
5 Examples of M/M/1 type models

In this chapter we present some simple variations on the M/M/1 system; we will first
summarize some of results for the M/M/1 system.

5.1 The M/M/1 system

In the M/M/1 system customers arrive according to a Poisson process and the service
times of the customers are independent and identically exponentially distributed. This
system can be described by a Markov process with states i, where i is simply the number
of customers in the system. The generator Q of this Markov proces is given by

Q =


−λ λ 0 0 0 . . .
µ −(λ+ µ) λ 0 0 . . .
0 µ −(λ+ µ) µ 0 . . .
0 0 µ −(λ+ µ) λ . . .
...

...
...

. . . . . . . . .

 , (1)

where λ is the arrival rate and µ the service rate (with λ < µ). The corresponding
transition-rate diagram of the M/M/1 model is shown in figure 1.

� � �
· · ·

� �

� �

�

�

�

· · ·

�
−

�

Figure 1: Transition-rate diagram for the M/M/1 model

Let pi denote the (equilibrium) probability of state i, i ≥ 0. From the transition-rate
diagram it is easy to derive the equilibrium equations for the state probabilities pi yielding

p0λ = p1µ,

pi(λ+ µ) = pi−1λ+ pi+1µ, i = 1, 2 . . . ,

or by rearranging all terms at the same side of the equation,

−p0λ+ p1µ = 0, (2)

pi−1λ− pi(λ+ µ) + pi+1µ = 0, i = 1, 2 . . . (3)

Together with the normalization equation, this set of equations has a (unique) geometric
solution

pi = (1− ρ)ρi, i = 0, 1, 2, . . . , (4)

where ρ = λ/µ.
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An important feature of the system above is that transitions are restricted to neigh-
boring states only, i.e., from state i to state i− 1 or from state i to i+ 1. In the following
sections we will consider models that share this feature, but in these models the simple
state i is replaced by a set of states referred to as level i and the equilibrium distribution
is a matrix generalization of (4); i.e., ρ will be replaced by a rate matrix R.

The excess probabilities for the waiting time W in the M/M/1 system may be computed
by conditioning on the state at arrival. Given that there are i customers in the system at
arrival, the waiting time is Erlang-i distributed with mean i/µ. By PASTA, the probability
of finding i customers at arrival is pi. Hence, we get

P (W > t) =
∞∑
i=1

(1− ρ)ρi
i−1∑
j=0

(µt)j

j!
e−µt =

∞∑
j=0

(µt)j

j!
e−µt

∞∑
i=j+1

(1− ρ)ρi

=
∞∑
j=0

(µt)j

j!
e−µtρj+1 = ρe−µ(1−ρ)t, t ≥ 0. (5)

Thus the excess probabilities of the waiting time are exponential; for the models in the
following sections we will generalize this result to mixtures of exponentials.

5.2 Machine with setup times

Let us consider a machine processing jobs in order of arrival. Jobs arrive according to a
Poisson stream with rate λ and the processing times are exponential with mean 1/µ. For
stability we assume that ρ = λ/µ < 1. The machine is turned off when the system is empty
and it is turned on again when a new job arrives. But turning on the machine requires
a setup time, which is exponential with mean 1/θ. We are interested in the effect of the
setup time on the production lead time.

This model can be respresented as a Markov process with states (i, j) where i is the
number of jobs in the system and j indicates the state of the machine: j = 0 means that
the machine is off or in the setup phase, j = 1 means that it is on (i.e., ready to process
jobs). The transition-rate diagram is displayed in figure 2. It looks similar to figure 1,
except that each state i has been replaced by the set of states {(i, 0), (i, 1)}. This set of
states is called level i. Transitions are now restricted to neigboring levels.

Let p(i, j) denote the equilibrium probability of state (i, j), i ≥ 0, j = 0, 1; clearly
p(0, 1) = 0. From the transition-rate diagram we obtain by equating the flow out of a state
and the flow into that state the following set of equilibrium equations,

p(0, 0)λ = p(1, 1)µ, (6)

p(1, 0)(λ+ θ) = p(0, 0)λ, (7)

p(1, 1)(λ+ µ) = p(1, 0)θ + p(2, 1)µ, (8)

p(i, 0)(λ+ θ) = p(i− 1, 0)λ, i = 2, 3, . . . (9)

p(i, 1)(λ+ µ) = p(i, 0)θ + p(i+ 1, 1)µ+ p(i− 1, 1)λ, i = 2, 3, . . . (10)
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Figure 2: Transition-rate diagram for the M/M/1 model with setup times

The structure of the equations (9)-(10) is closely related to the similar set of equations (3).
This becomes more striking by rewriting (9)-(10) in vector-matrix notation:

pi−1A0 + piA1 + pi+1A2 = 0, i > 1, (11)

where pi = (p(i, 0), p(i, 1)) and

A0 =

(
λ 0
0 λ

)
, A1 =

(
−(λ+ θ) θ

0 −(λ+ µ)

)
, A2 =

(
0 0
0 µ

)
.

Obviously, if we can determine the equilibrium probabilities p(i, j), then we can also com-
pute the mean number of jobs in the system, and by Little’s law, the mean production lead
time. We now present two methods to determine the equilibrium probabilities. The first
one is known as the matrix-geometric method, the other one is referred to as the spectral
expansion method; see, e.g. [3, 1, 2]. Let us start with the matrix-geometric approach.

We first simplify the equilibrium equations (11) by eliminating the vector pi+1. By
equating the flow from level i to level i+ 1 to the flow from level i+ 1 to i (this is known
as the balance principle) we obtain

(p(i, 0) + p(i, 1))λ = p(i+ 1, 1)µ

or in vector-matrix notation
piA3 = pi+1A2

where

A3 =

(
0 λ
0 λ

)
.

Substituting this equation into (11) yields

pi−1A0 + pi(A1 + A3) = 0, i > 1,

or
pi = −pi−1A0(A1 + A3)−1 = pi−1R, (12)
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where

R = −A0(A1 + A3)−1 =

(
λ/(λ+ θ) λ/µ

0 λ/µ

)
.

Iterating (12) leads to the matrix-geometric solution

pi = p1R
i−1, i ≥ 1. (13)

Hence it is very similar to the solution for the M/M/1 model given by (cf. (4))

pi = p1ρ
i−1, i ≥ 1.

Finally, p(0, 0) and p1 follow from the equations (6)-(8) and the normalization equation

1 =
∑
i,j

p(i, j) = p(0, 0) + p1(I −R)−1e,

where I is the identity matrix and e the column vector of ones. From (13) we obtain for
E(L), the mean number of jobs in the system,

E(L) =
∞∑
i=1

ipie =
∞∑
i=1

ip1R
i−1e = p1(I −R)−2e.

Finally, application of Little’s law yields the mean production lead time, E(S).
We now demonstrate the spectral expansion method. This method first seeks solutions

of the equations (11) of the simple form

pi = y · xi−1, i = 1, 2, . . . ,

where y = (y(0), y(1)) 6= 0 and |x| < 1. The latter is required, since we want to be able
to normalize the solution afterwards. Substitution of this form into (11) and dividing by
common powers of x gives

y
(
A0 + xA1 + x2A2

)
= 0.

Hence, the desired values of x are the roots inside the unit circle of the determinantal
equation

det(A0 + xA1 + x2A2) = 0. (14)

In this case we have

det(A0 + xA1 + x2A2) = (λ− (λ+ θ)x)(µx− λ)(x− 1).

Hence, we find two roots, namely

x1 =
λ

λ+ θ
, x2 =

λ

µ
.
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For i = 1, 2, let y = yi be a nonnull solution of

y
(
A0 + xiA1 + x2

iA2

)
= 0.

The final step of the spectral expansion method is to linearly combine the two simple
solutions to also satify the boundary equations (6)-(8); note here that the equilibrium
equations (9)-(10) are linear. So we set

pi = c1y1x
i−1
1 + c2y2x

i−1
2 , i = 1, 2, . . . (15)

where the coefficients c1 and c2 and p(0, 0) follow from the boundary equations (6)-(8) and
the normalization equation

1 = p(0, 0) +
c1y1e

1− x1

+
c2y2e

1− x2

.

Using representation (15) we obtain

E(L) =
∞∑
i=1

ipie =
c1y1e

(1− x1)2
+

c2y2e

(1− x2)2
,

and, again, application of Little’s law produces the mean production lead time.
The two methods presented above are closely related: x1 and x2 are the eigenvalues of

the rate matrix R and y1 and y2 are the corresponding eigenvectors.
It is also possible to derive the distribution of the production lead time. By conditioning

on the state seen on arrival and using PASTA we get

P (S > t) =
∞∑
i=0

P (T +B1 + · · ·+Bi+1 > t)p(i, 0)

+
∞∑
i=1

P (B1 + · · ·+Bi+1 > t)p(i, 1),

where T is an exponential (residual) setup time with mean 1/θ and B1, B2, . . . are indepen-
dent exponential processing times with mean 1/µ (and independent of the setup time T ).
Substituting the expressions (15) for p(i, j) and using that a geometric sum of exponential
random variables is again exponential (verify!), we get, after some algebra,

P (S > t) =
1

µ(1− ρ)− θ
[µ(1− ρ)e−θt − θe−µ(1−ρ)t].

Hence, the density of S is given by

fS(t) = − d

dt
P (S > t) =

µ(1− ρ)θ

µ(1− ρ)− θ
[e−θt − e−µ(1−ρ)t]. (16)
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From (16) it follows that

S̃(s) = E(e−sS) =

∫ ∞
t=0

e−stfS(t)dt =
θ

θ + s
· µ(1− ρ)

µ(1− ρ) + s
,

which implies that S is the sum of two independent exponentials, one with parameter θ
and the other with parameter µ(1− ρ).

Remark 5.1 The mean number of jobs in the system, E(L), and the mean production
lead time, E(S), can also be determined by combining the PASTA property and Little’s
law. Based on PASTA we know that the average number of jobs in the system seen by an
arriving job equals E(L), and each of them (also the one being processed) has a (residual)
processing time with mean 1/µ. With probability 1− ρ the machine is not in operation on
arrival, so that the job also has to wait for the setup phase with mean 1/θ. Further, the
job has to wait for its own processing time. Hence

E(S) = (1− ρ)
1

θ
+ E(L)

1

µ
+

1

µ
,

and together with Little’s law
E(L) = λE(S),

we find

E(S) =
1/µ

1− ρ
+

1

θ
.

The first term at the right-hand side is the mean production lead time in the system
without setup times (i.e., the machine is always on). The second term is the mean setup
time. Clearly, the mean setup time is exactly the extra mean delay caused by turning off
the machine when there is no work. In fact, it can be shown (by using, e.g., a sample path
argument, or see (16)) that the extra delay is an exponential time with mean 1/θ.

5.3 Unreliable machine

In this section we consider an unreliable machine processing jobs. The machine breaks
down at random instants, whether it is processing or not. Thus the machine is subject
to so-called time-dependent breakdowns (as opposed to operational dependent breakdowns,
which can only occur when the machine is processing a job; see also remark 5.3). As soon as
the machine has been repaired, processing resumes at the point where it was interrupted.
To obtain some insight in the effects of the breakdowns we study the following simple
model.

Jobs arrive according to a Poisson stream with rate λ. The processing times are ex-
ponential with mean 1/µ. The time between two breakdowns is exponentially distributed
with mean 1/η. The repair time is also exponentially distributed with mean 1/θ.

This system can be described by a Markov process with states (i, j) where i is the
number of jobs in the system and j indicates the state of the machine; the machine is up
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if j = 1, it is down and in repair if j = 0. The transition-rate diagram of this system
is shown in figure 3. It again looks similar to figure 1, except that each state i has been
replaced by the set of states {(i, 0), (i, 1)}.
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Figure 3: Transition-rate diagram for the M/M/1 model with time-dependent breakdowns

Let ρU denote the fraction of time the machine is up, so

ρU =
1/η

1/η + 1/θ
.

Then, for stability, we have to require that

λ

µ
< ρU . (17)

Let p(i, j) denote the equilibrium probability of state (i, j). From the transition-rate dia-
gram we get the following balance equations for the states (0, 0) and (0, 1),

p(0, 0)(λ+ θ) = p(0, 1)η, (18)

p(0, 1)(λ+ η) = p(0, 0)θ + p(1, 1)µ, (19)

and for all states (i, j) with i ≥ 1,

p(i, 0)(λ+ θ) = p(i− 1, 0)λ+ p(i, 1)η, i = 1, 2, . . . (20)

p(i, 1)(λ+ η + µ) = p(i, 0)θ + p(i+ 1, 1)µ+ p(i− 1, 1)λ, i = 1, 2, . . . (21)

In vector-matrix notation these equations can be written as (cf. (11))

pi−1A0 + piA1 + pi+1A2 = 0, i ≥ 1,

where pi = (p(i, 0), p(i, 1)) and

A0 =

(
λ 0
0 λ

)
, A1 =

(
−(λ+ θ) θ

η −(λ+ µ+ η)

)
, A2 =

(
0 0
0 µ

)
.
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Similarly as for the M/M/1 model with setup times we can show that the solution to these
equations has a matrix-geometric form

pi = p0R
i, i ≥ 0,

with

R =
λ

µ

(
(η + µ)/(λ+ θ) 1

η/(λ+ θ) 1

)
,

or the following spectral expansion form

pi = c1y1x
i
1 + c2y2x

i
2, i = 0, 1, 2, . . .

with x1 and x2 being the roots of

µ(λ+ θ)x2 − λ(λ+ µ+ η + θ)x+ λ2 = 0.

Based on these expressions for the equilibrium probabilities p(i, j) it is easy to find closed-
form expressions for the mean number of jobs in the system, E(L), and the mean production
lead time, E(S). And, with some more effort, it can be shown that the distribution of the
production lead time is a mixture of two exponentials.

In table 1 we compare the impact of frequent and small breakdowns on the mean
production leadtime, with infrequent and long breakdowns. The mean processing time is
1 hour (µ = 1). The average number of jobs that arrives during a week (40 hours) is 32,
so λ = 0.8 jobs per hour. In each example, ρU = 0.9. The rate η at which the machine
breaks down is varied from (on average) every 10 minutes till once a week. In the former
case the mean repair time is 1.1 minute, in the latter case it is more dramatic, namely
nearly half a day (4.4 hours). The results indicate that it is better to have frequent and
small breakdowns than infrequent and long breakdowns. Note that as η and θ both tend
to infinity such that η/θ = 1/9, then E(S) tends to 10, which is the mean sojourn time in
an M/M/1 with arrival rate 0.8 and service rate 0.9.

η θ E(S)
6 54 10.02
3 27 10.03
1 9 10.1

0.125 1.125 10.8
0.0625 0.5625 11.6
0.025 0.225 14

Table 1: The mean production leadtime E(S) as a function of the break-down rate η for
fixed ρU = 0.9
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Remark 5.2 The PASTA property and Little’s law can be used to determine E(L) and
E(S) directly, i.e. without knowledge of the detailed probabilities p(i, j). An arriving job
finds on average E(L) jobs in the system and each of them has an exponential processing
time with mean 1/µ. But the processing times are interrupted by random breakdowns;
when the machine starts processing a job, then after an exponential time with mean 1/(µ+
η) the machine either finishes the job (with probability µ/(µ + η)) or it breaks down
(with probability η/(µ + η)). Hence, if E(G) denotes the mean processing time including
breakdowns, we get

E(G) =
1

µ+ η
+

µ

µ+ η
· 0 +

η

µ+ η
·
(

1

θ
+ E(G)

)
,

so

E(G) =
1

µ
+
η

µ
· 1

θ
=

1

µρU
.

Further, with probability 1− ρU the machine is already down on arrival, in which case our
job has an extra mean delay of 1/θ. Summarizing we have

E(S) = (E(L) + 1)E(G) + (1− ρU)
1

θ
= (E(L) + 1)

1

µρU
+ (1− ρU)

1

θ
.

Then, with Little’s law stating that E(L) = λE(S), we immediately obtain

E(S) =
1/(µρU) + (1− ρU)/θ

1− λ/(µρU)
.

Remark 5.3 In case breakdowns can only occur while the machine is processing a job (so-
called operational dependent breakdowns), we have to slightly adapt the model; state (0, 0)
is not possible since the machine cannot go down while it is idle, see figure 4. The analysis
of this model proceeds along exactly the same lines as the model with time-dependent
breakdowns.
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Figure 4: Transition-rate diagram for theM/M/1 model with operational dependent break-
downs
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5.4 The M/Er/1 model

We consider a single-server queue. Customers arrive according to a Poisson process with
rate λ and they are served in order of arrival. The service times are Erlang-r distributed
with mean r/µ. For stability we require that the occupation rate

ρ = λ · r
µ

is less than one. This system can be described by a Markov process with states (i, j) where
i is the number of customers waiting in the queue and j is the remaining number of service
phases of the customer in service. The transition-rate diagram is shown in figure 5.

j

i

µ

µ

λ

λ

µ

µ

λ

r

λ

Figure 5: Transition-rate diagram for the M/Er/1 model

Let p(i, j) denote the equilibrium probability of state (i, j). From the transition-rate
diagram we get the following balance equations for the states (i, j) with i ≥ 1,

p(i, j)(λ+ µ) = p(i− 1, j)λ+ p(i, j + 1)µ, j = 1, . . . , r − 1, (22)

p(i, r)(λ+ µ) = p(i− 1, r)λ+ p(i+ 1, 1)µ, (23)

or in vector-matrix notation

pi−1A0 + piA1 + pi+1A2 = 0, i ≥ 1, (24)

where pi = (p(i, 1), . . . , p(i, r)) and

A0 =

λ 0

0
. . . 0
0 λ

 , A1 =


−(λ+ µ) 0

µ
. . . 0

0
. . . . . . 0
0 µ −(λ+ µ)

 , A2 =


0 · · · 0 µ
... 0
...

...
0 · · · 0

 .

We first determine the probabilities p(i, j) by using the matrix-geometric approach. Let
level i denote the set of states {(i, 1), . . . , (i, r)}. By balancing the flow between level i and
level i+ 1 we get

(p(i, 1) + · · ·+ p(i, r))λ = p(i+ 1, 1)µ
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or
piA3 = pi+1A2, (25)

where

A3 =


0 · · · 0 λ
... 0 λ
...

...
...

0 · · · 0 λ

 .

To eliminate pi+1 we substitute equation (25) into (24) yielding

pi−1A0 + pi(A1 + A3) = 0.

Hence
pi = pi−1R,

where
R = −A0(A1 + A3)−1.

Note that A1 + A3 is invertable, since it is a transient (or leak) generator. Iterating the
above equation yields

pi = p0R
i, i = 0, 1, 2, . . .

Finally the probabilities p(0, 0) and p0 follow from the equilibrium equations for the states
(0, 0), . . . , (0, r) and the normalization equation.

To apply the spectral expansion method we substitute the simple form

p(i, j) = y(j)xi, i ≥ 0, 1 ≤ j ≤ r,

into the equilibrium equations (22)-(23), yielding

y(j)x(λ+ µ) = y(j)λ+ y(j + 1)xµ, j = 1, . . . , r − 1, (26)

y(r)x(λ+ µ) = y(r)λ+ y(1)x2µ. (27)

Hence
y(j + 1)

y(j)
=
x(λ+ µ)− λ

xµ
= constant ≡ y,

so
y(j) = yj, j = 1, . . . , r.

Substituting this into (26)-(27) gives

x(λ+ µ) = λ+ yxµ,

x(λ+ µ) = λ+
x2µ

yr−1
.
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This set of equations is equivalent to

x = yr, (28)

yr(λ+ µ) = λ+ yr+1µ. (29)

It can be shown that equation (29) has exactly r different (possibly complex) roots with
|y| < 1; label these roots y1, . . . , yr. Thus we find r basis solutions of the form

p(i, j) = yjkx
i
k, k = 1, . . . , r,

where xk = yrk. The next step is to take a linear combination of these basis solutions; so
we set

p(i, j) =
r∑

k=1

cky
j
kx

i
k, i = 0, 1, 2, . . . , j = 1, . . . , r, (30)

and determine the coefficients c1, . . . , cr and p(0, 0) such that the equilibrium equations for
the states (0, j), 0 ≤ j ≤ r and the normalization equation are satisfied.

From the probabilities p(i, j) we can also compute the distribution of the amount of
work in the system, expressed in terms of uncompleted service phases. Let pn denote the
probability that the number of uncompleted service phases in the system is equal to n,
n = 0, 1, 2, . . .. In state (i, j) the number of uncompleted service phases is n = i · r + j,
and thus, from (30) and (28),

pn =
r∑

k=1

cky
n
k =

r∑
k=1

dk(1− yk)ynk , n = 0, 1, 2, . . . ,

where dk = ck/(1− yk).
The excess probabilities for the waiting time W may be computed in exactly the same

way as for the M/M/1 model. By conditioning on the number of uncompleted service
phases in the system just before an arrival and using PASTA, we obtain (cf. (5))

P (W > t) =
∞∑
n=1

pn

n−1∑
j=0

(µt)j

j!
e−µt

=
r∑

k=1

dk

∞∑
n=1

(1− yk)ynk
n−1∑
j=0

(µt)j

j!
e−µt

=
r∑

k=1

dkyke
−µ(1−yk)t, t ≥ 0.

Remark 5.4 The vector (yk, y
2
k, . . . , y

r
k) is the row eigenvector of the rate matrix R for

eigenvalue xk, k = 1, . . . , r.

In table 2 we list for varying values of ρ and r the mean waiting time and some waiting
time probabilities. The squared coefficient of variation of the service time is denoted by c2

B.
We see that the variation in the service times is important to the behavior of the system.
Less variation in the service times leads to smaller waiting times.
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ρ r c2
B E(W ) P (W > t)

t 5 10 20
0.8 1 1 4 0.29 0.11 0.02

2 0.5 3 0.21 0.05 0.00
4 0.25 2.5 0.16 0.03 0.00
10 0.1 2.2 0.12 0.02 0.00

0.9 1 1 9 0.55 0.33 0.12
2 0.5 6.75 0.46 0.24 0.06
4 0.25 5.625 0.41 0.18 0.04
10 0.1 4.95 0.36 0.14 0.02

Table 2: Performance characteristics for the M/Er/1 with mean service time equal to 1

Remark 5.5 The mean production lead time E(W ) and the mean number of jobs waiting
in the queue, E(Lq), can also be determined by PASTA and Little. An arriving customer
has to wait for the customers in the queue and, if the server is busy, for the one in service.
According to the PASTA property, the mean number of customers waiting in the queue is
equal to E(Lq) and the probability that the server is busy on arrival is equal to ρ, i.e. the
fraction of time the server is busy. Hence,

E(W ) = E(Lq)
r

µ
+ ρE(R), (31)

where E(R) denotes the mean residual service time of the customer in service. If the server
is busy on arrival, then with probability 1/r he is busy with the first phase of the service
time, also with probability 1/r he is busy with the second phase, and so on. So the mean
residual service time E(R) is equal to

E(R) =
1

r
· r
µ

+
1

r
· r − 1

µ
+ · · ·+ 1

r
· 1

µ

=
r + 1

2
· 1

µ
.

Substitution of this expression into (31) yields

E(W ) = E(Lq)
r

µ
+ ρ · r + 1

2
· 1

µ
.

Together with Little’s law, stating that

E(Lq) = λE(W )

we find

E(W ) =
ρ

1− ρ
· r + 1

2
· 1

µ
.
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5.5 The Er/M/1 model

In this section we consider a single-server queue with exponential service times with mean
1/µ. The arrival process is not Poisson. The interarrival times are Erlang-r distributed
with mean r/λ; i.e., the time between two arrivals is a sum of r independent exponential
phases, each with mean 1/λ. For stability we assume that the occupation rate

ρ =
λ

r
· 1

µ

is less than one. The states of the Markov process describing this system are the pairs
(i, j), where i denotes the number of customers in the system and j the phase of the arrival
process; i.e., j = r means that already r−1 phases of the interarrival have been completed,
so there is only one phase to go before the next arrival. The transition-rate diagram is
depicted in figure 6.

j

i

λ

λ

µ

µ

λ

λ

µ

µ

r

Figure 6: Transition-rate diagram for the Er/M/1 model

Let us denote the state probabilities by p(i, j). The equilibrium equations for the states
(i, j) with i ≥ 1 are formulated below.

p(i, 1)(λ+ µ) = p(i− 1, r)λ+ p(i+ 1, 1)µ, (32)

p(i, j)(λ+ µ) = p(i, j − 1)λ+ p(i+ 1, j)µ, j = 2, . . . , r. (33)

In these equations we now substitute

p(i, j) = y(j)xi, i = 1, 2, . . . , j = 1, . . . , r;

also for i = 0 and j = r (so p(0, r) = y(r)). This leads to

y(1)x(λ+ µ) = y(r)λ+ y(1)x2µ,

y(j)(λ+ µ) = y(j − 1)λ+ y(j)xµ, j = 2, . . . , r.

Hence
y(j)

y(j − 1)
=

λ

λ+ µ− xµ
= constant ≡ y,
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so
y(j) = yj, j = 1, . . . , r,

where y satisfies

x(λ+ µ) = yr−1λ+ x2µ,

y(λ+ µ) = λ+ yxµ.

This gives that x = yr and

x =

(
λ

λ+ µ− µx

)r
. (34)

Let y1 = r√x1. Then we eventually find

p(i, j) = c1y
j
1x

i
1, i = 1, 2, . . . , j = 1, . . . , r, (35)

and this form is also valid for p(0, r). The coefficient c1 and the boundary probabilities
p(0, 1), . . . , p(0, r− 1) follow from the balance equations for the states (0, 1), . . . , (0, r) and
the normalization equation.

Solution (35) may also be written in matrix-geometric form; it is easily verified that

pi = (p(i, 1), . . . , p(i, r)) = p1R
i−1, i = 1, 2, . . . ,

where

R =


0 · · · · · · 0
...

...
0 · · · · · · 0
y1 y2

1 · · · yr1

 . (36)

To determine the excess probabilities of the waiting time we cannot use PASTA, since
the arrival process is not Poisson. Let La denote the number of customers in the system
just before an arrival. Then we have

P (La = n) =
p(n, r)λ∑∞
i=0 p(i, r)λ

= (1− x1)xn1 , n = 0, 1, 2, . . . , (37)

and hence (cf. (5)),

P (W > t) =
∞∑
n=1

P (La = n)
n−1∑
j=0

(µt)j

j!
e−µt

=
∞∑
n=1

(1− x1)xn1

n−1∑
j=0

(µt)j

j!
e−µt

= x1e
−µ(1−x1)t, t ≥ 0.

In table 3 we list for varying values of ρ and r the mean waiting time E(W ) and
P (W > 1/µ). The squared coefficient of variation of the interarrival time is denoted by
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c2
A. We see that the variation in the interarrival times is important to the behavior of the

system. Less variation in the interarrival times leads to smaller waiting times. Comparison
of the mean waiting time E(W ) in tables 2 and 3 also suggests that variation in interarrival
times has a stronger effect on waiting times than variation in service times.

ρ r c2
A E(W ) P (W > 1/µ)

0.8 1 1 4 0.65
2 0.5 2.84 0.57
4 0.25 2.27 0.51

0.9 1 1 9 0.81
2 0.5 6.59 0.76
4 0.25 5.38 0.72

Table 3: Performance characteristics for the Er/M/1 with mean service time equal to 1

Remark 5.6 Equation (34) can be rewritten as

x = Ã(µ− µx),

where Ã(s) is the Laplace-Stieltjes transform of the Erlang-r distribution with scale pa-
rameter λ; i.e.

Ã(s) =

(
λ

λ+ s

)r
.

As we will see later on, this equation is important in the analysis of the G/M/1 queue.
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