
3 Markov chains and Markov processes

Important classes of stochastic processes are Markov chains and Markov processes. A
Markov chain is a discrete-time process for which the future behaviour, given the past and
the present, only depends on the present and not on the past. A Markov process is the
continuous-time version of a Markov chain. Many queueing models are in fact Markov
processes. This chapter gives a short introduction to Markov chains and Markov processes
focussing on those characteristics that are needed for the modelling and analysis of queueing
problems.

3.1 Markov chains

A Markov chain, studied at the discrete time points 0, 1, 2, . . ., is characterized by a set of
states S and the transition probabilities pij between the states. Here, pij is the probability
that the Markov chain is at the next time point in state j, given that it is at the present
time point at state i. The matrix P with elements pij is called the transition probability
matrix of the Markov chain. Note that the definition of the pij implies that the row sums
of P are equal to 1. Under the conditions that

• all states of the Markov chain communicate with each other (i.e., it is possible to go
from each state, possibly in more than one step, to every other state),

• the Markov chain is not periodic (a periodic Markov chain is a chain in which, e.g.,
you can only return to a state in an even number of steps),

• the Markov chain does not drift away to infinity,

the probability pi(n) that the system is in state i at time point n converges to a limit πi
as n tends to infinity. These limiting probabilities, or equilibrium probabilities, can be
computed from a set of so-called balance equations. The balance equations balance the
probability of leaving and entering a state in equilibrium. This leads to the equations

πi
∑
j 6=i

pij =
∑
j 6=i

πjpji, i ∈ S

or
πi =

∑
j∈S

πjpji, i ∈ S.

In vector-matrix notation this becomes, with π the row vector with elements πi,

π = πP. (1)

Together with the normalization equation∑
i∈S

πi = 1,

the solution of the set of equations (1) is unique.
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3.2 Markov processes

In a Markov process we also have a discrete set of states S. However, the transition
behaviour is different from that in a Markov chain. In each state there are a number of
possible events that can cause a transition. The event that causes a transition from state
i to j, where j 6= i, takes place after an exponential amount of time, say with parameter
qij. As a result, in this model transitions take place at random points in time. According
to the properties of exponential random variables (cf. section 1.2.3) we have:

• In state i a transition takes place after an exponential amount of time with parameter∑
j 6=i qij.

• The system makes a transition to state j with probability

pij := qij/
∑
k 6=i

qik.

Define
qii := −

∑
j 6=i

qij, i ∈ S.

The matrix Q with elements qij is called the generator of the Markov process. Note that
the definition of the qii implies that the row sums of Q are 0. Under the conditions that

• all states of the Markov process communicate with each other,

• the Markov process does not drift away to infinity,

the probability pi(t) that the system is in state i at time t converges to a limit pi as t tends to
infinity. Note that, different from the case of a discrete time Markov chain, we do not have
to worry about periodicity. The randomness of the time the system spends in each state
guarantees that the probability pi(t) converges to the limit pi. The limiting probabilities, or
equilibrium probabilities, can again be computed from the balance equations. The balance
equations now balance the flow out of a state and the flow into that state. The flow is
the mean number of transitions per time unit. If the system is in state i, then events that
cause the system to make a transition to state j occur with a frequency or rate qij. So the
mean number of transitions per time unit from i to j is equal to piqij. This leads to the
balance equations

pi
∑
j 6=i

qij =
∑
j 6=i

pjqji, i ∈ S

or
0 =

∑
j∈S

pjqji.

In vector-matrix notation this becomes, with p the row vector with elements pi,

0 = pQ. (2)
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Together with the normalization equation∑
i∈S

pi = 1,

the solution of the set of equations (2) is unique.

3.3 An equivalent Markov chain

The equilibrium distribution p may also be obtained from an equivalent Markov chain via
an elementary transformation. Let ∆ be any real number satisfying

0 < ∆ ≤ min
i

1

−qii
. (3)

Then P defined as
P = I + ∆Q

is a stochastic matrix (verify). The Markov chain with transition probability matrix P has
exactly the same equilibrium distribution p as the original Markov process, since p satisfies
pQ = 0 if and only if pP = p(I + ∆Q) = p. Note that this transformation also works for
infinite state Markov processes as long as supi−qii is finite.

3.4 Uniformization

The transformation in the previous section also has a probabilistic interpretation. Let P
be the Markov chain with transition probabilities pij = −qij/qii. For the Markov chain P
the sojourn time in state i is exactly one time unit, whereas for Q it is exponential with
mean −1/qii. But this is the only difference; the jump probabilities are the same. Clearly,
if the mean −1/qii is the same for each i, then Q and P have exactly the same equilibrium
distribution. This can be established by introducing fictitious transitions in each state i,
which is called uniformization.

Let ∆ satisfy (3), and introduce a (fictitious) transition from state i to itself with rate
qii + 1/∆. Then the total outgoing rate from state i is qii + 1/∆− qii = 1/∆, and thus the
mean sojourn time in state i is ∆; now it is the same for all states i. Hence the equilibrium
distribution of the Markov process Q is the same as that of the Markov chain P with jump
probabilities pij = ∆qij + δij, where δij = 1 if i = j and 0 otherwise.

3.5 The embedded Markov chain

An interesting way of analyzing a Markov process is through the embedded Markov chain.
If we consider the Markov process only at the moments upon which the state of the system
changes, and we number these instances 0, 1, 2, etc., then we get a Markov chain. This
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Markov chain has the transition probabilities pij given by pij = qij/
∑
k 6=i qik for j 6= i and

pii = 0. The equilibrium probabilities πi of this embedded Markov chain satisfy

πi =
∑
j∈S

πjpji .

Then the equilibrium probabilities of the Markov process can be computed by multiplying
the equilibrium probabilities of the embedded chain by the mean times spent in the various
states. This leads to,

pi = Cπi/
∑
j 6=i

qij

where the constant C is determined by the normalization condition. One easily verifies
that these probabilities indeed satisfy 0 = pQ.
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