
9 The M/G/1 system

In the previous chapters we considered queueing system with Poisson arrivals and exponen-
tially distributed service times. Poisson arrivlas are in many cases a fairly realistic model
for the arrival process, but exponential service times are not very common in practice. In
many systems the coefficient of variation of the service times will be smaller (or geater) than
1. Therefore it is essential to extend the theory to the case of generally distributed service
times. In this chapter we will treat the case of Poisson arrivals and generally distributed
(though independent) service times. So we will consider the M/G/1 system. Customers
are again served in order of arrival.

9.1 The queue length distribution on departure instants

In the M/G/1 queue customers arrive one by one according to a Poisson stream with rate
λ. The service times have a general distribution with density fB(·) and mean E(B). For
stability we assume that

ρ = λ · E(B) < 1.

The state of the M/G/1 queue at time t can be described by the pair (n, x) where n
denotes the number of customers in the system and x the service time already received
by the customer in service. We thus need a two-dimensional state description. The first
dimension is still discrete, but the other one is continuous and this essentially complicates
the analysis. However, if we look at the system just after departures, then the state
description can be simplified to n only, because x = 0 for the new customer (if any) in
service. In other words, we are going to look at the Markov chain embedded on departure
instants; recall that for the G/M/1 we studied the Markov chain embedded on arrival
instants. A question that immediately arises is whether the distribution of the number of
customers in the system on departure instants is useful? The first observation is that, since
customers arrive and leave one by one, the queue length distribution on departure instants
is exactly the same as the queue length distribution on arrival instants (see section 4.7),
and by PASTA, the latter is equal to the equilibrium queue length distribution. Further, we
shall see that the departure distribution can be connected to the sojourn time distribution
by using a distributional version of Little’s law.

To specify the transition probabilities pi,j of the embedded Markov chain we first intro-
duce the probabilities an defined as the probability that exactly n customers arrive during
a service time. By conditioning on the length of the service time it follows that

an =
∫ ∞
t=0

(λt)n

n!
e−λtfB(t)d(t), n = 0, 1, 2, . . . (1)

Clearly pi,j = 0 for all j < i − 1 and pi,j for j ≥ i − 1 gives the probability that exactly
j − i + 1 customers arrived during the service time of a customer. This holds for i > 0.
In state 0 a customer leaves behind an empty system and then p0,j gives the probability
that during the service time of the next customer exactly j customers arrived. Hence the
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matrix P of transition probabilities takes the form

P =



a0 a1 a2 a3 · · ·
a0 a1 a2 a3 · · ·
0 a0 a1 a2 · · ·
0 0 a0 a1 · · ·
0 0 0 a0 · · ·
...

...
...

...
. . .


,

The equilibrium probabilities pi satisfy the equilibrium equations

pi = pi+1a0 + pia1 + · · ·+ p1ai + p0ai

=
i∑

n=0

pi+1−nan + p0ai, i = 0, 1, . . . (2)

Note that these equations can be easily solved numerically: starting with p0 = 1 − ρ
(Why?), we can use the above equations to recursively determine p1, p2, . . .; namely the
above equation can be rewritten as

pi+1a0 = pi − (pia1 + · · ·+ p1ai + p0ai), i = 0, 1, 2, . . . ,

so, once we have determined p0 up to pi, we can use this equation to compute pi+1. To
solve the equilibrium equations analytically we are going to use generating functions. Let
us introduce the probability generating functions

P (z) =
∞∑
i=0

piz
i, A(z) =

∞∑
i=0

aiz
i,

which are defined for all z ≤ 1. Multiplying (2) by zi and summing over all i leads to

P (z) =
∞∑
i=0

(
i∑

n=0

pi+1−nan + p0an

)
zi

= z−1
∞∑
i=0

i∑
n=0

pi+1−nz
i+1−nanz

n +
∞∑
i=0

p0aiz
i

= z−1
∞∑
n=0

∞∑
i=n

pi+1−nz
i+1−nanz

n + p0A(z)

= z−1
∞∑
n=0

anz
n
∞∑
i=n

pi+1−nz
i+1−n + p0A(z)

= z−1A(z)(P (z)− p0) + p0A(z).

Hence we find

P (z) =
p0A(z)(1− z−1)

1− z−1A(z)
.
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Substituting p0 = 1−ρ (which also follows from the requirement P (1) = 1) and multiplying
numerator and denominator by −z we obtain

P (z) =
(1− ρ)A(z)(1− z)

A(z)− z
. (3)

By using (1), the generating function A(z) can be rewritten as

A(z) =
∞∑
n=0

∫ ∞
t=0

(λt)n

n!
e−λtfB(t)dtzn

=
∫ ∞
t=0

∞∑
n=0

(λtz)n

n!
e−λtfB(t)dt

=
∫ ∞
t=0

e−(λ−λz)tfB(t)dt

= B̃(λ− λz) (4)

Substitution of (4) into (3) finally yields

P (z) =
(1− ρ)B̃(λ− λz)(1− z)

B̃(λ− λz)− z
. (5)

This formula is one form of the Pollaczek-Khinchin formula. Below we will derive a similar
formula for the sojourn time. By differentiating formula (5) we can determine the moments
of the queue length (see section 1.2). To find its distribution, however, we have to invert
formula (5), which usually is very difficult. In the special case that B̃(s) is a quotient of
polynomials in s, i.e., a rational function, then in principle the right-hand side of (5) can be
decomposed into partial fractions, the inverse transform of which can be easily determined.
The service time has a rational transform for, e.g., mixtures of Erlang distributions or
Hyperexponential distributions (see section 1.4). The inversion of (5) is demonstrated
below for exponential and Erlang-2 service times.

Example 9.1 (M/M/1)
Suppose the service time is exponentially distributed with mean 1/µ. Then (see section
1.4.3)

B̃(s) =
µ

µ+ s
.

Thus

P (z) =
(1− ρ) µ

µ+λ−λz (1− z)
µ

µ+λ−λz − z
=

(1− ρ)µ(1− z)

µ− z(µ+ λ− λz)
=

(1− ρ)µ(1− z)

(µ− λz)(1− z)
=

1− ρ
1− ρz

.

Hence
pn = (1− ρ)ρn, n = 0, 1, 2, . . .
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Example 9.2 (M/E2/1)
Suppose the service time is Erlang-2 distributed with mean 2/µ. Then (see section 1.4.4)

B̃(s) =

(
µ

µ+ s

)2

,

so

P (z) =
(1− ρ)

(
µ

µ+λ−λz

)2
(1− z)(

µ
µ+λ−λz

)2
− z

=
(1− ρ)µ2(1− z)

µ2 − z(µ+ λ− λz)2

=
(1− ρ)(1− z)

1− z(1 + ρ(1− z)/2)2

=
1− ρ

1− ρz − ρ2z(1− z)/4
.

For ρ = 1/3 we then find

P (z) =
2/3

1− z/3− z(1− z)/36
=

24

36− 13z + z2

=
24

(4− z)(9− z)
=

24/5

4− z
− 24/5

9− z
=

6/5

1− z/4
− 8/15

1− z/9
.

Hence,

pn =
6

5

(
1

4

)n
− 8

15

(
1

9

)n
, n = 0, 1, 2, . . .

9.2 The sojourn time and the waiting time

We now turn to the calculation of how long a customer spends in the system. We will show
that there is a nice relationship between the transforms of the time spent in the system
and the departure distribution.

Let us consider a customer arriving at the system in equilibrium. Denote the total time
spent in the system for this customer by the random variable S with distribution function
FS(·) and density fS(·). The probability that our cstomer leaves behind i customers is
equal to pi (since the system is in equilibrium). For a first-come first-served system it is
clear that all customers left behind are precisely those who arrived during his stay in the
system. Thus we have

pi =
∫ ∞
t=0

(λt)i

i!
e−λtfS(t)dt.

Hence, we find similarly to (4) that

P (z) = S̃(λ− λz).
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This relation is commonly referred to as Little’s distributional law. Substitution of this
relation into (5) yields

S̃(λ− λz) =
(1− ρ)B̃(λ− λz)(1− z)

B̃(λ− λz)− z
.

Making the change of variable s = λ− λz we finally arrive at

S̃(s) =
(1− ρ)B̃(s)s

λB̃(s) + s− λ
. (6)

This formula is also known as the Pollaczek-Khinchin formula. Since S is the sum of W
(his waiting time) and B (his service time), where W and B are independent, it follows
that

S̃(s) = W̃ (s) · B̃(s) (7)

(since the transform of the sum of two independent random variables is the product of the
transforms of these two random variables; see section 1.3). Together with (6) we get

W̃ (s) =
(1− ρ)s

λB̃(s) + s− λ
, (8)

which is the third form of the Pollaczek-Khinchin formula.

Example 9.3 (M/M/1)
For exponential service times with mean 1/µ we have

B̃(s) =
µ

µ+ s
.

Thus

S̃(s) =
(1− ρ) µ

µ+s
s

λ µ
µ+s

+ s− λ
=

(1− ρ)µs

λµ+ (s− λ)(µ+ s)
=

(1− ρ)µs

(µ− λ)s+ s2
=

µ(1− ρ)

µ(1− ρ) + s
.

Hence, S is exponentially distributed with parameter µ(1− ρ), i.e.,

FS(t) = P (S ≤ t) = 1− e−µ(1−ρ)t, t ≥ 0.

Example 9.4 (M/E2/1)
Suppose that λ = 1 and that the service time is Erlang-2 distributed with mean 1/3, so

B̃(s) =
(

6

6 + s

)2

.

Then it follows that (verify)

FS(t) =
8

5
(1− e−3t)− 3

5
(1− e−8t), t ≥ 0.
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9.3 The mean value approach

The mean sojourn time can of course be calculated from the Laplace-Stieltjes transform
(6) by differentiating and substituting s = 0 (see section 1.3). In this section we show that
the mean sojourn time can also be determined directly (i.e., without using transforms)
with the mean value approach.

First, let us derive the arrival relation. A newly arriving customer first has to wait for
the residual service time of the job in service (if there is one) and then continues to wait for
the servicing of all customers which are already waiting in the queue on arrival. By PASTA
we know that with probability ρ the server is busy on arrival. Let the random variable
B denote the service time, R the residual service time and let Lq denote the number of
customers waiting in the queue. Hence,

E(W ) = E(Lq)E(B) + ρE(R).

Furthermore, we get by Little’s law (applied to the queue of waiting customers),

E(Lq) = λE(W ).

Combining these two relations, we find for the mean waiting time

E(W ) =
ρE(R)

1− ρ
. (9)

Formula (9) is commonly referred to as the Pollaczek-Khinchin mean value formula. It
remains to calculate the mean residual service time. In the following section we will show
that

E(R) =
E(B2)

2E(B)
, (10)

which may also be written in the form

E(R) =
E(B2)

2E(B)
=
σ2
B + E(B)2

2E(B)
=

1

2
(c2
B + 1)E(B), (11)

where c2
B denotes the squared coefficinet of variation of the service time. An important

observation is that, clearly, the mean waiting time only depends upon the first two moments
of the service time (and not upon its distribution). So, in practice, it is sufficient to
know the mean and standard deviation of the service time in order to estimate the mean
waiting time. Finally, expressions for E(S) and E(L) easily follow from the relations
E(S) = E(W ) + E(B) and E(L) = E(Lq) + ρ.

Example 9.5 (Exponential service times)
For exponential service times we have c2

B = 1 and hence E(R) = E(B) (memoryless
property!). So, in this case the expressions for the mean performance measures simplify to

E(W ) =
ρ

1− ρ
E(B), E(Lq) =

ρ2

1− ρ
, E(S) =

1

1− ρ
E(B), E(L) =

ρ

1− ρ
.
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Example 9.6 (Deterministic service times)
For deterministic service times we have c2

B = 0 and hence E(R) = E(B)/2. In this case
we have

E(W ) =
ρ

1− ρ
E(B)

2
, E(Lq) =

ρ2

2(1− ρ)
,

E(S) =
ρ

1− ρ
E(B)

2
+ E(B), E(L) = ρ+

ρ2

2(1− ρ)
.

9.4 The residual service time

Suppose that a customer arrives when the server is busy and denote the total service time
of the customer in service by X. Further let fX(·) denote the density of X. The basic
observation to find fX(·) is that it is more likely that our customer arrives in a long service
time than in a short one. So the probability that X is of length x should be proportional
to the length x as well as the frequency of such service times, which is fB(x)dx. Thus we
may write

P (x ≤ X ≤ x+ dx) = fX(x)dx = CxfB(x)dx,

where C is a constant to normalize this density. So

C−1 =
∫ ∞
x=0

xfB(x)dx = E(B).

Hence

fX(x) =
xfB(x)

E(B)
.

Given that our customer arrives in a service time of length x, the arrival instant will be
a random point within this service time, i.e., it will be uniformly distributed within the
service time interval (0, x). So

P (t ≤ R ≤ t+ dt|X = x) =
dt

x
, 0 ≤ t ≤ x.

Of course, this conditional probability is zero when t > x. Thus we have

P (t ≤ R ≤ t+ dt) = fR(t)dt =
∫ ∞
x=t

dt

x
fX(x)dx =

∫ ∞
x=t

fB(x)

E(B)
dxdt =

1− FB(t)

E(B)
dt.

This gives the final result

fR(t) =
1− FB(t)

E(B)
,

from which we immediately obtain, by partial integration,

E(R) =
∫ ∞
t=0

tfR(t)dt =
1

E(B)

∫ ∞
t=0

t(1− FB(t))dt =
1

E(B)

∫ ∞
t=0

1

2
t2fB(t)dt =

E(B2)

2E(B)
.
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The above computation can be repeated to obtain all moments of R, yielding

E(Rn) =
E(Bn+1)

(n+ 1)E(B)
.

Example 9.7 (Erlang service times)
For an Erlang-r service time with mean r/µ we have

E(B) =
r

µ
, σ2(B) =

r

µ2
,

so

E(B2) = σ2(B) + (E(B))2 =
r(1 + r)

µ2
.

Hence

E(R) =
1 + r

2µ
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