6 M/M/1 type models

In this chapter we consider M/M/1 type models, more commonly known as quasi birth-
death processes. We will present two methods for analyzing the equilibrium behavior of
M/M/1 type models: the matrix-geometric method and the spectral expansion method.

6.1 Model

We consider a Markov process, the state space of which consists of two parts: the boundary
states (0, j) where j ranges from 0 to n, and a semi infinite strip of states (i,j) where i
ranges from 1 to oo and j from 0 to m. The states are ordered lexicographically, that is,
(0,0),(0,1),...,(0,n),(1,0),...,(1,m),(2,0),...,(2,m),.... The set of boundary states
{(0,0),(0,1),...,(0,n)} will be called level 0, and the set of states {(7,0), (,1),...,(i,m)},
1 > 1, will be called level i. Note that the number of states at level 0 may be different from
the number of states at higher levels (and this is typically the case in many problems). A
picture of the state space is given in figure 1.
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Figure 1: State space of an M /M /1 type model

We partition the state space according to these levels, and for this partitioning we
assume that the generator () is of the form (cf. (1) in chapter 5)

By Bpy 0 0 O

By Bii A 0 0

Q - 0 AQ Al AO 0
0 0 Ay A A

where the matrix By is of dimension (n+ 1) x (n+1), By of dimension (n+1) x (m+ 1),
Bip of dimension (m + 1) x (n + 1), and By, Ag, A1, Ay are square matrices of dimension
m + 1. Note that Ag + A; + Ay is a generator; it describes the behavior of the Markov
process ) in the (vertical) j-direction only.



Example 6.1 For the problem in section 5.1 (machine with set-up times) we have that
level 0 is {(0,0)} and level i is the pair of states {(7,0),(i,1)}; so n = 0 and m = 1.
Further, the matrices of transition rates are given by

Boo = (<=\), Bo= (A 0). Bm:(g),

D) e (50 ) D)

Note that 0 g

so state 1 is an absorbing state.

Example 6.2 For the example in section 5.2 (unreliable machine) level ¢ is the set of
states {(7,0), (,1)}, 4 > 0 (so n =m = 1). The transition matrices are given by

Boo = (—(An+ " —(A0+ 77)) ’

B (A0 o (—(A+9) 0 B (0 0
A0_301_(0 )\)7 Bll_Al_( n _(A—i_u_'—n))’ AQ_BH)_(O M)7

and the generator Ag + A; + A, is equal to

-6 0
Ag+ A1+ Ay = .
otk a= (7 1)

In case of operational dependent failures (see remark 5.3) level 0 consists of only one state,
namely {(0,1)}.

From here on we will assume that the Markov process () is irreducible and that the
generator Ay + A; + Ay has exactly one communicating class. Concerning the stability of
@ we state the following result.

Theorem 6.3 The Markov process Q is ergodic (stable) if and only if
mApe < mAse, (1)

where e is the column vector of ones and ™ = (7o, 71, - . ., T 1S the equilibrium distribution
of the Markov process with generator Ay + A1 + As; so

7T(A0+A1+A2):O, 7T€:1.



Condition (1) has an appealing intuitive interpretation. The term wAge is the mean
drift from level 7 to level ¢ + 1, and wAse is the mean drift from level ¢ + 1 to level ; clearly
the process is stable if the drift to the left is greater than the drift to the right (cf. the
M /M /1 model where the drift to the right is A and the drift to the left ). Condition (1)
is known as Neuts’ mean drift condition. For a rigorous proof of theorem 6.3 we refer the
reader to [4].

Example 6.4 For the example in section 5.2 (unreliable machine) condition (1) reduces
to
(o + M)A < T,

where m = (mp, 1) is the equilibrium distribution of

-6 0
Ao+ A1+ Ay = )
0 1 2 <77 —77)

Hence,

n 0

0 — R

= ) ™ = )
0+n ! 0+
and thus the stability condition becomes (cf. (15) in section 5.2)

A 0

—<m=-—=py.
0 1 6+77 pPU

In the sequel we will assume that the Markov process @) is ergodic. Thus the equilibrium
probabilities p(i, j) exist. Let p; denote the vector of equilibrium probabilities of level 4, so

po = (p(0,0),p(0,1),...,p(0,n)),  pi=(p(i,0),p(0,1),....p(0,m)),  i=12,....

These probability vectors p; satisfy the equilibrium equations

poBoo +p1Bio = 0, (2)
poBo + p1Bi1 +p2As = 0, (3)
pi—14o +pidi +pii Ay = 0, 1=2,3,..., (4)

and, of course, the normalization equation,

ipie =1.
i=0

In the following sections we will present methods to solve the equilibrium equations.



6.2 The matrix-geometric method

For an elegant treatment of matrix-geometric solutions the reader is referred to [4, 2]. In
this section we just state some of the main results.

Provided the Markov process () is ergodic, the equilibrium probability vectors p; are
given by the matrix-geometric form

pi:lei_lv i:1727"'7 (5)
where the matrix R is the minimal nonnegative solution of the matrix-quadratic equation
Ay + RA, + R*A, = 0. (6)

That is, any other nonnegative solution R of the above matrix equation satisfies R < R.
The matrix R, usually called the rate matrix of the markov process ), has spectral radius
less than one (so I — R is invertable). Note that, if R satisfies (6), then it is easily seen
that the matrix-geometric form (5) for p; indeed satisfies the equilibrium eqations for the
levels i > 1; substitution of (5) into the left-hand side of (4) yields p;_1(Ag+ RA; + R*A,),
which vanishes if R satisfies (6).

The probability vectors py and p; follow from the equilibrium equations (2) and (3).
By substituting ps = p1 R into (3), we get the following boundary equations for py and p;,

poBoo +p1Bio = 0,
poBor + p1Bii + p1RA, = 0.

To uniquely determine py and p; we further need the normalization equation

1:Zpie:poe—l—p1(1+R+R2+---)e:poe—i—pl(I—R)’l.
i=0

In order to compute the matrix R we may rewrite (6) in the form
R=—(Ao+ R*Ay) AT

note that A; is indeed invertable, since A; is a transient generator. The above (fixed point)
equation may be solved by successive substitutions, so

Ry = —(Aop + R{A) AT k=0,1,2,... (7)
starting with Ry = 0. It can be shown that, as k£ tends to infinity,
R T R.

This is a very simple scheme for the computation of R; in the literature more sophisticated
and efficient schemes have been developed, see, e.g., [1, 2].

The rate matrix R also has an interesting (and useful) probabilistic interpretation. The
element Rj; is the expected time spent in state (i + 1, k) before the first return to level
i, expressed in time unit —1/(A;),;, given the initial state (i, 7). Note that —1/(A;),; is
the expected sojourn time in state (i,j) for ¢ > 1. From the interpretation of R we may
directly conclude that zero rows in Ag correspond to zero rows in R.

4



Example 6.5 For the E,/M/1 queue in section 5.5 we have (verify)

0 --- 0
P :
1o 0
A - 0

So all rows of Ay are zero, except for the last one. This immediately implies that also all
rows of R are zero, except for the last one (see equation (36) in chapter 5).

Remark 6.6 The matrix-geometric analysis for (discrete-time) Markov chains is very sim-
ilar. Suppose the transition probability matrix P is of the form

By B 0 0 O
BlO Bll AO 0 0
P = 0 AQ Al AO 0
0 0 Ay A Ay

where By, Boi, B, Bi1, Ag, A1 and A, are now matrices with transition probabilities
(instead of transition rates). The Markov chain P is ergodic if and only if drift condition
(1) holds, where 7 is the equilibrium distribution of the Markov chain with transition
probability matrix Ag + A; + As. Further, if P is ergodic, then the probability vectors p;
have the form (5), where R is the minimal nonnegative solution of

Ao+ RA; + R*Ay, = R.

The matrix element R;, can now be interpreted as the expected number of visits to state
(1 + 1, k) before the first return to level 7, given the initial state (i, j).

6.3 Explicit solutions for the rate matrix
In this section we briefly describe two cases in which the rate matrix R can be determined
explicitly; for more details the reader is referred to [5].
6.3.1 Special structure of A,
Let us first assume that A, is of the form
Ay =v-q, (8)

where v is a non-negative column vector and « a non-negative row vector of dimension
m + 1, with ce = 1, so
Vo

v=1| [, a = (ag, a1, ..., 0m), ae = 1.



This means that all rows of Ay are the same, except for scaling. Thus, when the process
() makes a transition from level ¢ to level i — 1, the probability of making a transtion to
state (i — 1,7) is independent of the starting state at level i. We will now investigate its

consequences for the rate matrix R.

Example 6.7 For the problems in sections 5.2 and 5.3 we have

Y-
u:(g), a=(0,1).

where

So in both problems, A, has the special structure (8). It is readily verified that this is also

true for the problem in section 5.4 (the M/E,/1 queue).
Substitution of (8) into the equilibrium equations for p;, i > 1, yields

pi—14¢ + piA1 + pip1va = 0.

(9)

To eliminate p; ;1 from this equation we derive a relation between p; and p;,1 by equating

the flow between level ¢ and level 7 + 1, i.e.,
pidoe = piy1Aze = pipvae = piv,
Hence, by substituting (10) into (9), we obtain
pi—140 + piA1 + pidoea = 0,

which can be rewritten as
pi = pi—1 R, 1 >1,

where
R = _AO(Al -+ Aoné)il.

Note that the matrix A; + Agea is invertable, since it is a transient generator.

6.3.2 Special structure of Ay

The other case in which we can solve R explicitly is when A is of the form

A():w'ﬁa

where w is column vector and (3 a row vector of dimension m + 1, with fe =1, so

w = ) 6:(ﬂ07ﬂl7"'7ﬁm>7 5621

(10)

(11)



This means that all rows of Ay are the same, except for scaling. Thus, when the process @
jumps from level i to level i+ 1, the probability of jumping to state (i + 1, j) is independent
of the starting state at level i. Below we investigate the implications of this special form

of AQ.

Example 6.8 For the E,./M/1 queue (in section 5.4) we have

0 --- 0
Ay = : : =w- [,
0 0 0 B
A 0
where
0
w=1|:1, —(0,....,0,1).
S B CRRY
A

Hence, in this problem, the matrix Ay is of the form (11).
From the recursive scheme (7) we obtain
Ry=0, Ri=—-AA]'=—wBA'=w-a,
with a; = —3A;'. Repeating the iteration shows that all R;’s are of the form
Ry =w-ag,

where a;, is a row vector of dimension m + 1. Since R, T R as k — 00, we can conclude
that also R is of the form
R=w-a,

for some row vector a > 0. Hence,
Ri — (aw)i—lR — ni_lR,

where n = aw. Clearly 7 is the spectral radius of R. Now the matrix-geometric form of
the probability vectors p; reduces to (ordinary) geometric form

pi=p R =0 pR =" py, i>1
Note that 1 can be characterized as the unique root in (0, 1) of the determinantal equation
det(Ao + 1Ay +7°A;) =0,

which may be computed by straightforward bisection.
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6.4 Spectral expansion method

In this section we describe the spectral expansion method; for more details the reader is
referred to [3].
The basic idea of the method is to first try to find basis solutions of the form

bi = yxiila 1= 1727 SR (12)

where y = (y(0),y(1),...,y(m)) # 0 and |z| < 1, satisfying the equilibrium equations for
the levels @ > 1, i.e.,
pi-140 + piA1 + piy1 Az = 0. (13)

We require that |z| < 1, since we want to be able to normalize the solution of (13). Then
the basis solutions will be linearly combined so as to also satisfy the equilibrium equations
for the boundary states (i.e., levels 0 and 1).

Substitution of (12) into (13) and dividing by common powers of z yields

These equations have a non-null solution for y if
det(Ao + $A1 —+ $2A2) =0. (15)

Hence, the desired values of x are the roots z with |z| < 1 of the determinantal equation
(15). Equation (15) is a polynomial equation of degree 2(m + 1). Hence it has 2(m + 1)
(possibly complex) roots. Provided the Markov process @ is ergodic, there exist exactly
m + 1 roots x with |z| < 1 (where each root is counted according to its multiplicity); this
number will appear to be exactly enough to satisfy the boundary equations. Let us assume
that these m + 1 roots are different, and label them as g, 1, ..., 2. Let y; be a non-null
solution of (14) with z = x;, j =0,1,...,m. We then set

pi=Y ey, i=1,2,.. (16)
j=0

Expression (16) is usually referred to as the spectral expansion of the equilibrium probability
vectors p;. The coefficients ¢; of this expansion have to be determined yet. Note that, since
the equilibrium equations are linear, the expansion (16) satisfies the equilibrium equations

for the levels i > 1 for any choice of the coefficients c¢g, cq, ..., cp.

By substituting the spectral expansion for p; and ps into the boundary equations (2)
and (3), we get the following set of equations for the coefficients ¢y, . .., ¢, and the vector
Do,

poBoo+ZijjB1o = 0,

=0

poBol + Z ijjBll —+ Z ijjmjAZ = 0

Jj=0 Jj=0



Together with the normalization equation

= 1
1 = poe + jZOijjel P
this set of equations uniquely determines py and cq, ..., ¢p,.
Remark 6.9 The roots xg, z1, ..., x,, do not have to be different. If we assume that, when

a root x occurs k times, it is possible to find & linearly independent solutions of (14), then
the analysis proceeds in exactly the same way. In case there are less than k£ independent
solutions, we would also have to consider more complicated basis solutions of the form

yiz*~! (or even with higher powers of ).

Remark 6.10 The relation between the matrix-geometric representation (5) and the spec-

tral expansion (16) for the equilibrium probability vectors p; is clear: the roots xg, 1, ..., Tm
are the eigenvalues of R with corresponding left eigenvectors yo, y1, ..., Ym.
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