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ABSTRACT
We consider the wavelet synopsis construction problem for
data streams where given n numbers we wish to estimate the
data by constructing a synopsis, whose size, say B is much
smaller than n. The B numbers are chosen to minimize a
suitable error between the original data and the estimate
derived from the synopsis.

Several good one-pass wavelet construction streaming al-
gorithms minimizing the `2 error exist. For other error mea-
sures, the problem is less understood. We provide the first
one-pass small space streaming algorithms with provable er-
ror guarantees (additive approximation) for minimizing a va-
riety of non-Euclidean error measures including all weighted
`p (including `∞) and relative error `p metrics.

In several previous works solutions (for weighted `2, `∞
and maximum relative error) where the B synopsis coeffi-
cients are restricted to be wavelet coefficients of the data
were proposed. This restriction yields suboptimal solutions
on even fairly simple examples. Other lines of research, such
as probabilistic synopsis, imposed restrictions on how the
synopsis was arrived at. To the best of our knowledge this
paper is the first paper to address the general problem, with-
out any restriction on how the synopsis is arrived at, as well
as provide the first streaming algorithms with guaranteed
performance for these classes of error measures.

Categories and Subject Descriptors: F.2 [Analysis of
Algorithms and Complexity] : Miscellaneous; G.2 [Discrete
Mathematics] : Miscellaneous; H.3 [Information Storage and
Retrieval] : Miscellaneous

General Terms: Algorithms, Theory

Keywords: Wavelet Synopses, Streaming Algorithms
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1. INTRODUCTION
Wavelets are localized, orthogonal transforms that are ex-

tremely versatile for representing discrete signals [3, 21].
They allow a multi-resolution view of the data and easily
extend to more than one dimension. Among these, the Haar
wavelets have been used extensively in synopsis construction
with a variety of uses in image analysis, signal processing,
and databases to name a few. The primary attraction of
the Haar Wavelets is the existence of linear time forward
and inverse transforms. The non-normalized Haar basis for
n = 4 is:

ψ1 = {1, 1, 1, 1} ψ2 = {1, 1,−1,−1}

ψ3 = {1,−1, 0, 0} ψ4 = {0, 0, 1,−1}

The vectors generalize to larger powers of 2 quite easily.
The intervals over which the basis vectors are defined are
powers of 2. The interval corresponding to the basis vec-
tor ψi is denoted by Supp(ψi), e.g. Supp(ψ1) = n and
Supp(ψ3) = n/2 always. Moreover every value of the inverse
transformW−1(Z) =

P

i ψiZi in the Haar setting is the sum
of only logarithmically (in the length of the signal) many
values in the transformed representation Z. This allows fast
“on demand” computation for a broad spectrum of analyses
tasks. Furthermore, there is a significant intuitive meaning
to the Haar wavelet coefficients. The (non-normalized) coef-
ficients denote half of the difference between the averages of
the left and right halves of the entire interval (the support).

Most applications of Wavelets consider representing the
input in terms of the high level coefficients and broader
characteristics of the data, typically referred to as a syn-
opsis or signature. These synopses or signatures are used
subsequently in learning, classification, and event detection
among many other applications. The synopsis is typically
constructed to minimize some desired error criterion. One
of the most common error criteria is the sum-of-squares cri-
terion which is also the square of the `2 distance between
the original signal and its representation. However with the
emerging mining applications such as time series analysis
other error measures (e.g. `∞, weighted `2 etc.) have been
considered recently. It would be impossible to conduct a
thorough review, however [13, 19, 1, 18, 7, 6, 4, 11] and
pointers therein serve as excellent starting points.

In this paper we consider the following problem:

Problem 1. Given a set of n numbers X = x1, . . . , xn,
find a synopsis vector Z with at most B non-zero entries,

88

Research Track Paper



such that the inverse wavelet transform of Z (denoted by
W−1(Z)) gives a good estimate of the data, i.e., minimizes
‖X −W−1(Z)‖p for some integer p (p = ∞ corresponds to
the maximum error). We will assume n is a power of 2.

The problem also generalizes to weighted-`p error metrics
where given weights πi ≥ 0 we seek to minimize

‖X −W−1(Z)‖π,p =

 

X

i

πp
i

˛

˛(xi −W
−1(Z)i)

˛

˛

p

! 1
p

For the standard `k norm all πi are set to 1. The Relative
Error metrics have πi = 1

max{|xi|,c}
for some sanity constant

c > 0 which avoids division by 0. The relative error metrics
will be denoted as ‖ · ‖relp .

In absence of any qualifier such as ‘relative’ or ‘weighted’,
the term ‘error’ will imply error in the `p norm. For the
weighted-`p norm we can multiply all the πi’s by a constant
and leave the problem unchanged. Therefore for weighted `p

we will assume πmax = maxi πi = 1.

For the Euclidean error, i.e., minimizing unweighted `2
error ‖X −W−1(Z)‖2. Observe that the set of vectors
“

1/
p

Supp(ψi)
”

ψi form an orthonormal basis. In any or-

thonormal basis the Euclidean length or the `2 norm of any
vector (including X−W−1(Z)) is preserved (Parseval’s The-
orem). Thus the problem of minimizing ‖X − W−1(Z)‖2
is equivalent to minimizing

P

i Supp(ψi)(W(X)i−Zi)
2 and

the best choice of Z is to store the largest B (ignoring signs)

normalized, i.e. multiplied by
p

Supp(ψi), coefficients. Sev-
eral algorithms have been proposed for this in the streaming
context [18, 7, 8, 10]. For the streaming model considered in
this paper the optimum synopsis under unweighted `2 error
can be found in O(n) time and O(B + log n) space.

The simplicity of the unweighted `2 solution breaks down
in case of non-Euclidean error measures. In an early paper
Matias, Vitter and Wang [19], demonstrated a number of
different applications for wavelet synopsis for non-Euclidean
error measures and proposed greedy algorithms. In fact, sev-
eral researchers have shown greedy heuristics perform quite
well, but no theoretical analysis about the quality of the syn-
opsis exists. The problem is quite non-trivial, because the
Wavelet basis vectors overlap and two coefficients can cancel
out each other leaving a significantly (exponentially) smaller
contribution. In fact, for `k (k > 2, even weighted `2) there
is no known guarantee that the solution will be over ratio-
nals since the optimization minimizes an algebraic equation
of degree greater than 1. This is the biggest stumbling block
in the synopsis construction, and has likely been one of the
reasons for considering the restrictions on how the synopses
are arrived at. We discuss some of the previous works next.

1.0.0.1 Related Work.
Garofalakis and Gibbons [6] proposed a strategy that im-

proves upon storing the largest coefficients for non-Euclidean
errors. They consider probabilistic synopsis where the i’th
coefficient takes the value λi with probability W(X)i/λi or
is set to 0. They show the estimation using probabilistic
synopses is unbiased and provide algorithms for finding the
best probabilistic synopsis under different measures. How-
ever, we note that,

• The algorithm is inherently offline.

• The space bound is preserved only in expectation and

the variance in the space usage (computed analyti-
cally) appears to be large.

• There is no immediate connection between the best
probabilistic synopsis and the best synopsis. Note that
the best synopsis does not have restrictions on how
the synopsis is arrived at. For example consider X =
{1, 4, 5, 6} whose transformW(X) = {4,−1.5,−1.5,−0.5}.
The best solution for `∞ error and B = 1 is Z =
{3.5, 0, 0, 0}. The probabilistic synopsis will not even
consider this solution since it will restrict λ1 ≥ 4. Note
that the example can generalize to any B: Simply re-
peat with alternate signs, i.e.
{1, 4, 5, 6,−1,−4,−5,−6, 1, 4, 5, 6, . . .}. Further, the
gap between the errors can be made large in magnitude
by considering {a, 4a, 5a, 6a} for some large constant
a. [6] also consider the maximum relative error `rel∞

which minimizes maxi

˛

˛

˛

xi−W−1(Z)i
max{xi,c}

˛

˛

˛. The optimum

solution for X under this error measure and B = 1
is Z = {12/7, 0, 0, 0}; which is again ruled out by the
probabilistic synopses.

Garofalakis and Kumar [5] avoid the problem with the
space bound and give a deterministic O(n2B logB) time
and O(n2B) space algorithm for maximum error metrics
for the restricted case where the ith entry of Z, Zi, is re-
stricted to be 0 or W(X)i, the ith Wavelet coefficient of the
input. Muthukrishnan [20] extends the algorithm of [5] to
handle weighted `2 error measures. Matias and Urieli [16]
as well as [20] improve the running time of the algorithm in
[5]. Guha [9] shows that all weighted `k error measures, in
the restricted version can be solved in O(n2 logB) time and
O(n) space (constants independent of B) using space effi-
cient dynamic programming techniques. All the algorithms
for this restricted version in [5, 20, 16, 9] share the following
properties:

• The algorithms are inherently offline.

• The algorithms choose wavelet coefficients of the data
for the synopsis, i.e., solve the restricted problem. The
earlier example of X = {1, 4, 5, 6} is problematic for
this restriction on Zi, and applies to all of them since
the best solution which retains B = 1 coefficient of the
data is {4, 0, 0, 0} for both the `∞ or `rel∞ errors. As
we have already seen, the optimum solutions for these
errors are {3.5, 0, 0, 0} and {12/7, 0, 0, 0} respectively.
The same example X = {1, 4, 5, 6} carries over to the
weighted-`2 case; consider π = {1, 1

2
, 1

2
, 1

2
}. The best

solution is {3.4, 0, 0, 0} (follows from the 4 quadratic
equations formed) instead of {4, 0, 0, 0} which arises
from retaining the best single coefficient of the input.
As above, the examples generalize to any B using the
alternation and to any gap using multiplication.

Matias and Urieli [17] consider the weighted-`2 error and
provide a near linear time optimal algorithm, but for a dif-
ferent wavelet basis that depends on the weights. Their
algorithm also appears to be an offline algorithm.

1.0.0.2 Our contributions.
The example X = {1, 4, 5, 6} underscores that the restric-

tion of a synopsis coefficient to be a wavelet coefficient of
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the data results in a suboptimal strategy. The problem dis-
appears in the unrestricted case and matches the intuitive
notion of a synopsis. We will also show that the removal of
the restriction gives us a streaming computation. For the
purpose of the paper a data stream computation is a space
bounded algorithm, where the space is sub-linear in the in-
put. Any input items are accessed sequentially and any item
not explicitly stored cannot be accessed again in the same
pass. We discuss streaming models and their relevance to
our problem at the appropriate place.

1. We propose the first one-pass streaming Wavelet syn-
opsis construction algorithms for (several) non-Euclidean
error measures and we provide a solution with an ad-
ditive error. For most error measures considered the
additive error is εM where the the data is integers in a
range [−M,M ]. For relative error, the additive error
is ε, but the running time depends on the ratio of the
largest to smallest number in the input.

2. We show that the general version of the problem pro-
duces up to 30% better quality synopses on a few real
and synthetic data sets compared to the restricted ver-
sion considered in [5, 20, 16, 9] where the coefficients
stored in the synopsis are restricted to be wavelet co-
efficients of the data.

3. We also propose the first streaming approximation al-
gorithm for the version of the problem considered in
[5, 20, 16, 9]. As expected, the streaming algorithms
are significantly faster than the offline algorithms sug-
gested in [5, 20, 16, 9] and are guaranteed to be no
worse than the offline algorithms plus the additive er-
ror. Interestingly since we choose between the better
of the two solutions (rounding up or down) we got bet-
ter solution than the offline algorithms!

4. We also propose a new algorithm Hybrid which stores
rounded coefficients of the data except at the root.
Since at the root we have already seen all the data
and can choose the best number (or none at all) eas-
ily. Surprisingly we show that this extremely small
modification already shows significant improvements
over the restricted version and is almost of the same
quality as the general solution.

1.0.0.3 Simultaneous and Independent work.
While this paper was submitted for review, Karras and

Mamoulis [14] have proposed a greedy one pass algorithm for
the `∞ and related maximum measures for the restricted ver-
sion (storing coefficients of the data) which runs inO(n log n)
time andO(n) space. The algorithm is extended to a stream-
ing setting by repeatedly adding two new coefficients and
discarding two old coefficients. Note that the authors of
[14] do not provide any guarantees for the synopsis quality
for any of the algorithms proposed, but observe on the ba-
sis of experiments that their synopses are good. Since all
of their algorithms store the coefficients of the input, the
example X = {1, 4, 5, 6} applies to them as well.

1.0.0.4 Overview.
In Section 2 we discuss the preliminaries of Wavelet trans-

forms and various terminology. In Section 3 we provide the

basic algorithm and running time analysis without getting
into the streaming or space complexity aspect. In Section 4,
we indicate how the algorithm is adapted to a one pass data
stream and analyze the space complexity. We also include
a discussion on streaming models and the issue of precision.
In Section 6 we provide some experimental results showing
the proof of concept of these algorithms.

2. PRELIMINARIES
We will work with non-normalized wavelet transforms where

the inverse computation is simply adding the coefficients
that affect a coordinate. For normalized wavelets the nor-
malization constant appears both in the forward and inverse
transforms, all the results in the paper will carry over in that
setting as well, with the introduction of the normalization
constants at several places. The wavelet basis vectors are
defined as (assume n is a power of 2):

ψ1(j) = 1 for all j

ψ2s+t(j) =



1
−1

if (t− 1) n
2s + 1 ≤ j ≤ tn

2s −
n

2s+1

if nt
2s −

n
2s+1 + 1 ≤ j ≤ tn

2s

where (1 ≤ t ≤ 2s, 0 ≤ s ≤ logn)

The above definitions ensure W−1(Z) =
P

i Ziψi. To com-

pute W(X), we can compute the average
x2i+1+x2i+2

2
and

the difference
x2i+1−x2i+2

2
for each pair of consecutive ele-

ments as i ranges over 0, 1, 2, 3, . . .. The difference coeffi-
cients form the last n/2 entries of W(X). The process is
repeated on the n/2 average coefficients - their difference
coefficients yield the n/4 + 1, . . . , n/2 coefficients of W(Z).
The process stops when we compute the overall average,
which is the first element of W(Z).

The wavelet basis functions naturally form a complete bi-
nary tree, termed the coefficient tree, since their support
sets are nested and are of size powers of 2 (with one ad-
ditional node as a parent of the tree). The data elements
correspond to the leaves, and the coefficients correspond to
the non-leaf nodes of the tree. Assigning a value ci to the
coefficient corresponds to assigning +ci to all the leaves that
are left descendants (descendants of the left child) and −ci

to all right descendants. The leaves that are descendants of
a node in the coefficient tree are termed the support of the
coefficient.

2.1 Previous Algorithm(s)
In this section we briefly describe the algorithm frame-

work proposed in [5]. Recall that the algorithm only retains
coefficients of the input signal. The algorithm uses the coef-
ficient tree, and each node decides the best solution for the
subtree given the choices made at all ancestor nodes in the
coefficient tree. To find the best solution given such a con-
figuration of the ancestors the algorithm needs to allocate
the coefficients to the two subtrees. The number of choices
of configurations at a node is 2depth (root is at depth = 0),
and the number of ways of dividing the coefficients (at most
B) is O(B). To find the best division we need O(logB) time
(using binary search) and thus the time spent at each node
in the coefficient tree is O(2depthB logB). Since the depth of
any node is at most logn+ 1 and there are n nodes, the to-
tal time taken is O(n2log n+1B logB) which is O(n2B logB).
As noted earlier, [20, 16, 9] present better analyses of the
algorithm but the computation is Ω(n2).

90

Research Track Paper



3. BASIC ALGORITHMS AND ANALYSIS
We now show how to obtain an additive approximation

algorithm for the general/unrestricted wavelet synopsis con-
struction problem. Recall that the wavelet synopsis problem
is: Given a set of n numbers X = x1, . . . , xn, find a Z ∈ Rn

with at most B non-zero entries such that ‖X −W−1(Z)‖p
is minimized.

3.1 Overview and Intuition
The algorithm will be bottom up, which is convenient

from a streaming point of view. In this section we will ignore
the streaming aspect and prove correctness of our algorithms
and the approximation guarantees.

Observe that in case of general `p norm error, we cannot
disprove that the optimum solution cannot have an irra-
tional value, which is detrimental from a computation point
of view. In a sense we will seek to narrow down our search
space, but we will need to preserve near optimality. We will
first show that there exists a set R such that if the coef-
ficients were drawn from it, then there exists one solution
which is close to the optimum unrestricted solution (where
we search over all reals). In a sense the set R “rescues” us
from the search. Alternately we can view R as a “rounding”
of the optimal solution. Obviously such an R exists if we
did not care about the error, e.g. take the all zero solution.
We would expect a dependence between the set R and the
error bound we seek.

However there is a subtle twist – the existence of R is
straightforward if πi > 0 for all i. But it is unclear if the
values of the largest numbers in R are bounded if some πi’s
are very small. For cases where there are πi’s that are very
small we would have to allow the algorithm to use different
sets Rj at each node j of the coefficient tree. We can show
that |Rj | will be bounded—but may be O(n). This would
imply that the algorithm cannot be made small space if some
of the πi’s are small.

In what follows we first show the additive approximation
algorithm for minimizing the `p norm, ‖X − W−1(Z∗)‖p.
Subsequently we show how to get an additive approximation
for the weighted `p norm and the relative error `p norms.

3.2 The Algorithm for `k Error

Definition 1. Let E[i, v, b] be the minimum possible con-
tribution to the overall error from all descendants of node i
using exactly b coefficients, under the assumption that an-
cestor coefficients of i will add up to the value v at i (taking
account of the signs) in the final solution.

The value v will obviously be set later for a subtree as
more data arrive. Note that the definition is bottom up and
after we compute the table, we do not need to remember the
data items in the subtree. As the reader would have guessed,
this second property will be significant for streaming as we
will see in the next section.

The overall answer is clearly minb E[root, 0, b]—by the
time we are at the root, we have looked at all the data
and no ancestors exist to set a nonzero v. A natural dy-
namic program arises whose idea is as follows: Let iL and
iR be node i’s left and right children respectively. In order
to compute E[i, v, b], we guess the coefficient of node i and
minimize over the error produced by iL and iR that results
from our choice. Specifically, the computation is:

1. A non-root node computes E[i, v, b] as follows:

min



minr,b′ E[iL, v + r, b′] + E[iR, v − r, b− b
′ − 1]

minb′ E[iL, v, b
′] + E[iR, v, b− b

′]

where the upper term computes the error if the ith

coefficient is chosen and it’s value is r ∈ R; and the
lower term computes the error if the ith coefficient is
not chosen.

2. Then root computes:

min



minr,b′ E[iC , r, b
′ − 1] root coefficient is r

minb′ E[iC , 0, b
′] root coefficient not chosen

where iC is the root’s only child.

Time Analysis. The size of the error table at node i, E[i, ·, ·],
is |R|min{B, 2ti} where ti is the height of node i in the er-
ror tree (the leaves have height 0). Further, computing each
entry of E[i, ·, ·] takes O(|R|min{B, 2ti}) time. Hence, the
total running time is O(|R|2B2) for computing the root ta-

ble plus O(
Pn

i=1

`

|R|min{2ti , B}
´2

) for computing all the
other error tables. Now,

n
X

i=1

`

|R|min{2ti , B}
´2

= |R|2
log n
X

t=1

n

2t
min{22t, B2}

= n|R|2

0

@

log B
X

t=1

2t +

log n
X

t=log B+1

B2

2t

1

A = O(|R|2nB) ,

where the first equality follows from the fact that the number
of nodes at level t is n

2t . For `∞, when computing E[i, v, b] we
do not need to range over all values of B. For a specific r ∈
R, we can find the value of b′ that minimizes max{E[iL, v+
r, b′], E[iR, v−r, b−b

′−1]} using binary search. The running
time thus becomes,

X

t

|R|2
n

2t
min{t2t, B logB} = O(n|R|2 log2B) .

The algorithm needs to maintain the “state” which is the
errors for the set R, and all b s.t. 0 ≤ b ≤ min{B, 2t} for a
node at level t. The bottom up dynamic programming will
require us to store the states along at most two leaf to root
paths. Thus the required space is,

2
X

t

|R|min{2t, B} = O(|R|B(1 + log
n

B
)) .

3.3 The Set R

In this section, we prove the existence of the set R, as well
as show how to find the set. The first task of the proof of
existence will be to show that the values in the set R are
bounded by some function of the input. The proof is based
on the fact that the all zero solution is a feasible solution.

Lemma 1. For any vector Y , if maxi |Yi| = M , then
maxi |W(Y )i| ≤M .

Proof. The 1st coefficient is the average of all values and
therefore cannot exceed M . Every other coefficient is half
the average value of the left half (of the support) minus half
the average value of the right half. Each cannot be more
than M/2 in absolute value.

Lemma 2. Let the optimum solution Z∗ be better than the

all zero vector ~0, then maxi |Z
∗
i | ≤ 2n

1
pM .
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Proof. Observe that,

‖X −W−1(Z∗)‖p ≥ ‖W
−1(Z∗)‖p − ‖X‖p .

Now ‖X‖p ≤ n
1
pM . Also ‖W−1(Z∗)‖p ≥ ‖W

−1(Z∗)‖∞ =

maxi

˛

˛W−1(Z∗)i

˛

˛. If maxi |W
−1(Z∗)i| > 2n

1
pM then we get

‖X −W−1(Z∗)‖p > n
1
pM ≥ ‖X‖p = ‖X −W−1(~0)‖p

i.e., setting Z∗ as the all zero vector ~0 improves the solution.
This contradicts that Z∗ is the optimum solution.

Therefore, maxi |W
−1(Z∗)i| ≤ 2n

1
pM . Now we apply

Lemma 1 on Y = W−1(Z∗) and get maxi |W
−1(Z∗)i| ≥

maxi |Z
∗
i | which completes the proof.

The above lemma is one of the main reasons for choosing
to work with a non-normalized basis. An analogous the-
orem could be proven for normalized coefficients, but the
statements of the lemma would be significantly less clean.

From the above lemma maxr∈R |r| = 2n
1
pM . The next

lemma bounds the size of R. The basic intuition is that if
we approximate the coefficients the effect seen at a point
can be bounded.

Lemma 3. If we round each non-zero value of the opti-
mum Z∗ to the nearest multiple of δ thereby obtaining Ẑ,

then ‖X−W−1(Ẑ)‖p ≤ ‖X−W
−1(Z∗)‖p+δn

1
p min{B, log n}

and |R| ≤ 4n
1
pM/δ.

Proof. The bound on |R| clearly follows from Lemma 2
and the size δ since we are interested in searching in the
range ±maxi |Z

∗
i |. Now from the triangle inequality we

have,

‖X−W−1(Ẑ)‖p ≤ ‖X−W
−1(Z∗)‖p+‖W−1(Z∗)−W−1(Ẑ)‖p

In what follows, we will argue that ‖W−1(Z∗)−W−1(Ẑ)‖p
is at most δn1/p min{B, logn} which will prove the lemma.

Note that if Z∗
i = 0 then Ẑi = 0 and thus we do not increase

the number of coefficients.
For all i we have |Ẑi−Z

∗
i | ≤ δ, and each point inW−1(Z∗)

(or W−1(Ẑ)) is a sum of at most min{B, log n} wavelet co-
efficients. Therefore since the rounding errors at each point
can at most add up, we get

‖W−1(Z∗)−W−1(Ẑ)‖∞ ≤ δmin{B, logn} .

Now we observe that

‖W−1(Z∗)−W−1(Ẑ)‖p ≤ n
1
p ‖W−1(Z∗)−W−1(Ẑ)‖∞ ,

and the lemma follows.

Therefore if we set δ = εM/(n1/p min{B, logn}) we can say
that we have an additive approximation of εM as well as
|R| = O(ε−1n2/p min{B, logn}). We conclude with the fol-
lowing:

Theorem 4. We can solve the Wavelet Synopsis Con-
struction problem with `p error with an additive approxima-
tion of εM in time O(Bε−2n1+4/p(min{B, log n})2) where

M = maxi |xi| using space O(Bε−1n2/p min{B, logn} log n
B

).

It is immediate that we can achieve a tradeoff of the error
and running time. Further,

Corollary 5. For `∞ error measure the above algorithm
runs in time O(ε−2nmin{B, logn})2 log2B) and uses at most
O(Bε−1 min{B, logn} log n

B
) space.

3.4 Weighted and Relative Error
The key to the analysis in Section 3.3 was bounding maxi |Z

∗
i |

in the optimal solution Z∗. We will prove a lemma analogous
to Lemma 2 above. We will prove the result for the weighted
`p norm; and then show that the result is slightly better for
the relative `p error. Recall that πi = 1/max{|xi|, c} > 0 for
the relative `p error. We begin with the following definition:

Definition 2. Define πmin = mini πi. Recall πmax = maxi πi.
For the weighted-`p norm πmax = 1 without loss of gener-
ality. For the relative `p error πmax = 1/max{mini |x|i, c}
(which is at most 1/c) and πmin = 1/M . We can assume
M > c since otherwise relative `p is almost the same as the
`p norm (with a πi = 1/c scaling).

Lemma 6. Let the optimum solution be Z∗ for the weighted-
`p error measure. If maxi |xi| ≤ M , then maxi |Z

∗
i | ≤

2n1/pM 1
πmin

. For the relative `p (if c < 1) the bound re-

duces to 2n1/p 1
πmin

= 2Mn1/p

Proof. The proof of this lemma will be similar to Lemma 2
with a small twist. Observe that if Ui = πixi and Vi =
πiW

−1(Z∗)i then,

‖X −W−1(Z∗)‖π,p = ‖U − V ‖p ≥ ‖V ‖p − ‖U‖p .

We transform the problem to ordinary `p norm over the
weighted vectors. Note that for relative error |Ui| ≤ 1 and

therefore ‖U‖p ≤ n
1/p. In case of weighted `p norm ‖U‖p ≤

Mn1/p since πmax = 1.
If maxi |Vi| > 2‖U‖p, then

‖V ‖p − ‖U‖p ≥ ‖V ‖∞ − ‖U‖p > ‖U‖p .

Again, the all zero solution provides an error of ‖U‖p. Thus
we arrive at a contradiction of the optimality of Z∗. There-
fore, maxi |Vi| ≤ 2‖U‖p. Now from Lemma 2, we have that
maxi |W

−1(Z∗)i| ≥ maxi |Z
∗
i |.

For relative `p error we get 2n1/p ≥ maxi |Vi| ≥ πmin maxi |Z
∗
i |

and the lemma follows. For the weighed `p norm, we get
(πmin maxi |Z

∗
i |) ≤ 2Mn1/p and the lemma is true.

The next lemma is immediate from the proof of Lemma 3.

Lemma 7. If we round each non-zero value of the opti-
mum Z∗ to the nearest multiple of δ thereby obtaining Ẑ,
then ‖X − W−1(Ẑ)‖π,p is at most ‖X − W−1(Z∗)‖π,p +

δn1/p min{B, logn} since πmax = 1. For relative `p the error

is at most ‖X−W−1(Z∗)‖relp +δ n1/p

max{mini |xi|,c}
min{B, logn}.

Based on the above we get the following

Theorem 8. We can solve the Wavelet Synopsis Con-
struction problem for minimizing the relative `k error in

time O(Bε−2n1+4/p M2

(max{c,mini |x|i})2
(min{B, logn})2) and space

O(Bε−1n2/p M
max{c,mini |x|i}

log n
B

(min{B, logn})) with an ad-

ditive error of ε. The running time for `∞ reduces by B/log2B.

For the weighted-`p error the above gives an additive εM
approximation in O(Bε−2n1+4/p 1

π2
min

(min{B, log n})2) time

using space O(Bε−1n2/p 1
πmin

log n
B

(min{B, logn})2) where

M = maxi |xi|. Clearly the above result is useful when
πmin > 0. In what follows we will show how to handle πi = 0
for the weighted-`p.
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3.5 Weighted `p and πi = 0

Recall the algorithm outline, E[i, v, b] was defined to be
the minimum possible contribution to the overall error from
all descendants of i using exactly b coefficients, under the
assumption that ancestor coefficients of i will add up to the
value v at i (taking account of the signs) in the final solution:

min



minr,b′ E[iL, v + r, b′] + E[iR, v − r, b− b
′ − 1]

minb′ E[iL, v, b
′] + E[iR, v, b− b

′]

Denote each entry E[i, v, ∗] as a “line” – based on the notion
that the entries correspond to a table.

Lemma 9. At a leaf node i, for weighted-`p error, if πi =
0 then the range does not matter and we can describe the
dynamic programming table in one line.

Lemma 10. For any node i there exist two unique lines
s.t. the entries E[i, v, ∗] for v 6∈ [−Mi,Mi] where

Mi ≤M+Mn1/p/minj{πj |πj > 0 and j is a descendant of i}
can be represented by those two lines (corresponding to v >
Mi and v < −Mi).

Proof. The proof is by induction on the level of i. For
a leaf node with πi = 0 clearly we can set Mi = 0. For any
v, b the error is 0 and therefore one “line” suffices.

Assuming πi > 0 for a leaf node i. Then Mi = M +
Mn1/p/πi suffices because any value of v outside this range

will ensure that the error is at least Mn1/p, which we have
seen, is more than the error of the all zero solution ~0. Thus
for any v, b in this range we can set E[i, v, b] =∞ since these
entries will never be useful for the optimum solution.

For an internal node the two children (by induction) will
return tables which are in the range [−ML,ML] and [−MR,MR].
Let Mi = max{ML,MR}. For a v ∈ [−Mi,Mi] the com-
putation of E[i, v, b] is the same as before, except that if
we consider storing a coefficient at i whose value vi is such
that v + vi (or v − vi) exceeds the range [−ML,ML] (or
[−MR,MR]) then we use the unique line for the left (or
right) hand side. The important point is that vi cannot be
larger than |v|+Mi or smaller than −(|v|+Mi) since in those
cases we would be focusing on the unique lines on both sides
and the optimum allocation of the buckets is fixed (does not
depend on v).
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Figure 1: An example of merging tables at a node i

Now consider a v 6∈ [−Mi,Mi]. Suppose we are looking
at v2 as shown in Figure 1. If we do not store a coefficient

at node i then the minimization is between the unique lines
on the left and right hand sides and is fixed. If we do want
to store a coefficient at i, for v2 consider a wavelet which
adds r to the left hand side (wavelet represented by solid
line around v2). The optimization varies only in the right
hand side of the table since v2 + r uses the unique line on
the left hand side. For a fixed b, there is exactly one line
in the entire range on the right hand side (as v2 − r varies)
which gives the optimum answer to

min
b1,r>0

E[iL, v2 + r, b1] + E[iR, v2 − r, b− b1 − 1] .

Likewise for r < 0 (shown by the dashed line) the right hand
side uses the unique line and for every b there is a fixed u1(b)
which minimizes the above equation. Therefore, for every
v 6∈ [−Mi,Mi] and every 0 ≤ b ≤ B the error E[i, v, b] is
the minimum of three quantities that are independent of v.
Hence, for all such v > Mi (and likewise v < −Mi) we can
use the same line.

Based on the above and Lemma 7 we get the following

Theorem 11. We can solve the Wavelet Synopsis Con-
struction problem for minimizing the weighted-`k error in
time O(Bε−2n1+4/p(1/π+

min
)2(min{B, log n})2) and in space

O(Bε−1n2/p(1/π+
min

) log n
B

(min{B, logn})) with an additive

error of εM . The running time for `∞ reduces by B/log2B.

4. DATA STREAMS
For the purpose of the paper a data stream computation

is a space bounded algorithm, where the space is sub-linear
in the input. Any input items are accessed sequentially and
any item not explicitly stored cannot be accessed again in
the same pass. In the specific streaming model we will as-
sume, we are given number X = x1, . . . , xi, . . . , xn which
correspond to the signal to be summarized in the increasing
order of i. This model is often referred to as the aggregated
model and has been used widely [12, 7, 10]. This model is
specially suited to model streams of time series data [15, 2].

As noted before, our algorithms will not depend on M ,
but the approximation guarantee of the streaming algorithm
will depend on this parameter. This is not a very restrictive
assumption, if stock prices rose or fell exponentially, or the
temperature readings from a sensor network deployed in a
nuclear plant rose exponentially, typically there would be
more radical issues at stake. For most reasonable analysis
tasks, the input has bounded precision and the guarantee is
a non-issue.

The streaming algorithm will build upon the previous sec-
tion and borrow from the paradigm of reduce-merge. The
high level idea will be to construct and maintain a small ta-
ble of possibilities for each resolution of the data. On seeing
each item xi, we will first find out the best choices of the
wavelets of length one (over all future inputs) and then, if
appropriate, construct/update a table for wavelets of length
2, 4, . . . etc.

The idea of subdividing the data, computing some infor-
mation and merging results from adjacent divisions were
used in [12] for stream clustering. The stream computation
of wavelets in [7] can be viewed as a similar idea—where the
divisions corresponds to the support of the wavelet basis
vectors.
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Figure 2: The arrival of the first 3 elements. Upon
seeing x2 node 1 computes E[1, ·, ·] and the two error
arrays associated with x1 and x2 are discarded.
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Figure 3: The arrival of x4 triggers the computation
of E[2, ·, ·] and the two error arrays associated with x3

and x4 are discarded. Subsequently, E[3, ·, ·] is com-
puted from E[1, ·, ·] and E[2, ·, ·] and both the latter
arrays are discarded. If x4 is the last element on the
stream, the root’s error array, E[3, ·, ·], is computed
from E[2, ·, ·].

4.1 The Streaming Algorithm
Our streaming algorithm will compute the error arrays

E[i, ·, ·] associated with the internal nodes of the coefficient
tree in a post-order fashion. Recall that the wavelet basis
vectors, which are described in Sec. 2, form a complete bi-
nary tree. For example, the basis vectors for nodes 4, 3, 1 and
2 in the tree of Fig. 2 are [1, 1, 1, 1], [1, 1,−1,−1], [1,−1, 0, 0]
and [0, 0, 1,−1] respectively. The data elements correspond
to the leaves of the tree and the coefficients of the synopsis
correspond to its internal nodes. Hence, as mentioned in
Sec. 2, assigning the value c to node 2 (equivalently, setting
z2 = c) for example corresponds to adding c to W−1(Z)1
and W−1(Z)2, and adding −c to W−1(Z)3 and W−1(Z)4.

However, we need not store the error array for every inter-
nal node since, in order to compute E[i, v, b] our algorithm
from Sec. 3.2 only requires that E[iL, ·, ·] and E[iR, ·, ·] be
known. Hence, it is natural to perform the computation of
the error arrays in a post-order fashion. An example best
illustrates the procedure. In Fig 2 when element x1 arrives,
the algorithm computes the error array associated with x1,
call it Ex1

. When element x2 arrives Ex2
is computed. The

array E[1, ·, ·] is then computed and Ex1
and Ex2

are dis-
carded. Array Ex3

is computed when x3 arrives. Finally
the arrival of x4 triggers the computations of the rest of the
arrays as in Fig. 3.

Note that at any point in time, there is only one error
array stored at each level of the tree. In fact, the computa-
tion of the error arrays resembles a binary counter. We start
with an empty queue Q of error arrays. When x1 arrives,
Eq0 is added to Q and the error associated with x1 is stored
in it. When x2 arrives, a temporary node is created to store

Algorithm APX (B,M, δ)
1. Let |R| = 4M/δ.
2. Initialize a queue Q with one node q0
(∗ Each qi contains an array Eqi of size ∗)
(∗ |R|min{B, 2i} and a flag isEmpty ∗)
3. repeat Until there are no elements in the stream
4. Get the next element from the stream, call it e
5. if q0 is empty
6. then Initialize Eq0 [r ∈ R, 0] = |r/e− 1|
7. else Create t0 and Initialize Et1 [r ∈ R, 0] = |r/e−1|
8. for i = 1 until the 1st empty qi or end of Q
9. do Create a temporary node t2.
10. Compute Et2 [r, b ∈ B] from t1 and qi−1

11. Set t1 ← t2 and Discard t2
12. Set qi.isEmtpy = true
13. if we reached the end of Q
14. then Create the node qi

15. Compute Eqi [r ∈ R, b ∈ B] from t1 and qi−1

16. Set qi.isEmtpy = false and Discard t1

Figure 4: The Streaming Algorithm

the error array associated with x2. It is immediately used
to compute an error array that is added to Q as Eq1 . Node
Eq0 is emptied, and it is filled again upon the arrival of x3.
When x4 arrives: (1) a temporary Et1 is created to store the
error associated with x4; (2) Et1 and Eq0 are used to create
Et2 ; Et1 is discarded and Eq0 is emptied; (3) Et2 and Eq1

are used to create Eq2 which in turn is added to the queue;
Et2 is discarded and Eq1 is emptied. Figure APX shows the
implementation of our algorithm for relative `∞.

Based on the description of above, the algorithm uses the
same space as mentioned in the offline algorithm in the pre-
vious section. Therefore we conclude with:

Theorem 12. We can solve the Wavelet Synopsis Con-
struction problem in a single pass over the data by providing
an algorithm (assuming M = maxi |xi|) that

• For `p error with an additive approximation of εM the
algorithm runs in time O(Bε−2n1+4/p(min{B, logn})2)

using space O(Bε−1n2/p min{B, log n} log n
B

).

• For minimizing the weighted-`k error the algorithm runs
in time O(Bε−2n1+4/p(1/π+

min
)2(min{B, log n})2) and

in space O(Bε−1n2/p(1/π+
min

) log n
B

(min{B, logn})) with
an additive error of εM .

• For the relative `k error the algorithm runs time

O(Bε−2n1+4/p M2

(max{c,mini |x|i})2
(min{B, logn})2) and space

O(Bε−1n2/p M
max{c,mini |x|i}

log n
B

(min{B, log n})) with

an additive error of ε.

The running time for `∞ reduces by B/log2B in all cases.

5. QUALITY VERSUS TIME
A natural question arises, if we were interested in the re-

stricted synopses only can we develop streaming algorithms
for them? The answer reveals a rich tradeoff between syn-
opsis quality and running time.

The first observation we make is that if at each node we
only consider either storing the coefficient or 0, then we can
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limit the search significantly. Instead of searching over all
v+r to the left and v−r to the right in the dynamic program
(which we repeat below)

min



minr,b′ E[iL, v + r, b′] + E[iR, v − r, b− b
′ − 1]

minb′ E[iL, v, b
′] + E[iR, v, b− b

′]
,

we only need to search for r = ci where ci is the wavelet co-
efficient at i—observe that a streaming algorithm can com-
pute ci (See [7]). However we have to “round” ci since we
are storing the table corresponding to the values in R and ci

may have higher precision. We consider the better of round-
ing up or rounding down ci to the nearest multiple of δ. No-
tice the set R still performs the role of “anticipatory values”
that are being set by the rounded ancestors. The running
time improves by a factor of R in this case since to compute
each entry we are now looking at two values of R (round
up/down) instead of the entire set. The overall running
time is O(|R|nB) in the general case and O(|R|n log2B) for
the `∞ variants.

The space bound and the approximation guarantees re-
main unchanged. However the guarantee is now against the
synopsis which is restricted to Zi = W(X)i or 0 otherwise.
We cannot show any relationship between the quality of this
solution and the general unrestricted case. However in the
experiments we found that simply deciding between the bet-
ter of rounding up or down gives a significant improvement
in quality in some cases. The rounding also introduces more
(but bounded) error in other cases as is expected from an
approximation. We conclude with:

Theorem 13. We can solve the restricted Wavelet Syn-
opsis Construction problem in a single pass over the data by
providing an algorithm (assuming M = maxi |xi|) that

• For `p error with an additive approximation of εM the
algorithm runs in time O(Bε−1n1+2/p min{B, logn})

where using space O(Bε−1n2/p min{B, logn} log n
B

).

• For minimizing the weighted-`k error the algorithm runs
in time O(Bε−1n1+2/p(1/π+

min
) min{B, logn}) and in

space O(Bε−1n2/p(1/π+
min

) log n
B

(min{B, logn})) with
an additive error of εM .

• For the relative `k error the algorithm runs time
O(Bε−1n1+2/p M

max{c,mini |x|i}
min{B, log n}c) and space

O(Bε−1n2/p M
max{c,mini |x|i}

log n
B

(min{B, logn})) with

an additive error of ε.

The running time for `∞ reduces by B/log2B in all cases.

5.1 Hybrid Algorithms
The previous theorem sets the ground for investigating a

variety of Hybrid algorithms where we choose different search
strategies (i.e., what set does r range over) at each of the
nodes i. One of the simplest algorithms is to allow r ∈ R at
the root node since we already have full information from
the input, and locally at the root, we can choose the best
constant value to add.

Observe that this strategy already gives the optimum so-
lution for B = 1 in the bad example {1, 4, 5, 6}. In fact
this observation is our motivation for studying the strategy.
We can show that just this small modification improves the
synopsis quality significantly.

6. EXPERIMENTAL RESULTS
We consider two issues in this section, namely (i) the qual-

ity of the unrestricted version vis-a-vis the restricted opti-
mum solution and (ii) the running times of the algorithms.

6.1 The algorithms
All experiments reported in this section were performed

on a 2 CPU Pentium-III 1.4 GHz with 2GB of main mem-
ory, running Linux. All algorithms were implemented using
version 3.3.4 of the gcc compiler.

Due to shortage of space we restrict ourselves to the `∞
and relative `∞ errors for the purposes of this section. We
show the performance figures of the following schemes:

REST This characterizes the algorithms for the re-
stricted version of the problem. This is the O(n2) time
O(n) space algorithm in [9] (see also [5, 20, 16]).

UNREST This is the streaming algorithm for the full
general version described in Figure 4 based on the dis-
cussion in Section 3.

JITTER This is the streaming algorithm for the re-
stricted version of the problem described in Section 5.

HYBRID This is the streaming hybrid algorithm pro-
posed in Section 5.

6.2 The Data Sets
We chose a synthetic dataset to showcase the point made

in the introduction about the sub-optimality of the restricted
versions. Otherwise we use a publicly available real life data
set for our experiment.

• Saw: This is a periodic dataset with a line repeated
8 times, with 2048 values total. The dataset is shown
in Figure 5(a). This dataset is particularly useful for
relative error measures since there is a wide variation
in the values.

• Real life data set: We used the Dow-Jones Industrial
Average (DJIA) data set available at StatLib∗ that
contains Dow-Jones Industrial Average (DJIA) closing
values from 1900 to 1993. There were a few negative
values (e.g. −9), which we removed. We focused on
prefixes of the dataset of sizes upto 16384. The dataset
is shown in Figure 5(b).

6.3 Quality of Synopsis
Maximum Relative Error: The maximum relative er-

rors as a function of B are shown in Figures 6 and 7. The
δ in the approximation algorithms UNREST, JITTER and
HYBRID, was set to 1, as indicated by the discussion in
Section 3.4. We show two figures for the Saw data to em-
phasize that the behavior alluded to in the introduction oc-
curs at a wide range of B values and the differences are
highlighted since the overall range changes. The restricted
version REST either has 30% more error or requires 20%
more coefficients compared to the general unrestricted ver-
sion. The JITTER and HYBRID algorithms lie in between,
HYBRID being better than JITTER as expected. Notice
that JITTER follows REST and then switches to the bet-
ter behavior of UNREST. Observe also that just the simple
∗See http://lib.stat.cmu.edu/datasets/djdc0093.
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Figure 5: The datasets used

power of choosing the better of round up or round down
achieves a significant improvement. However REST and
JITTER are not great for moderate to small B, which is
an important range in synopsis construction.

Maximum Error (`∞): The `∞ errors as a function
of B are shown in Figure 8. The δ in the approximation
algorithms UNREST, JITTER and HYBRID, was set to
M/min{B, logn} as described in Section 3. We show only
the Dow data since all the algorithms gave very similar syn-
opsis for the Saw data and had almost the same errors. In
case of the Dow data we show the range B = 5 onward since
the maximum value is ∼ 500 and the large errors for B < 5
(for all algorithms) biases the scale making the differences in
the more interesting ranges not visible. Once again REST
has a 30% worse error compared to UNREST or requires a
lot more coefficients (as a ratio of the synopsis size of UN-
REST). The HYBRID algorithm performs consistently in
the middle.

6.4 Running Times
Figure 9 shows the running times of the algorithms as

the prefix size n is varied for the Dow data. We report the
running time of the `∞ algorithms only. As mentioned above
ε was set to 0.1 and δ was set analogously.

The grid in the log-log plot helps us clearly identify the
quadratic nature of REST. The algorithms UNREST, JIT-
TER and HYBRID behave linearly.
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Figure 6: Saw data, `rel∞ Error, n = 2048, δ = 1

6.5 Summary
From the preliminary experiments shown in this paper the

following properties are immediate:

• The first issue is of quality. The unrestricted synop-
sis has 30% less error in real life and synthetic data
and is significantly better. The Saw data showcases
that the problems with the restricted versions demon-
strated in the motivating example {1, 4, 5, 6} can be
realized easily.

• The growth rate of REST is clearly quadratic. The
algorithm is however faster than UNREST due to the
latter searching over a significantly richer space. The
algorithm UNREST and the approximation algorithms
(for REST), JITTER and HYBRID are linear as is
expected from streaming algorithms. Based on the
running times, the quality, and the one-pass behavior,
the algorithm HYBRID is definitely the best choice,
specially if we are seeking a restricted synopsis.

We are currently investigating speeding up the algorithm
UNREST by analyzing the search space and pruning the
computation.
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