
6 M/M/1 type models

In this chapter we consider M/M/1 type models, more commonly known as quasi birth-
death processes. We will present two methods for analyzing the equilibrium behavior of
M/M/1 type models: the matrix-geometric method and the spectral expansion method.

6.1 Model

We consider a Markov process, the state space of which consists of two parts: the boundary
states (0, j) where j ranges from 0 to n, and a semi infinite strip of states (i, j) where i
ranges from 1 to ∞ and j from 0 to m. The states are ordered lexicographically, that is,
(0, 0), (0, 1), . . . , (0, n), (1, 0), . . . , (1, m), (2, 0), . . . , (2, m), . . .. The set of boundary states
{(0, 0), (0, 1), . . . , (0, n)} will be called level 0, and the set of states {(i, 0), (i, 1), . . . , (i, m)},
i ≥ 1, will be called level i. Note that the number of states at level 0 may be different from
the number of states at higher levels (and this is typically the case in many problems). A
picture of the state space is given in figure 1.
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Figure 1: State space of an M/M/1 type model

We partition the state space according to these levels, and for this partitioning we
assume that the generator Q is of the form (cf. (1) in chapter 5)

Q =


B00 B01 0 0 0 . . .
B10 B11 A0 0 0 . . .
0 A2 A1 A0 0 . . .
0 0 A2 A1 A0 . . .
...

...
...

. . . . . . . . .

 ,

where the matrix B00 is of dimension (n+1)× (n+1), B01 of dimension (n+1)× (m+1),
B10 of dimension (m + 1)× (n + 1), and B11, A0, A1, A2 are square matrices of dimension
m + 1. Note that A0 + A1 + A2 is a generator; it describes the behavior of the Markov
process Q in the (vertical) j-direction only.
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Example 6.1 For the problem in section 5.1 (machine with set-up times) we have that
level 0 is {(0, 0)} and level i is the pair of states {(i, 0), (i, 1)}; so n = 0 and m = 1.
Further, the matrices of transition rates are given by

B00 =
(
−λ

)
, B01 =

(
λ 0

)
, B10 =

(
0
µ

)
,

A0 =

(
λ 0
0 λ

)
, B11 = A1 =

(
−(λ + θ) θ

0 −(λ + µ)

)
, A2 =

(
0 0
0 µ

)
.

Note that

A0 + A1 + A2 =

(
−θ θ
0 0

)
;

so state 1 is an absorbing state.

Example 6.2 For the example in section 5.2 (unreliable machine) level i is the set of
states {(i, 0), (i, 1)}, i ≥ 0 (so n = m = 1). The transition matrices are given by

B00 =

(
−(λ + θ) θ

η −(λ + η)

)
,

A0 = B01 =

(
λ 0
0 λ

)
, B11 = A1 =

(
−(λ + θ) θ

η −(λ + µ + η)

)
, A2 = B10 =

(
0 0
0 µ

)
,

and the generator A0 + A1 + A2 is equal to

A0 + A1 + A2 =

(
−θ θ
η −η

)
.

In case of operational dependent failures (see remark 5.3) level 0 consists of only one state,
namely {(0, 1)}.

From here on we will assume that the Markov process Q is irreducible and that the
generator A0 + A1 + A2 has exactly one communicating class. Concerning the stability of
Q we state the following result.

Theorem 6.3 The Markov process Q is ergodic (stable) if and only if

πA0e < πA2e, (1)

where e is the column vector of ones and π = (π0, π1, . . . , πm) is the equilibrium distribution
of the Markov process with generator A0 + A1 + A2; so

π(A0 + A1 + A2) = 0, πe = 1.
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Condition (1) has an appealing intuitive interpretation. The term πA0e is the mean
drift from level i to level i+1, and πA2e is the mean drift from level i+1 to level i; clearly
the process is stable if the drift to the left is greater than the drift to the right (cf. the
M/M/1 model where the drift to the right is λ and the drift to the left µ). Condition (1)
is known as Neuts’ mean drift condition. For a rigorous proof of theorem 6.3 we refer the
reader to [4].

Example 6.4 For the example in section 5.2 (unreliable machine) condition (1) reduces
to

(π0 + π1)λ < π1µ,

where π = (π0, π1) is the equilibrium distribution of

A0 + A1 + A2 =

(
−θ θ
η −η

)
.

Hence,

π0 =
η

θ + η
, π1 =

θ

θ + η
,

and thus the stability condition becomes (cf. (15) in section 5.2)

λ

µ
< π1 =

θ

θ + η
= ρU .

In the sequel we will assume that the Markov process Q is ergodic. Thus the equilibrium
probabilities p(i, j) exist. Let pi denote the vector of equilibrium probabilities of level i, so

p0 = (p(0, 0), p(0, 1), . . . , p(0, n)), pi = (p(i, 0), p(0, 1), . . . , p(0, m)), i = 1, 2, . . . .

These probability vectors pi satisfy the equilibrium equations

p0B00 + p1B10 = 0, (2)

p0B01 + p1B11 + p2A2 = 0, (3)

pi−1A0 + piA1 + pi+1A2 = 0, i = 2, 3, . . . , (4)

and, of course, the normalization equation,

∞∑
i=0

pie = 1.

In the following sections we will present methods to solve the equilibrium equations.
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6.2 The matrix-geometric method

For an elegant treatment of matrix-geometric solutions the reader is referred to [4, 2]. In
this section we just state some of the main results.

Provided the Markov process Q is ergodic, the equilibrium probability vectors pi are
given by the matrix-geometric form

pi = p1R
i−1, i = 1, 2, . . . , (5)

where the matrix R is the minimal nonnegative solution of the matrix-quadratic equation

A0 + RA1 + R2A2 = 0. (6)

That is, any other nonnegative solution R̃ of the above matrix equation satisfies R ≤ R̃.
The matrix R, usually called the rate matrix of the markov process Q, has spectral radius
less than one (so I − R is invertable). Note that, if R satisfies (6), then it is easily seen
that the matrix-geometric form (5) for pi indeed satisfies the equilibrium eqations for the
levels i > 1; substitution of (5) into the left-hand side of (4) yields pi−1(A0 +RA1 +R2A2),
which vanishes if R satisfies (6).

The probability vectors p0 and p1 follow from the equilibrium equations (2) and (3).
By substituting p2 = p1R into (3), we get the following boundary equations for p0 and p1,

p0B00 + p1B10 = 0,

p0B01 + p1B11 + p1RA2 = 0.

To uniquely determine p0 and p1 we further need the normalization equation

1 =
∞∑
i=0

pie = p0e + p1(I + R + R2 + · · · )e = p0e + p1(I −R)−1.

In order to compute the matrix R we may rewrite (6) in the form

R = −(A0 + R2A2)A
−1
1 ;

note that A1 is indeed invertable, since A1 is a transient generator. The above (fixed point)
equation may be solved by successive substitutions, so

Rk+1 = −(A0 + R2
kA2)A

−1
1 , k = 0, 1, 2, . . . (7)

starting with R0 = 0. It can be shown that, as k tends to infinity,

Rk ↑ R.

This is a very simple scheme for the computation of R; in the literature more sophisticated
and efficient schemes have been developed, see, e.g., [1, 2].

The rate matrix R also has an interesting (and useful) probabilistic interpretation. The
element Rjk is the expected time spent in state (i + 1, k) before the first return to level
i, expressed in time unit −1/(A1)jj, given the initial state (i, j). Note that −1/(A1)jj is
the expected sojourn time in state (i, j) for i > 1. From the interpretation of R we may
directly conclude that zero rows in A0 correspond to zero rows in R.
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Example 6.5 For the Er/M/1 queue in section 5.5 we have (verify)

A0 =


0 · · · 0
...

...
0 0
λ · · · 0

 .

So all rows of A0 are zero, except for the last one. This immediately implies that also all
rows of R are zero, except for the last one (see equation (36) in chapter 5).

Remark 6.6 The matrix-geometric analysis for (discrete-time) Markov chains is very sim-
ilar. Suppose the transition probability matrix P is of the form

P =


B00 B01 0 0 0 . . .
B10 B11 A0 0 0 . . .
0 A2 A1 A0 0 . . .
0 0 A2 A1 A0 . . .
...

...
...

. . . . . . . . .

 ,

where B00, B01, B10, B11, A0, A1 and A2 are now matrices with transition probabilities
(instead of transition rates). The Markov chain P is ergodic if and only if drift condition
(1) holds, where π is the equilibrium distribution of the Markov chain with transition
probability matrix A0 + A1 + A2. Further, if P is ergodic, then the probability vectors pi

have the form (5), where R is the minimal nonnegative solution of

A0 + RA1 + R2A2 = R.

The matrix element Rjk can now be interpreted as the expected number of visits to state
(i + 1, k) before the first return to level i, given the initial state (i, j).

6.3 Explicit solutions for the rate matrix

In this section we briefly describe two cases in which the rate matrix R can be determined
explicitly; for more details the reader is referred to [5].

6.3.1 Special structure of A2

Let us first assume that A2 is of the form

A2 = v · α, (8)

where v is a non-negative column vector and α a non-negative row vector of dimension
m + 1, with αe = 1, so

v =

v0
...

vm

 , α = (α0, α1, . . . , αm), αe = 1.
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This means that all rows of A2 are the same, except for scaling. Thus, when the process
Q makes a transition from level i to level i − 1, the probability of making a transtion to
state (i − 1, j) is independent of the starting state at level i. We will now investigate its
consequences for the rate matrix R.

Example 6.7 For the problems in sections 5.2 and 5.3 we have

A2 =

(
0 0
0 µ

)
= v · α,

where

v =

(
0
µ

)
, α = (0, 1).

So in both problems, A2 has the special structure (8). It is readily verified that this is also
true for the problem in section 5.4 (the M/Er/1 queue).

Substitution of (8) into the equilibrium equations for pi, i > 1, yields

pi−1A0 + piA1 + pi+1vα = 0. (9)

To eliminate pi+1 from this equation we derive a relation between pi and pi+1 by equating
the flow between level i and level i + 1, i.e.,

piA0e = pi+1A2e = pi+1vαe = pi+1v, (10)

Hence, by substituting (10) into (9), we obtain

pi−1A0 + piA1 + piA0eα = 0,

which can be rewritten as
pi = pi−1R, i > 1,

where
R = −A0(A1 + A0eα)−1.

Note that the matrix A1 + A0eα is invertable, since it is a transient generator.

6.3.2 Special structure of A0

The other case in which we can solve R explicitly is when A0 is of the form

A0 = w · β, (11)

where w is column vector and β a row vector of dimension m + 1, with βe = 1, so

w =

w0
...

wm

 , β = (β0, β1, . . . , βm), βe = 1.
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This means that all rows of A0 are the same, except for scaling. Thus, when the process Q
jumps from level i to level i+1, the probability of jumping to state (i+1, j) is independent
of the starting state at level i. Below we investigate the implications of this special form
of A0.

Example 6.8 For the Er/M/1 queue (in section 5.4) we have

A0 =


0 · · · 0
...

...
0 0
λ · · · 0

 = w · β,

where

w =


0
...
0
λ

 , β = (0, . . . , 0, 1).

Hence, in this problem, the matrix A0 is of the form (11).

From the recursive scheme (7) we obtain

R0 = 0, R1 = −A0A
−1
1 = −wβA−1

1 = w · a1,

with a1 = −βA−1
1 . Repeating the iteration shows that all Rk’s are of the form

Rk = w · ak,

where ak is a row vector of dimension m + 1. Since Rk ↑ R as k → ∞, we can conclude
that also R is of the form

R = w · a,

for some row vector a ≥ 0. Hence,

Ri = (aw)i−1R = ηi−1R,

where η = aw. Clearly η is the spectral radius of R. Now the matrix-geometric form of
the probability vectors pi reduces to (ordinary) geometric form

pi = p1R
i−1 = ηi−2p1R = ηi−2p2, i > 1.

Note that η can be characterized as the unique root in (0, 1) of the determinantal equation

det(A0 + ηA1 + η2A2) = 0,

which may be computed by straightforward bisection.
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6.4 Spectral expansion method

In this section we describe the spectral expansion method; for more details the reader is
referred to [3].

The basic idea of the method is to first try to find basis solutions of the form

pi = yxi−1, i = 1, 2, . . . , (12)

where y = (y(0), y(1), . . . , y(m)) 6= 0 and |x| < 1, satisfying the equilibrium equations for
the levels i > 1, i.e.,

pi−1A0 + piA1 + pi+1A2 = 0. (13)

We require that |x| < 1, since we want to be able to normalize the solution of (13). Then
the basis solutions will be linearly combined so as to also satisfy the equilibrium equations
for the boundary states (i.e., levels 0 and 1).

Substitution of (12) into (13) and dividing by common powers of x yields

y(A0 + xA1 + x2A2) = 0. (14)

These equations have a non-null solution for y if

det(A0 + xA1 + x2A2) = 0. (15)

Hence, the desired values of x are the roots x with |x| < 1 of the determinantal equation
(15). Equation (15) is a polynomial equation of degree 2(m + 1). Hence it has 2(m + 1)
(possibly complex) roots. Provided the Markov process Q is ergodic, there exist exactly
m + 1 roots x with |x| < 1 (where each root is counted according to its multiplicity); this
number will appear to be exactly enough to satisfy the boundary equations. Let us assume
that these m + 1 roots are different, and label them as x0, x1, . . . , xm. Let yj be a non-null
solution of (14) with x = xj, j = 0, 1, . . . ,m. We then set

pi =
m∑

j=0

cjyjx
i−1
j , i = 1, 2, . . . (16)

Expression (16) is usually referred to as the spectral expansion of the equilibrium probability
vectors pi. The coefficients cj of this expansion have to be determined yet. Note that, since
the equilibrium equations are linear, the expansion (16) satisfies the equilibrium equations
for the levels i > 1 for any choice of the coefficients c0, c1, . . . , cm.

By substituting the spectral expansion for p1 and p2 into the boundary equations (2)
and (3), we get the following set of equations for the coefficients c0, . . . , cm and the vector
p0,

p0B00 +
m∑

j=0

cjyjB10 = 0,

p0B01 +
m∑

j=0

cjyjB11 +
m∑

j=0

cjyjxjA2 = 0.
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Together with the normalization equation

1 = p0e +
m∑

j=0

cjyje
1

1− xj

,

this set of equations uniquely determines p0 and c0, . . . , cm.

Remark 6.9 The roots x0, x1, . . . , xm do not have to be different. If we assume that, when
a root x occurs k times, it is possible to find k linearly independent solutions of (14), then
the analysis proceeds in exactly the same way. In case there are less than k independent
solutions, we would also have to consider more complicated basis solutions of the form
yixi−1 (or even with higher powers of i).

Remark 6.10 The relation between the matrix-geometric representation (5) and the spec-
tral expansion (16) for the equilibrium probability vectors pi is clear: the roots x0, x1, . . . , xm

are the eigenvalues of R with corresponding left eigenvectors y0, y1, . . . , ym.
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