-
creases as the level increase, so sketches for higher level
blocks are more accurate than sketches for lower level blocks.
The sketches for the active blocks are merged by the query

operation to produce approximate statistics (count/quantiles)
over the current contents of the window. The details of
the block-level sketches and the merge operation differ for
CW,ε(m, N) and QW,ε(m, N), and we present them sepa-
rately in Sections 5.1 and 5.2 respectively.

In order to construct a sketch for a block when it becomes
active, CW,ε and QW,ε run a traditional one-pass algorithm
(Misra-Gries [21] for CW,ε and Greenwald-Khanna [15] for
QW,ε) over the elements of a block when it is in state under-

construction. When all the elements of a block arrive (i.e.,
the state of the block changes from under-construction

3There is no sanctity to the number 4 in εW
4

. It can be
replaced with a different constant provided other constants
in related expressions are changed suitably.

Expired Active

(Time)

���
���
���
���

���
���
���
���

�������������������
�������������������
�������������������
�������������������

���
���
���
���

	�	
	�	

�

�
εW

4

Level−0

Level−1

Level−2

Level−3

Level−4

N

W

Under construction
m

Figure 1: Levels and Blocks used in CW,ε(m, N) and QW,ε(m, N)

to active), the one-pass algorithm is “queried” to produce
a sketch for the block. Again, the details of running the
one-pass algorithm and querying it differ for CW,ε and QW,ε,
and we present them separately in Sections 5.1 and 5.2.
Note that it is sufficient to start the one-pass algorithm
for a block when the first element of the block arrives, i.e.,
when the block changes from the inactive to the under-

construction state. In order to implement this conceptual
operation, CW,ε and QW,ε maintain sketches corresponding
to blocks under-construction. The sketch for a block is
essentially the state maintained by the instance of the one-
pass algorithm for that block.

5.1 Details of CW,ε

Recall that CW,ε(m, N) is a collection of sketches correspond-
ing to blocks that are active or under-construction,
when the current length of the stream is m and the cur-
rent window size is N .

The sketch stored by CW,ε(m,N) for a level-` active block
is just an ε`-approximate count over the elements belonging
to the block. In other words, the sketch is a set of 〈e, f̃e〉
pairs, where e denotes an element belonging to the block and
f̃e denotes an approximate frequency count for the element.
Further the set satisfies the following two properties: (1) the

approximate count f̃e is smaller than the true frequency fe

of element e in the block, but by at most ε`N`, i.e., (fe −

ε`N`) ≤ f̃e ≤ fe; (2) any element e belonging to the block
with a frequency fe ≥ ε`N` appears in the set.

In order to construct a sketch for a level-` block when it
becomes active, CW,ε runs an instance of Misra-Gries algo-
rithm over the elements of the block with error parameter ε`,
when the block is under-construction. When the block
becomes active, CW,ε stores the output of the Misra-Gries
algorithm as the sketch for the block. The output is simply
the state used by the Misra-Gries algorithm, which is known
to be O(1

ε
) [21]. Thus the space requirements for both ac-

tive and under-construction blocks at level ` are O(1
ε`

).

Lemma 1. (Merge Operation for Counts) Using a collec-
tion of s sketches over disjoint bags of N1, N2, . . . Ns ele-
ments each, with error parameters ε1, ε2, . . . εs, respectively,
we can compute an ε-approximate count for the union of the
bags with error parameter ε = ε1N1+ε2N2+···+εsNs

N1+N2+···+Ns
.

Proof. Let B1, . . . ,Bs denote the s bags and A1, . . . ,As

denote the s sketches over these bags. By definition, each
Ai is an εi-approximate count over the elements of Bi. We
construct an output approximate count A for the union of
the bags as follows: An element e occurs as part of A iff e
occurs as part of some Ai (1 ≤ i ≤ s), i.e., Ai contains a pair

of the form 〈e, f̃ei〉. If so, A contains the pair 〈e, f̃e〉. The

approximate count f̃e is the sum of the approximate counts
f̃ei of e stored in each Ai. (If e does not occur in Ai, f̃ei is

defined to be 0.) By definition of Ai, fei − εiNi ≤ f̃ei ≤ fei,
where fei is the true frequency of e in bag Bi. It follows that
fe−(ε1N1 + . . .+εsNs) ≤ f̃e ≤ fe, where fe = fe1 + . . .+fes

is the true frequency of e in the union of the bags. If the
(true) frequency fe of an element e in the union of the bags
is at least ε1N1 + . . .+εsNs, then the frequency fei of e in at
least one of the bags Bi exceeds εiNi, implying that e occurs
in Ai. By construction, e occurs in A as well. Therefore A
is an approximate count for the union of the bags with error
parameter ε1N1+ε2N2+···+εsNs

N1+N2+···+Ns
.

Theorem 1. CW,ε(m, N) allows εW
N

-approximate counts
to be computed over the bag of elements {em−N+1, . . . , em}.
Further, CW,ε(m, N) uses O(1

ε
log2 1

ε
) space.

Proof. Approximation: Let Bw ={em−N+1, . . . , em} de-
note the bag of elements in the current window. Let α be
the smallest integer such that α εW

4
≥ m − N . Let β be

the largest integer such that β εW
4

≤ m. Let Big (for bag
of ignored elements) denote the bag of all elements ei such
that m − N < i ≤ α εW

4
or β εW

4
< i ≤ m. Intuitively, Big

denotes the bag of elements that belong to the current win-
dow but do not belong to any active block. Let Bcon (for
considered elements) denote the bag of all elements ei such
that α εW

4
+ 1 ≤ i ≤ β εW

4
. Bcon denotes the bag of elements

belonging to the current window that also belong to some
active block. Note that Bw = Big ∪ Bcon.

We claim without proof that Bcon can be expressed as a
union of k non-overlapping active blocks such that k ≤
(2L + 2). (See Figure 1 for an illustration.) Let B1, . . . ,Bk

denote the bag of elements belonging to these blocks. Let
A1, . . . ,Ak denote the sketches stored by CW,ε(m, N) for
these blocks. Let Aig denote the trivial (empty set) sketch
for the bag of elements Big with error parameter εig = 1. We

use Lemma 1 to compute an approximate count A over the
bag of elements Bw = B1 ∪ . . . ∪ Bk ∪ Big using the sketches
A1, . . . ,Ak,Aig.

We now prove that A is an εW
N

-approximate count for Bw .
Let εi denote the approximation parameter for sketch Ai.
Let Ni denote the number of elements in Bi, and let Nig

denote the number of elements in Big. We first note that
for any level-`, ε`N` = εW

2(2L+2)
, which is independent of `.

Since each Ai is some block-level sketch, εiNi = εW
2(2L+2)

for

(1 ≤ i ≤ k). Using Lemma 1 the approximation parameter
for A (say εA) is given by:

εA = (εigNig +
k�

i=1

εiNi)/N (1)

= (Nig + k ·
εW

2(2L + 2)
)/N (2)

≤ (Nig +
εW

2
)/N (3)

≤ (
εW

2
+

εW

2
)/N (4)

≤
εW

N
(5)

Equation 3 follows from the fact that k ≤ (2L + 2), and
Equation 4 from the fact that Nig ≤ 2 εW

4
(which can be

shown from the definition of Big).

Space requirement: The space required by CW,ε(m, N) is the
space required to store the block-level sketches for blocks
that are currently active or under-construction. As
we argued earlier, a sketch for a level-` block that is either
active or under-construction requires O(1

ε`

) space.

From the definition of bounded-window sketches (Defini-
tion 2), we have N ≤ W . Therefore there are at most

N
εW/4

≤ 4
ε

active blocks at level-0, 2
ε

active blocks at

level-1, and so on. In general, we can show that there are
at most 2L−` active blocks at level-`. Hence, the total
space required to store the sketches corresponding to all
the active blocks is O(� L

`=0 2L−`/ε`). Substituting ε` =
ε

2(2L+2)
2(L−`), the required space is O(� L

`=0 2(2L + 2)/ε),

which is O(� L
`=0

L
ε
) = O(L2

ε
) = O(1

ε
log2 1

ε
).

By definition, there is at most one block that is under-

construction for each level. Therefore, the total space
required for sketches corresponding to blocks under con-

struction is O(� L
`=0 1/ε`). Since, ε` ∝ 2−`, O(� L

`=0 1/ε`)
is geometric and is O(1

εL
) = O(1

ε
log 1

ε
). Therefore the total

space required by CW,ε(m,N) is O(1
ε
log2 1

ε
).

5.2 Details of QW,ε

When a level-` block is under under-construction, QW,ε

conceptually runs an instance of the Greenwald-Khanna al-
gorithm [15] with error parameter ε`

2
over the elements of

the block. When the block becomes active, QW,ε com-
putes φ-quantiles for φ = 〈ε`, 2ε`, . . . , 1〉 using the instance
of the Greenwald-Khanna algorithm, and stores the output
sequence as the sketch for the block. It is a known result [15]
that this sequence can be used to compute ε`-approximate
quantiles over the elements of this block.

From the construction above, a sketch for a level-` active

block is just a sequence of 1
ε`

elements, which requires O(1
ε`

)

space. An instance of Greenwald-Khanna algorithm over
elements of a level-` block (with error parameter ε`

2
) requires

O(1
ε`

log ε`N`) space, which is the space required for a sketch

corresponding to a level-` block under-construction.

Lemma 2. (Merge Operation for Approximate Quantiles)
Using a collection of s sketches over disjoint bags of N1, N2,
. . . Ns elements each, with error parameters ε1, ε2, . . . εs, re-
spectively, we can compute ε-approximate quantiles for the
union of the bags with error parameter ε = ε1N1+ε2N2+···+εsNs

N1+N2+···+Ns
.

Proof. For simplicity, we assume that 1/εi (1 ≤ i ≤ s) is
an integer. Also, assume that the sketches are constructed as
described earlier, i.e., the εi-sketch for the ith bag contains
εi

2
-approximate φ-quantiles for φ = 〈εi, 2εi, . . . , 1〉, though

the lemma is valid for the more general class of sketches
introduced in [15]. An approximate φ-quantile, φ ∈ (0, 1],
over the union of the bags can be computed as follows: As-
sociate a weight of εiNi with each element of the i-th sketch.
Sort the elements of all sketches and pick the element with
the property that the sum of weights of all preceding ele-
ments is < dφ(N1 + . . . + Ns)e, but the sum including the
element’s weight is ≥ dφ(N1 + . . . + Ns)e. We claim with-
out proof that this element is an ε-approximate φ-quantile
for the union of the bags, where ε = ε1N1+ε2N2+···+εkNk

N1+N2+···+Nk
.

Theorem 2. QW,ε(m, N) allows εW
N

-approximate quan-
tiles to be computed over the elements {em−N+1, . . . , em}.
Further, QW,ε(m,N) uses O(1

ε
log 1

ε
log W) space.

Proof. Approximation: The proof is identical to that of
Theorem 1, with Lemma 1 replaced by Lemma 2.

Space requirement: The space required by QW,ε(m, N) is the
space required to store the block-level sketches for blocks
that are currently active or under-construction. As we
argued earlier, a sketch for a level-` active block requires
O(1

ε`
) space, while a level-` block under-construction re-

quires O(1
ε`

log ε`N`) space.

The analysis of the space required for the block-level sketches
corresponding to all the active blocks is identical to the
analysis that we presented for CW,ε: There are at most 2L−`

active blocks at level-`. Hence, the total space required to
store the sketches corresponding to all the active blocks is
O(� L

`=0 2L−`/ε`). Substituting ε` = ε
2(2L+2)

2(L−`), the re-

quired space is O(� L
`=0 2(2L+2)/ε), which is O(� L

`=0
L
ε
) =

O(L2

ε
) = O(1

ε
log2 1

ε
).

There is at most one block that is under-construction for
each level. Therefore the total space required for sketches
corresponding to the blocks under-construction is
O(� L

`=0
1
ε`

log ε`N`). For any level-`, ε`N` = εW
2(2L+2)

, which

is independent of `. So, the above sum reduces to
O(log εW

2(2L+2) � L
`=0

1
ε`

). Since, ε` ∝ 2−`, � L
`=0 O(1

ε`
) is geo-

metric and is O(1
εL

) = O(1
ε

log 1
ε
). The total space required

for sketches for blocks under-construction is therefore

O(1
ε
log 1

ε
log εN

log(1/ε)
). The overall space is O(1

ε
log2 1

ε
+

1
ε
log 1

ε
log εW

log(2/ε)
) which can be simplified to the more con-

servative expression O(1
ε

log 1
ε
log W).

6. RANDOMIZED, BOUNDED-WINDOW
SKETCHES

In this section, we present two randomized, bounded-window
sketches—RCW,ε,δ for counts and RQW,ε,δ for quantiles.
RQW,ε,δ is a minor variation of QW,ε, while RCW,ε,δ is sig-
nificantly different from CW,ε. For the remainder of this
section, assume a stream S with elements e1, e2,

6.1 Counts
RCW,ε,δ is based on a sampling technique called sticky

sampling proposed in [18]. Let r denote the integer sat-
isfying 1/2r ≤ (1

ε
log(εδ)−1)/W < 1/2r−1. RCW,ε,δ logically

partitions the stream into blocks of size 2r. For each block,
RCW,ε,δ samples one element that belongs to the block uni-
formly at random.

When the current length of the stream is m and the current
size of the window is N , the contents of RCW,ε,δ(m, N) are
as follows: For each element ei (m−N < i ≤ m), belonging
to the last N positions, that was chosen as a sample for its
block, store the triple 〈ei, f̃i, i〉. The count f̃i denotes the
number of occurrences of ei until it is sampled again, or if
ei is not sampled subsequently, the number of occurrences
of ei until the current end of the stream. Formally, f̃i is
defined as the number of elements ej = ei (i ≤ j ≤ m) such
that there does not exist an element ek = ei (i < k ≤ j)
which was chosen as a sample for its block.

Theorem 3. RCW,ε,δ(m, N) allows εW
N

-approximate
counts to be computed over the elements {em−N+1, . . . , em}
with probability at least (1−δ). Further, RCW,ε,δ(m, N) uses
O(1

ε
log(εδ)−1) space.

Proof. Approximation: An approximate count A over
the bag of elements {em−N+1, . . . , em} is computed using
RCW,ε,δ(m, N) in a natural way: For each distinct element
e that occurs as part of a triple in RCW,ε,δ(m, N), A contains

a pair 〈e, f̃e〉. The approximate count f̃e for element e is the

sum of all f̃i such that 〈e, f̃i, i〉 is a triple in RCW,ε,δ(m,N).

Consider an element e whose true frequency fe in the cur-
rent window exceeds εW . Assume that e does not occur as
part of A or, if it does occur, f̃e < fe − εW , where f̃e is
the approximate count of e stored in A. We can show that
this happens only if the earliest εW occurrences of e in the
current window are not sampled. Let the earliest εW occur-
rences of e in the current window be spread over k different
blocks. Let c1, . . . , ck denote the cumulative frequencies of
these εW occurrences in the k blocks. Then the probability
that the first εW occurrences of e are not sampled is equal
to Πk

i=1(1−ci/2
r). Since 1−ci/2

r < (1−1/2r)ci , this prob-
ability is smaller than Πk

i=1(1 − 1/2r)ci = (1 − 1/2r)εW <

e−εW/2r

< (εδ).

Since N ≤ W (from the definition of bounded-window
sketches), there are at most N

εW
≤ 1

ε
elements whose fre-

quency in the current window exceeds εW . The probability

that some element e among these (at most) 1
ε

elements has

f̃e < fe − εW is less than εδ 1
ε

= δ.

Therefore with a probability at least (1−δ), all the elements
of e whose frequency fe in the current window exceeds εW
appear as a pair 〈e, f̃e〉 in A, such that f̃e ≥ fe − εW . Fur-

ther, for any pair 〈e′, f̃e′ 〉 that appears in A, we can easily

show that f̃e′ ≤ fe′ , where fe′ is the true frequency of the
element e′ in the current window. It follows that A is an
εW
N

-approximate count over the current window.

Space Requirement: The number of triples stored in
RCW,ε,δ(m,N) is less than N

2r + 1, which requires O(W
2r) =

O(1
ε

log(εδ)−1) space.

The sampling technique used in RCW,ε,δ is slightly different
from the original sticky sampling. In the original sticky

sampling each new element is sampled independently with
probability 1/2r . The space requirement for this sampling
scheme is O(1

ε
log(εδ)−1) in expectation. With 1-in-2r sam-

pling, as described above, the space requirements become
worst-case.

6.2 Quantiles
RQW,ε,δ is identical to QW,ε described in Section 5, except
that it uses a randomized algorithm that we call RQAlg

instead of the deterministic Greenwald-Khanna algorithm.
We first describe RQAlg, before presenting details of
RQW,ε,δ .

A randomized 1-pass algorithm for computing ε-approximate
quantiles over a stream of length M works as follows: We
maintain a sample of size O(1

ε2
log(εδ)−1) using Vitter’s reser-

voir sampling [27]. It is well-known that exact quantiles
of the sample are ε-approximate quantiles of the stream,
with probability at least 1 − δ. An algorithm that is eas-
ier to code is to select 1 out of 2k successive elements with
k = � log2(M/(1

ε2
log δ−1)) � . Quantiles computed over the

resulting samples are indeed ε-approximate, as shown in [20].
The space requirements for both Vitter’s scheme and the 1-
in-2k scheme, are O(1

ε2
log(εδ)−1). For small values of ε,

the inverse-square dependence on ε leads to blowup in space
requirements, making the algorithms impractical. Two ap-
proaches have been devised in recent years to combat this
problem: (a) Gibbons and Matias [13] show how samples
can be compressed if the stream abounds with duplicates,
and (b) Manku et al [19] suggest a two-stage pipeline: the
output of 1-out-of-2k sampling can be fed to a deterministic
quantile-finding algorithm, with the error parameter being
ε/2 for the two stages. By employing the Greenwald-Khanna
algorithm [15] in the second stage, we arrive at a randomized
algorithm requiring only O(1

ε
log(1

ε
log(εδ)−1)) space4. We

call this algorithm RQAlg(ε, δ), parameterized by ε and δ.

RQW,ε,δ(m,N) stores block-level sketches for blocks that
are currently active or under-construction, exactly like
QW,ε(m,N). When a level-` block is under-construction,

4If M is not known in advance, k is not fixed but grows loga-
rithmically with M . However, we claim that it is possible to
employ the “adaptive sampling scheme” Manku et al [20] in
conjunction with a modified Greenwald-Khanna algorithm
to arrive at the same bound.

RQW,ε,δ runs an instance of RQAlg(ε`

2
, δ

(2L+2)
) over the

elements of the block. When the block becomes active,
RQW,ε,δ computes φ-quantiles for φ = 〈ε`, 2ε`, . . . , 1〉 using
the above instance of RQALg.

Theorem 4. RQW,ε,δ(m,N) allows εW
N

-approximate
quantiles to be computed over the elements {em−N+1, . . . , em}
with probability at least (1−δ). Further, RQW,ε,δ(m,N) uses
O(1

ε
log 1

ε
log(1

ε
log ∆−1)) space, where ∆ = (εδ)/ log(1/ε).

Proof. (Sketch) Algorithm RQAlg guarantees that each
block-level sketch has the desired error parameter with prob-
ability at least (1− δ

(2L+2)
). In order to compute an approx-

imate quantile, at most (2L + 2) block-level sketches are
merged. With probability at least (1 − δ), each of these
have the desired error parameter.

Space requirements for active blocks are O(1
ε
log2 1

ε
) (see

Theorem 2 for a proof). Space-requirements for blocks under-

construction are only O(1
ε
(log 1

ε
) log(1

ε
log ∆−1)), where

∆ = O(εδ/ log(1/ε)). Summing the two, we get the overall
space-complexity.

7. UNBOUNDED-WINDOW SKETCHES
We present a general technique for constructing unbounded-
window sketches from bounded-window sketches that satisfy
a certain property. All of our bounded-window sketches pre-
sented in Sections 5 and 6 satisfy this property, and therefore
we can obtain a unbounded-window sketch corresponding to
each one of our bounded-window sketches.

7.1 General Technique
Let F denote a bounded-window sketch that satisfies the
following property:

Property P: For any positive integers k and m,
and real ε ∈ (0, 1], F2k+1,ε(m, 2k) can be con-

structed using F2k ,ε(m, 2k).

For any error parameter ε, an unbounded-window sketch Vε

can be constructed from F as follows: Vε(m,N) is the col-
lection of the following blog2 εNc bounded-window sketches,
where k is the integer satisfying 2k−1 ≤ N < 2k:

{F2k , ε

2
(m,N),F2k−1, ε

2
(m, 2k−1), . . . ,F 2

ε
, ε

2
(m,

2

ε
)}

The three basic operations query, insert, and delete of
Vε(m,N) are performed as follows:

query: To compute ε-approximate statistics for the cur-
rent window, we use the query operation of the sketch
F2k , ε

2
(m, N). By definition, the query operation of

F2k , ε

2
(m, N) produces (ε/2)2k

N
-approximate statistics. Since

N > 2k/2, the approximation (ε/2)2k

N
< ε, as required.

insert: We compute Vε(m + 1, N +1) from Vε(m, N) when
an element em+1 is inserted as follows: We insert the el-
ement em+1 into the sketch F2k , ε

2
(m, N) using its insert

operation to produce F2k , ε

2
(m + 1, N + 1). For all the re-

maining sketches {F2k−1 , ε

2
(m, 2k−1), . . . ,F 2

ε
, ε

2
(m, 2

ε
)}, we

first perform a delete operation and then insert the ele-
ment em+1 using their insert operations. This sequence of
operations results in the following collection of sketches:

{F2k , ε

2
(m+1,N +1),F2k−1, ε

2
(m+1, 2k−1), . . . ,F 2

ε
, ε

2

(m+1,
2

ε
)}

Further, if N+1 = 2k, we construct F2k+1, ε

2
(m+1, 2k) from

F2k , ε

2
(m+1, 2k) and add it to the collection of sketches. This

step is possible since F satisfies Property P.

delete: We compute Vε(m,N − 1) as follows: We perform
a delete operation for the sketch F2k , ε

2
(m, N). All other

sketches remain unchanged. This results in the collection of
sketches:

{F2k , ε

2
(m, N − 1),F2k−1, ε

2
(m, 2k−1), . . . ,F 2

ε
, ε

2
(m,

2

ε
)}

Further, if N−1 < 2k−1, we drop the sketch F2k , ε

2
(m, N−1)

from the collection of sketches.

7.2 Specific Constructions
In this section we show that all the bounded-window sketches
that we presented in Sections 5 and 6 satisfy Property P.

Lemma 3. The bounded-window sketches C, Q and RQ
satisfy Property P.

Proof. We present the proof only for the bounded-window
sketch C. The proofs for Q and RQ are very similar.

In order to prove that C satisfies Property P, we need to
show that C2k+1,ε(m, 2k) can be constructed from

C2k,ε(m, 2k). Intuitively, this construction is feasible since

C2k,ε(m, 2k) is a more accurate sketch than C2k+1,ε(m, 2k):
Both sketches compute statistics over the same window, but
C2k+1,ε(m, 2k) allows ε-approximate statistics to be com-

puted over the current window, while C2k+1,ε(m, 2k) only
allows 2ε-approximate statistics to be computed.

For presentation clarity, we assume that no block of
C2k,ε(m, 2k) is under-construction. This is equivalent

to assuming that m is an exact multiple of 2k. The proof
for the more general case uses essentially the same ideas as
the proof presented here.

Let L = log2(
4
ε
) denote the number of different levels for

blocks: this is the same for both C2k+1,ε(m, 2k) and

C2k,ε(m, 2k), since L is a function of ε alone. For ` < L, we

can show that each level-` active block of C2k+1,ε(m, 2k) is

the same as some level-(` + 1) active block of C2k,ε(m, 2k).

For this common block, C2k ,ε(m, 2k) stores a sketch with er-

ror parameter ε`+1, while C2k+1,ε(m, 2k) stores a sketch with
error parameter ε`. By definition, ε`+1 = ε`

2
. In general, for

counts, we can show that a sketch for a bag of elements with
error parameter ε′ can be constructed using a sketch for the

same bag with error parameter ε′

2
. (This is shown formally

in Lemma 4.) Therefore, for ` < L, we can construct a

Level−3

Level−2

Level−1

Level−0

Level−0

Level−1

Level−2

Level−3

k2

k+1
2

Figure 2: Construction of C2k+1,ε(m, 2k) from C2k,ε(m, 2k)

sketch for a level-` active block of C2k+1,ε(m, 2k) using the

sketch maintained for the same block by C2k,ε(m, 2k). (See
Figure 2 for an illustration.)

We now consider level-L blocks of C2k+1,ε(m, 2k). Since the

current window size for C2k+1,ε(m, 2k) is 2k, and the size of a

level-L block in C2k+1,ε(m, 2k) is 2k+1 (by definition), there

can be no active level-L block in C2k+1,ε(m, 2k). We con-

sider two possible cases depending on whether C2k+1,ε(m, 2k)
contains a level-L block under-construction or not. If
C2k+1,ε(m, 2k) does not contain a level-L block under

-construction, we do not need to do anything further,
since we have constructed a valid block-level sketch for every
block of C2k+1,ε(m, 2k) that is either under-construction

or active.

In order to be able to handle the second case, where
C2k+1,ε(m, 2k) contains a level-L block under-construction,
we make one minor modification to the running of the one-
pass Misra-Gries algorithm over blocks under-const-

ruction: When a block becomes active, we do not imme-
diately terminate the algorithm and discard the sketches
as described in Section 5.1, but do so only when the next
block in the same level reaches under-construction state.
(This change translates to slightly modifying the definitions
of active and under-construction blocks, so that, at
any point in time, there is always a block in each level in
the under-construction state.) None of the results so far
are affected by this modification. With this modification, an
instance of the one-pass algorithm, capable of producing an
εL-sketch is running over the elements of the single active
level-L block of C2k,ε(m, 2k). We simply continue this algo-

rithm on behalf of the level-L block of C2k+1,ε(m, 2k) that is

under-construction, and after the next 2k elements ar-
rive, this algorithm can be used to produce an εL-sketch.

Lemma 4. For quantiles (resp. counts), a sketch with er-
ror parameter ε for a bag that uses O(1

ε
) space can be ob-

tained from a sketch for the same bag that has error param-
eter ε

2
.

Proof. First consider quantiles. An ε-sketch can be con-
structed by probing ε

2
sketch for quantiles φ = ε, 2ε, . . . , 1

and storing the returned approximate quantiles. Clearly,
this sketch uses O(1

ε
) space.

For counts, retrieve all pairs 〈e, f̃e〉 in the ε
2
-sketch, and

store as part of the ε-sketch those pairs with f̃e ≥ εM/2,
where M is the size of the bag. At most 2

ε
elements can

have f̃e ≥ εM/2. (Recall that the approximate count f̃e ≤
the frequency). Therefore, size of the constructed sketch is
O(1

ε
).

Lemma 5. The randomized bounded-window sketch RC
satisfies Property P.

Proof. (Sketch) We need to show that RC2k+1,ε,δ(m, 2k)

can be constructed using RC2k ,ε,δ(m, 2k). We can easily
show that if RC2k ,ε,δ samples one element every 2r elements,

RC2k+1,ε,δ samples one element every 2r+1 elements. The

construction of RC2k+1,ε,δ(m, 2k) from RC2k ,ε,δ(m, 2k) es-

sentially uses the fact that a 1-in-2r+1 sample can be ob-
tained from a 1-in-2r sample.

The theorems below follow directly from the general tech-
nique for constructing unbounded-window sketches and the
space requirements for our bounded-window sketches.

Theorem 5. There exists an unbounded-window sketch
Vε for computing ε-approximate counts, such that Vε(m,N)
requires O(1

ε
log2 1

ε
log εN) space.

Theorem 6. There exists an unbounded-window sketch
Vε for computing ε-approximate quantiles, such that Vε(m, N)
requires O(1

ε
log 1

ε
log N log εN) space.

Theorem 7. There exists an randomized, unbounded-
window sketch Vε,δ for computing ε-approximate counts with
probability at least (1 − δ), such that Vε,δ(m, N) requires
O(1

ε
log(εδ)−1 log εN) space.

Theorem 8. There exists an randomized, unbounded-
window sketch Vε,δ for computing ε-approximate quantiles
with probability at least (1−δ), such that Vε,δ(m,N) requires
O(1

ε
log 1

ε
log(1

ε
log ∆−1) log εN) space, where ∆ =

(εδ)/ log(1/ε).

8. EXTENSIONS TO OTHER TYPES OF
WINDOWS

As we indicated in Section 1, fixed- and variable-size win-
dows capture the essential features of many common types
of windows. Tuple-based windows [22] correspond exactly
to fixed-size windows.

A time-based window [22] is defined for streams whose ele-
ments have associated timestamps, indicating their arrival
time on the stream. At any given point in time, a time-based
window contains the elements of a stream with timestamps
in the last T time units, for some fixed parameter T . Since
zero, one, or more than one elements can have the same
timestamp, the number of elements in a time-based windows
can vary. Therefore time-based windows are closely related
to variable-size windows5. All of our unbounded-window can
be extended to handle time-based windows. Briefly, this is
done by storing for each block the timestamp of the oldest
element that belongs to the block. (Recall that all of our
unbounded-window sketches are constructed using bounded-
window sketches, which in turn maintain some summary
information at the level of blocks, for some definition of
blocks.) We omit the details, which are straightforward.

Lin et al [17] introduce the notion of n-of-N window model.
An algorithm maintaining statistics in the n-of-N window
model should be able to compute approximate statistics over
the last n elements of the stream for any n ≤ N . Any algo-
rithm over variable-size windows necessarily has the ability
to compute statistics in the n-of-N window, since an ad-
versary for variable-size windows can arbitrarily shrink a
window.

9. ACKNOWLEDGMENTS
This work was supported by an SNRC grant and by Na-
tional Science Foundation grants IIS-0118173, IIS-9817799,
and EIA-0137761. The authors thank Mayank Bawa for
useful feedback on an initial draft.

10. REFERENCES
[1] R. Agrawal, T. Imielinski, and A. N. Swami. Mining

association rules between sets of items in large
databases. In Proc. of the 1993 ACM SIGMOD Intl.
Conf. on Management of Data, pages 207–216, May
1993.

[2] B. Babcock, S. Babu, M. Datar, R. Motwani, and
J. Widom. Models and issues in data stream systems.
In Proc. of the 21st ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, pages 1–16, June 2002.

[3] B. Babcock, M. Datar, and R. Motwani. Sampling
from a moving window over streaming data. In Proc.

5There exist statistics, e.g., “the count of all elements in the
window”, that can be computed using constant space over
variable-size windows, but not over time-based windows.

of the 13th Annual ACM-SIAM Symp. on Discrete
Algorithms, pages 633–634, Jan. 2002.

[4] B. Babcock, M. Datar, R. Motwani, and
L. O’Callaghan. Maintaining variance and k-medians
over data stream windows. In Proc. of the 22nd ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, pages 234–243, June 2003.

[5] M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, and
R. E. Tarjan. Time bounds for selection. Journal of
Computer and System Sciences, 7(4):448–461, Aug.
1973.

[6] M. Charikar, K. Chen, and M. Farach-Colton. Finding
frequent items in data streams. In Proc. of the 29th
Intl. Coll. on Automata, Languages and Programming,
pages 693–703, July 2002.

[7] G. Cormode and S. Muthukrishnan. What’s hot and
what’s not: tracking most frequent items dynamically.
In Proc. of the 22nd ACM
SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, pages 296–306, June 2003.

[8] G. Cormode and S. Muthukrishnan. An improved
data stream summary: The count-min sketch and its
applications. In LATIN 2004, pages 29–38, Apr. 2004.

[9] M. Datar, A. Gionis, P. Indyk, and R. Motwani.
Maintaining stream statistics over sliding windows. In
Proc. of the 13th Annual ACM-SIAM Symp. on
Discrete Algorithms, pages 635–644, Jan. 2002.

[10] E. D. Demaine, A. López-Ortiz, and J. I. Munro.
Frequency estimation of internet packet streams with
limited space. In Proc. of the 10th Annual European
Symp. on Algorithms, pages 348–360, Sept. 2002.

[11] D. J. DeWitt, J. F. Naughton, and D. A. Schneider.
Parallel sorting on a shared-nothing architecture using
probabilistic splitting. In Proc. of the 1st Intl. Conf.
on Parallel and Distributed Information Systems,
pages 280–291, Dec. 1991.

[12] R. W. Floyd and R. L. Rivest. Expected time bounds
for selection. Comm. of the ACM, 18(3):165–172, Mar.
1975.

[13] P. B. Gibbons and Y. Matias. New sampling-based
summary statistics for improving approximate query
answers. In Proc. of the 1998 ACM SIGMOD Intl.
Conf. on Management of Data, pages 331–342, June
1998.

[14] P. B. Gibbons and S. Tirthapura. Distributed streams
algorithms for sliding windows. In Proc. of the 14th
Annual ACM Symp. on Parallel Algs. and
Architectures, pages 63–72, Aug. 2002.

[15] M. Greenwald and S. Khanna. Space-efficient online
computation of quantile summaries. In Proc. of the
2001 ACM SIGMOD Intl. Conf. on Management of
Data, pages 58–66, May 2001.

[16] R. M. Karp, S. Shenker, and C. H. Papadimitriou. A
simple algorithm for finding frequent elements in
streams and bags. ACM Trans. on Database Systems,
28(1):51–55, Mar. 2003.

[17] X. Lin, H. Lu, J. Xu, and J. X. Yu. Continuously
maintaining quantile summaries of the most recent N
elements over a data stream. In Proc. of the 20th Intl.
Conf. on Data Engineering, Mar. 2004. (to appear).

[18] G. S. Manku and R. Motwani. Approximate frequency
counts over data streams. In Proc. of the 28th Intl.
Conf. on Very Large Data Bases, pages 356–357, Aug.
2002.

[19] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Approximate medians and other quantiles in one pass
and with limited memory. In Proc. of the 1998 ACM
SIGMOD Intl. Conf. on Management of Data, pages
426–435, June 1998.

[20] G. S. Manku, S. Rajagopalan, and B. G. Lindsay.
Random sampling techniques for space efficient online
computation of order statistics of large datasets. In
Proc. of the 1999 ACM SIGMOD Intl. Conf. on
Management of Data, pages 251–262, June 1999.

[21] J. Misra and D. Gries. Finding repeated elements. Sci.
Comput. Programming, 2(2):143–152, Nov. 1982.

[22] R. Motwani, J. Widom, et al. Query processing,
approximation, and resource management in a data
stream management system. In Proc. of the 1st Conf.
on Innovative Data Systems Research, pages 245–256,
Jan. 2003.

[23] J. I. Munro and M. Paterson. Selection and sorting
with limited storage. Theoretical Computer Science,
pages 315–323, 1980.

[24] M. Paterson. Progress in selection. In Proc. of the 5th
Scandinavian Workshop on Algorithm Theory, pages
368–379, July 1996.

[25] I. Pohl. A minimum storage algorithm for computing
the median. Technical Report IBM Research Report
RC 2701 (# 12713), IBM T. J. Watson Center, 1969.

[26] H. Toivonen. Sampling large databases for association
rules. In Proc. of the 22nd Intl. Conf. on Very Large
Data Bases, pages 134–145, Sept. 196.

[27] J. S. Vitter. Random sampling with a reservoir. ACM
Trans. on Mathematical Software, 11(1):37–57, Mar.
1985.

	page1: 286
	page2: 287
	page3: 288
	page4: 289
	page5: 290
	page6: 291
	page7: 292
	page8: 293
	page9: 294
	page10: 295
	page11: 296

