
7 G/M/1 type models

In this chapter we consider G/M/1 type models, i.e., generalizations of the ordinary G/M/1
queue, and we state some of the main results; for a detailed exposition of the analysis of
G/M/1 type models the reader is referred to [4]. In the next section we first treat the
G/M/1 queue.

7.1 The G/M/1 system

In the G/M/1 queue customers arrive one by one with interarrival times identically and
independently distributed according to an arbitrary distribution function FA(·) with den-
sity fA(·). The mean interarrival time is equal to 1/λ. The service times are exponentially
distributed with mean 1/µ. For stability we again require that the occupation rate ρ = λ/µ
is less than one. The state of the G/M/1 queue at time t can be described by the pair (i, x)
where i denotes the number of customers in the system and x the residual interarrival time.
So we need a complicated two-dimensional state description. But the state description is
much easier at special points in time. If we look at the system just before arrival instants,
then the state description can be simplified to i only, because x = 0 just before an arrival.
Below we are going to study this Markov chain embedded on arrival instants. To specify
the transition probabilities of this Markov chain we first introduce the probabilities an

defined as the probability that exactly n customers are served during an interarrival time
(assuming there are at least n customers present at the start of the interarrival time). By
conditioning on the length of the interarrival time it follows that

an =

∫ ∞

t=0

(µt)n

n!
e−µtfA(t)d(t), n = 0, 1, 2, . . . (1)

Further let bn denote the probability that more than n customers are served during an
interarrival time, so

bn =
∑
k>n

ak.

Then the transition probability matrix P takes the form

P =



b0 a0 0 0 0 · · ·
b1 a1 a0 0 0 · · ·
b2 a2 a1 a0 0 · · ·
b3 a3 a2 a1 a0 · · ·
b4 a4 a3 a2 a1 · · ·
...

...
...

...
...


.
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The equilibrium probabilities pi satisfy the equilibrium equations

p0 = p0b0 + p1b1 + p2b2 + · · ·

=
∞∑

n=0

pnbn (2)

pi = pi−1a0 + pia1 + pi+1a2 + · · ·

=
∞∑

n=0

pi−1+nan, i = 1, 2, . . . (3)

To solve the equilibrium equations we try to find solutions of the form

pi = σi, i = 0, 1, 2, . . . (4)

Substitution of this form into equation (3) and dividing by the common power σi−1 yields

σ =
∞∑

n=0

σnan .

Of course we know that an is given by (1). Hence we have

σ =
∞∑

n=0

σn

∫ ∞

t=0

(µt)n

n!
e−µtfA(t)dt

=

∫ ∞

t=0

e−(µ−µσ)tfA(t)dt.

The last integral can be recognised as the Laplace-Stieltjes transform of the interarrival
time. Thus we arrive at the following equation

σ = Ã(µ− µσ), (5)

where

Ã(s) =

∫ ∞

t=0

e−stfA(t)dt.

Clearly, σ = 1 is a root of equation (5), since Ã(0) = 1. But this root is not useful, because
we must be able to normalize the solution of the equilibrium equations. It can be shown
that as long as ρ < 1 equation (5) has a unique root σ in the range 0 < σ < 1, and this is the
root which we seek. Note that the remaining equilibrium equation (2) is also satisfied by
(4), since the equilibrium equations are dependent. We finally have to normalize solution
(4) yielding the geometric form (cf. (37) for the Er/M/1 queue in chapter 5)

pi = (1− σ)σi, i = 0, 1, 2, . . . ,

In the following section we introduce a model, in continuous time, for which the gen-
erator Q has the same transition strucure as the transition probability matrix P for the
G/M/1 queue. But in this model the simple state i is replaced by a set of states (referred
to as level i). Its equilbrium distribution will have a matrix-geometric form (or a sum of
geometric terms).
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Remark 7.1 There is a simple probabilistic argument why the equilibrium probabilities
pi are of the form (4). The ratio pi+1/pi is the expected number of visits to state i + 1
inbetween two successive visits to state i. The structure of P implies that pi+1/pi is the
same for all i, i.e., this ratio does not depend on i (Why?).

7.2 The G/M/1 type Model

We consider a Markov process, the state space of which consists of the boundary states
(0, j) where j ranges from 0 to n, and a semi infinite strip of states (i, j) where i ranges
from 1 to ∞ and j from 0 to m. The states are ordered lexicographically, that is,
(0, 0), (0, 1), . . . , (0, n), (1, 0), . . . , (1, m), (2, 0), . . . , (2, m), . . .. The set of boundary states
{(0, 0), (0, 1), . . . , (0, m)} will be called level 0, and the set of states {(i, 0), (i, 1), . . . , (i, n)},
i ≥ 1, will be called level i. We partition the state space according to these levels, and for
this partitioning we assume that the generator Q is of the form

Q =



B00 B01 0 0 0 · · ·
B10 B11 A0 0 0 · · ·
B20 A2 A1 A0 0 · · ·
B30 A3 A2 A1 A0 · · ·
B40 A4 A3 A2 A1 · · ·
...

...
...

...
...


,

where the matrix B00 is of dimension (n+1)× (n+1), B0,1 of dimension (n+1)× (m+1),
the matrices Bi0, i ≥ 1, of dimension (m + 1)× (n + 1), and B11 and Ai, i ≥ 0, are square
matrices of dimension m + 1. Let

A =
∞∑
i=0

Ai.

Note that A is a generator; it describes the behavior of the Markov process Q in the
(vertical) j-direction only. We assume that the Markov process Q is irreducible and that
the generator A has exactly one communicating class. For the stability of Q we have the
same result as theorem 6.3: the Markov process Q is ergodic if and only if

πA0e < π

∞∑
i=2

(i− 1)Aie,

where e is the column vector of ones and π = (π0, π1, . . . , πm) is the equilibrium distribution
of the Markov process with generator A; so

πA = 0, πe = 1.

In the sequel we will assume that the Markov process Q is ergodic. Thus the equilibrium
probabilities p(i, j) exist. Let pi denote the vector of equilibrium probabilities of level i, so

p0 = (p(0, 0), p(0, 1), . . . , p(0, n)), pi = (p(i, 0), p(0, 1), . . . , p(0, m)), i = 1, 2, . . . .
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These probability vectors pi satisfy the equilibrium equations

p0B00 + p1B10 +
∞∑

n=2

pnBn0 = 0, (6)

p0B01 + p1B11 +
∞∑

n=2

pnA2 = 0, (7)

∞∑
n=0

pi−1+nAn = 0, i = 2, 3, . . . , (8)

and, of course, the normalization equation,
∞∑
i=0

pie = 1.

In the following section we describe the matrix-geometric results, which are very similar
to the ones in section 6.2.

7.3 The matrix-geometric method

Provided the Markov process Q is ergodic, the equilibrium probability vectors pi are given
by the matrix-geometric form

pi = p1R
i−1, i = 1, 2, . . . , (9)

where the matrix R is the minimal nonnegative solution of the matrix equation
∞∑

n=0

RnAn = 0. (10)

The matrix R has spectral radius less than one (so I − R is invertable). Note that, if R
satisfies (10), then it is easily seen that the matrix-geometric form (9) for pi indeed satisfies
the equilibrium eqations for the levels i > 1; substitution of (9) into the left-hand side of
(8) yields pi−1

∑∞
n=0 RnAn, which vanishes if R satisfies (10). The boundary equations for

p0 and p1 are exactly the same as for the M/M/1 type model, treated in section 6.2. Hence,
in comparison with the M/M/1 results, the only difference is that the matrix-quadratic
equation for R is replaced by equation (10); this of course complicates the computation of
R. Equation (10) can be rewritten as

R = −(A0 +
∞∑

n=2

RnAn)A−1
1 .

To solve this equation we first have to truncate the infinite sum at N , say, and then compute
an approximation for R by successive substitutions, i.e.,

Rk+1 = −(A0 +
N∑

n=2

Rn
kAn)A−1

1 , k = 0, 1, 2, . . .
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starting with R0 = 0. The larger N , the better the resulting approximation for R, but also
the higher the computational effort to compute this approximation.

We finally mention that the rate matrix R has the same probabilistic interpretation as
described in section 6.2.

7.4 Spectral expansion method

Along the same lines as in section 6.3 it can be shown that the equilbrium probability
vectors pi can be expressed as

pi =
m∑

j=0

cjyjx
i−1, i = 1, 2, . . .

where x0, x1, . . . , xm are the roots inside the unit circle of

det(
∞∑

n=0

xnAn) = 0. (11)

The vector yj, j = 0, 1, . . . ,m, is a nonnul solution of

y
∞∑

n=0

xnAn = 0.

The difficulties, however, with this approach are (i) to prove that equation (11) has indeed
m + 1 (different) roots x with |x| < 1, and (ii) the computation of these roots. In the next
chapter we will consider a special class of G/M/1 models, for which these difficulties can
be resolved.

7.5 Example: The G/PH/1 queue

In this section we will study a single-server queue with phase-type service times and arbi-
trarily distributed interarrival times. The interarrival time distribution is denoted by FA(·)
with density fA(·) and mean 1/λ. The service times have a mixed Erlang-r distribution
with scale parameter µ. This means that with probability qn the service time is the sum
of n exponential phases, each with the same parameter µ, n = 1, 2, . . . , r. The phase
representation of this distribution is shown in figure 1.

The system behavior will be analyzed at arrival instants. The state on arrival instants
can be described by the pair (i, j), where i is the number of customers in the system and
j the number of remaining service phases of the customer in service just before an arrival.
This two-dimensional description leads to a G/M/1 type model, as studied in this chapter;
see [4, 2, 3, 5, 6] for efficient algorithms for the computation of the matrix-geometric
solution.

Alternatively the state on arrival instants can be described by the one-dimensional
states i where i is the total number of uncompleted service phases in the system. In doing
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Figure 1: Phase representation of the mixed Erlang service time distribution

so, we loose part of the information, since we cannot determine the number of customers
in the system from this description (except when the service times have a pure Erlang
distribution). But information on the number of uncompleted service phases is all that is
needed to determine the waiting time. As we will see, the analysis of this one-dimensional
Markov chain is very similar to the analysis of the embedded Markov chain for the G/M/1
system in section 7.1.

The transition probability pij from state i ≥ 0 to state j > 0 is given by

pij =

{
q1ai+1−j + q2ai+2−j + · · ·+ qrai+r−j i ≥ 0 , 0 < j ≤ i + r,
0 i ≥ 0 , j > i + r,

where an is defined as the probability that n service stages are completed during an inter-
arrival time, so

an =

∫ ∞

0

(µt)n

n!
e−µtfA(t)dt , n ≥ 0 .

Note that the Markov chain on arrival instants is irreducible and aperiodic. Henceforth it
will be assumed that the offered load ρ, defined by

ρ = λ

(
q1 ·

1

µ
+ q2 ·

2

µ
+ · · ·+ qr ·

r

µ

)
,

is less than 1. Then the equilibrium probabilities pi of finding i customers on arrival exist.
For i > 0 the equilibrium equations are given by

pi = q1

∞∑
n=0

pi−1+nan + q2

∞∑
n=0

pi−2+nan + · · ·+ qr

∞∑
n=0

pi−r+nan, (12)

where by convention
p−1 = p−2 = · · · = p1−r = 0. (13)
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Note that we do not pay attention to the equilibrium equation in state 0; since the equi-
librium equations are dependent, this one will be satisfied automatically once we have
satisfied (12). To solve the equilibrium equations (12) we try to find r basis solutions of
the form

pi = σi, i = 0, 1, 2, . . .

Substitution of this form into (12) and division by σi−1 yields

σr =
(
q1σ

r−1 + q2σ
r−2 + · · ·+ qr

) ∞∑
n=0

anσ
n,

and thus, by substituting the expression for bk, we find the following equation for σ,

σr =
(
q1σ

r−1 + q2σ
r−2 + · · ·+ qr

)
E(e−µ(1−σ)A), (14)

where the generic random variable A has distribution FA(·). Clearly, only solutions with
|σ| < 1 are useful. By using Rouché’s Theorem it can be shown that equation (14) has
exactly r roots inside the unit circle (cf. [1]). We assume that these roots are all different
and label them σ1, σ2, . . . , σr. Now we take the linear combination

pi =
r∑

k=1

ck(1− σk)σ
i
k.

For any choice of the coefficients ck, this linear combination satisfies (12); it remains to
determine the coefficients ck such that the convention (13) is satisfied. Substitution of this
linear combination into (13) yields

c1(1− σ1)τ
i
1 + c2(1− σ2)τ

i
2 + · · ·+ cr(1− σr)τ

i
r = 0, i = 1, 2, . . . , r − 1,

where τk = 1/σk. These equations are of a VanderMonde-type and therefore, they can be
solved explicitly using Cramer’s rule. Then we get

ck =
C∏r

j=1(1− τj)

∏
j 6=k(1− τj)∏
j 6=k(τk − τj)

, k = 1, . . . , r ,

for some constant C. This constant follows from the normalization equation, which, by
using Lagrange’s interpolation formula, leads to

C =
r∏

j=1

(1− τj).

Our findings are summarized in the following theorem.

Theorem 7.2 For all i = 0, 1, 2, . . .,

pi =
r∑

k=1

ck(1− σk)σ
i
k,
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where σ1, . . . , σr are the roots with |σ| < 1 of equation (14) and (with τj = 1/σj)

ck =

∏
j 6=k(1− τj)∏
j 6=k(τk − τj)

, k = 1, . . . , r .

The arrival probabilities pi are of the same form as the one for the standard G/M/1
queue (i.e., a sum of geometric distributions). Thus the waiting time distribution can also
be found in the same way as for the G/M/1, yielding

P (W > t) =
r∑

k=1

ckσke
−µ(1−σk)t, t ≥ 0. (15)

Based on (15) it is easy to find expressions for the moments of the (conditional) waiting
time. Hence the problem of finding the waiting time distribution has been reduced to that
of finding the roots σk of (14).

In the special case of (pure) Erlang-r service time the roots σk can be found very
efficiently. Then (14) simplifies to

σr = E(e−µ(1−σ)A).

The idea is to reduce this equation for r roots to r equations for a single root, by raising
both sides of the above equation to the power 1/r. This leads to

σ = φF (σ) , (16)

where φ satisfies φr = 1 and

F (σ) = r
√

E(e−µ(1−σ)A) .

Thus φ can be selected from the r unity roots e2πim/r, m = 0, 1, . . . , r− 1. For each choice
of φ equation (16) is a fixed point equation. We can try to find the root of (16) with |σ| < 1
by using the iteration scheme

σ(k+1) = φF (σ(k)) , k = 0, 1, . . .

starting with σ(0) = 0. For certain classes of interarrival time distributions it can be shown
that, indeed, the sequence σ(0), σ(1), . . . converges to the desired root; see [1] for more
details. These classes include deterministic, shifted exponential, gamma, mixed Erlang
and hyper-exponential distributions.
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