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Abstract

The progress in computing and communications technologies made in
the last quarter of the past Century has not only ushered in the “In-
formation Age,” but it has also influenced the basic sciences, including
mathematics, in fundamental ways. Thanks to the significantly increased
computing power, mathematicians can now augment classical techniques
of analysis, proof and solution with an algorithmic approach in a manner
that enables the consideration of more complex models with wider applica-
bility, and also obtain results with greater practical value to engineering.
While providing powerful tools to the mathematician, the technologies,
nevertheless, are also posing new challenges and problems, and opening
many new vistas for further mathematical research.

Among the areas exemplifying all these, a notable one is algorithmic
methods for stochastic models based on “the matrix (operator) analytic
method.” This lecture is an overview of those methods.

1 INTRODUCTION

We have witnessed in the last 25 years major advances in the fields of computing
and communications. These have increased our ability to effect, with remark-
able speed and without much manual labor, a large number of computations
with high levels of precision. This is having a major impact on mathematical
sciences. Most notable among these are: (a) the increasing ability to consider
complex models that do not lend themselves to “explicit, closed form” solutions,
but are needed to reflect systems faithfully; (b) the greater level of acceptance
of an implementable algorithm as a solution, and, sometimes, even a greater



preference for it over a formula solution achieved at the expense of generality
and ease of use; and (c) the ability to provide solutions in a form more appropri-
ate for practical use or for implementation in devices. Yet, technology has not
only added greater power to mathematics, but it is also posing newer challenges
by way of new problems for solution, thereby serving as an engine driving more
innovation in the mathematical disciplines as well. Good illustrations of all
these assertions may be found in the story of algorithmic methods for stochastic
models that also gained significant momentum beginning in the mid Seventies.

It is important that we delineate the scope of our discussion clearly, partic-
ularly so since the algorithmic approach, in its generality, is a vast topic that
is not new to mathematics or to probability and statistics. Our subject matter
is the set of tools that go by the name of “matrix analytic methods” (now, a
possible misnomer due to generalizations in the operator contexts) that were
initiated by M.F. Neuts [20], [21], serve as a powerful framework to analyze
large classes of stochastic processes in a unified manner, and find numerous
applications in many areas such as performance analysis of computer and com-
munication systems. This area of research came about due to practical needs
in certain queueing applications for more complex models than were typically
covered in the literature and, more importantly, for numerical solutions to guide
a variety of engineering decisions. It now has a vast literature of its own that
continues to grow in many interesting directions. Thus, what is to follow is but
an overview of the central concepts, with a sprinkling of historical notes to un-
derscore the general themes discussed in the opening paragraph. For a detailed
discussion and a large number of references we refer the reader to [20] [21], [15],
[31], [34].

2 CLASSICAL MODELS

The context for matrix analytic methods is Markov chains and Markov renewal
processes, the work horses of applied probability. In modeling a stochastic pro-
cess such as a queue, inventory or storage, water level in a dam, population, etc.,
these are used directly, or appear as embedded processes at certain selected time
points (such as arrival or departure epochs in a queue, epochs of replenishment
of inventory, etc.). The context offers many interesting topics for analysis: var-
ious first passage times (e.g., time to emptiness of the dam or extinction of the
population), derived quantities such as waiting time distribution of arrivals to
a queue, etc. Matrix analytic methods provide a unified framework for solving
a host of such problems through iterative and stable algorithms.

To keep our discussion manageable, we begin with the simple case of a dis-
crete time, discrete state space Markov chain {X, : n > 0} on the state space
{0,1, ... } with transition matrix P and concentrate on the issues concerning
its steady state distribution & = (m,m1,...), which we shall assume to exist.
(We hasten to emphasize, however, that the theory addresses many topics be-
sides steady state distributions, and its scope is much more general than Markov
chains.) It is well-known that under the assumptions of aperiodicity and irre-



ducibility of the Markov chain, what we are seeking is the solution to the set of
linear equations

w=nP, =wl=1, (1)

where 1 is a column vector of 1’s and 7 is the row vector of stationary probabil-
ities). Even in the case when P is finite-dimensional, the computation of @ can
be non-trivial, and in the infinite dimensional case, certainly, not much can be
done by way of computations without additional assumptions. Thus, the nat-
ural thing to do is to impose some additional conditions on P, or equivalently
on {X,}.

Historically, there have been three types of matrices P for which the prob-
lems are so simple that they are considered even in a first course in stochastic
processes. These three are displayed in the equations below:

b() ag 0 0
az a; Qo 0 N
P = 0 a a3 ay --- (2)

0 0 as ap

bo b1 by b3
ap a3 as as ...
P = 0 ag a; a2 e (3)

bo ag 0 0
b1 ay Qo 0 PN
P = b2 a a3 ag ... (4)

b3 as as ap

Readers will recognize the above three transition matrices as those arising
in connection with the birth-and-death process, the M/G/1 queue, and the
GI/M/1 queue respectively.

Although it is not noted thus explicitly in the literature, much of the simplic-
ity of models of the above type comes from their structure embodying certain
“skip-free” properties and “spatial homogeneity.” Indeed, it is these that allow
one to reduce the problem of characterizing 7 to the consideration of the famil-
iar equation z = a(z), where a(z) = )_ 2"a,, and to obtain a recursion for x;
in terms of the (minimal) root z € (0,1] of that equation—see, e.g., Karlin &
Taylor [12], or Takdcs [37]. Let us be specific about the properties we refer to
here:



Note first that the chain corresponding to the matrix in equation (3) is
“skip-free to the left”—i.e., from any state n, it cannot enter any of the states
n—2, n—3, ... in one step. This is reflected in the upper Hessenberg structure
of the matrix in the right of equation (3). Furthermore, it has the spatial
homogeneity property: for n > 1, the transition probability P(n,n — 1 + j)
depends only on j, a fact reflected in the repeating-with-a-shift structure of the
rows of P.

Turning to the chain of equation (4), note that the process is “skip-free
to the right”—i.e., from any n, it cannot enter n + 2,n + 3,... in one step—
and that it has the spatial homogeneity property: for n > 1, the transition
probability P(n — 1 + j,n) depends only on j. The first fact is reflected in the
lower Hessenberg structure of P, and the second in the repeating-with-a-shift
structure of the columns of P.

Of course, the chain of equation (2) falls in the intersection of both the above
classes; it is skip-free in both directions and also has the spatial homogeneity
property.

3 MATRIX METHODS - EARLY WORK

In this section, we shall discuss the generalizations of (2)-(4) considered by
Neuts in the early work on matrix-analytic methods and the attending results
that parallel those of the “scalar” case. It is convenient to discuss each model
class separately to show the parallels; that also agrees with the way the subject
area developed historically.

3.1 M/G/1 Type Chains

Considered first by Neuts [16] were “Markov chains of the M/G/1 type.” These
are Markov chains whose transition matrices have the structure shown in equa-
tion (3) but, unlike in the simple case discussed in the literature, the quantities
a; and b; are now square matrices of a fixed size m < oo. It turns out—see
Neuts [21]—that the examples falling under this two-dimensional class are in-
deed numerous and cover many models of particular interest to applications.
(A simple example of such a model is the chain embedded at departure epochs
in a E,,/G/1 queue, a queue with general service times for which the interar-
rival times are distributed as a sum of m iid exponentially distributed random
variables; we get block matrices because in addition to considering the queue
length at departure, we also need to consider the “phase” of the arrival process
to get a Markov chain; the process here is, of course, two-dimensional.) Let us
examine how the generalization proceeded.

In the scalar case, it is well-known that the starting point of the analysis
is the consideration of the quantity g which is the probability that starting in
1, the chain eventually visits 0. For the steady state distribution to exist, it is
necessary that g be equal to one. A conditioning on the first step of the chain



along with an exploitation of spatial homogeneity would give us the equation
oo
9= ang", (5)
0

and hence the interest in the equation z = a(z) mentioned earlier. Once, it is
determined that the model is indeed ergodic, one can compute 7; recursively—
see [21].

Certainly, Neuts was not the first to consider matrix generalization of the
M/G/1 queue, and one can find discussions of special instances of the matrix
case, such as the E,, /G /1 queue, in the literature. What had been attempted in
the literature by way of generalization was, however, something quite different.
As a generalization of the equation z = a(z) of the scalar case, the classical
approach considered the determinental equation |2I — a@(z)| = 0, where a(z) is
the matrix generating function of the matrices a;, and attempted to characterize
quantities of interest in terms of the roots z; of that determinental equation
and the corresponding (generalized) eigenvector(s) of the matrices a(z;). We
shall not elaborate on that approach except to note that it immediately landed
one in difficult problems concerning the nature of those roots and eigenvectors,
computation in complex arithmetic, etc., and that the approach of Neuts helped
to avoid those difficulties; see Neuts [17] and Ramaswami [24] for some details.

In the matrix case, we have a Markov chain {(X,,J,)} with state space
{(i,4) : ¢ >0, 1 < j <m}, and the block partitioned matrix structure as in
equation (3) is obtained by partitioning the state space into “levels” ¢ = {(4, ) :
1 € j < m}. For queueing models of this type, the level ¢ is usually the set
of states with the number of customers in the system equal to i, and j is an
auxiliary variable such as the phase of the arrival process.

The starting point of the analysis of Neuts is to consider the first passage
probabilities from level 1 to the level 0. These are the natural generalization
of the quantity g in the scalar case. Specifically, let g;; denote the probability
that, starting in the state (1,4), the chain eventually enters the level 0 and that
the specific state of level 0 entered is (0,7); and let g be the m x m matrix of
elements g;;. An argument conditioning on the first step of the chain shows
that the matrix g satisfies the (matrix) equation (5), and it is not too hard to
prove that g is also the minimal nonnegative solution of that equation. Note
that g is a substochastic matrix in general, and that g must be stochastic in the
ergodic case. Parenthetically, we note that the the roots z; and the eigenvectors
obtained in the classical approach can be shown—see [30]—to be none other
than the eigenvalues and eigenvectors of the matrix g.

Remarkably, most quantities of interest for models of this type can be ex-
pressed in terms of the matrix g, and thus the computation of g becomes the
most important step in the analysis. To illustrate this, consider the computa-
tion of the steady state probability vectors m; with elements m;;, where 7;; is
the steady state probability of the state (¢,7). We observe that mg, up to a mul-
tiplicative constant, is given by the steady state distribution of the embedded
Markov chain at visits to level 0, and that embedded chain has transition ma-



trix P = >0 bng™; in other words, once g is computed, the computation of o,
at least up to a multiplicative constant, becomes a simple (finite dimensional)
linear problem. Once this is done, one can then compute the remaining terms
recursively using a simple relationship obtained by Ramaswami [26]:

n

Tnt1 = | Tobny1 + Zm&n+2—i (I- @1)71, (6)
i=1

where @, = Y o, arg" ™ and b, = Y po, brg"~". Incidentally, the above
recursion was obtained using a purely probabilistic argument considering the
censored chains on the levels up to level n + 1, and avoids the potential slow
convergence problems of iterative methods like Gauss-Seidel techniques. In-
deed, its derivation was motivated by convergence problems encountered in the
analysis of a meteor scatter communication system [9], a queue with server
break-downs, whose very nature required the computation of a large number of
sub-vectors m,—an instance of technology applications goading mathematics to
step up.

The computation of the matrix g was initially accomplished by Neuts using
simple iterative methods based on successive substitutions starting with the zero
matrix:

o0
go =0, In+1 = Zakgfr (7)
k=0

It is easy to demonstrate that the above iterative scheme provides a mono-
tonically increasing (entry-wise) sequence of matrices converging to the desired
matrix g.

Clearly, the equation (5) establishes g as a fixed point of the (contraction)
map f(z) = D anz™ defined on the set of nonnegative substochastic matrices
z. In fact, one can establish the existence of a fixed point from standard fixed
point theorems of functional analysis for contraction maps and also apply many
results known from the general literature to that equation; see Neuts [16] and
Ramaswami [25] for some details. There are two key findings from the cited
references that deserve mention here: (a) the simple iterative method of equa-
tion (7) has only “linear convergence” and can become quite slow, particularly
for models where the decay of the steady state distribution is not very fast;
(b) standard techniques of acceleration, e.g., of the Newton type, often end up
costing more in computation time and memory. These facts posed some seri-
ous mathematical challenges; their resolution will be discussed in a subsequent
section.

3.2 GI/M/1 type chains

Having considered the matrix generalization of the M/G/1 queue, it was but
natural that Neuts [18], [19] moved on to consider block partitioned matrices of
the form in equation (4). An example of such a model is the embedded Markov



chain in the GI/E,,/1 queue, the queue with renewal arrivals and an Erlang
service time of order m; the class itself has numerous special cases [20].

Once again, we denote the Markov chain by {(X,, J,)} and states by (i, j),
1> 0,1 < j <m. The transition matrix of this Markov chain is assumed to be
of the form (4) where the elements in the right side are now m x m matrices.
We assume the chain to be ergodic and denote the steady state probabilities by
m;j. We also use the notion of levels and partitioning by levels as done in the
M/G/1 case.

In the scalar case, i.e., m = 1, it is well-known that the steady state distri-
bution 7, is geometric. Indeed, 7, = wr™, where r is the minimal solution in
(0,1) of the equation

o0
r= Z r"an,. (8)
n=0

Thus, it is natural to ask if in the matrix case, one would get for the steady state
distribution 7, a matrix-geometric structure—i.e., could we write mw,, = wor™
for some matrix 7? The main result of [18] was to demonstrate that it indeed is
the case, and that the matrix r (called “rate matrix”) is the minimal nonnegative
solution of the matrix equation (8). Since 7, — 0 as n — 0o, the matrix r must
have spectral radius (largest eigenvalue) less than one—a condition analogous
to r < 1in the scalar case. It was also shown that r can be obtained as the limit
of the monotonically converging sequence of matrices defined by the recursions:

oo
o =0, Tpi1 = erbak. 9)
k=0

In a subsequent paper [19], Neuts also gave a probabilistic interpretation for r:
ri; is the expected number of visits to (n+1, j) during a return to level n, given
that the chain starts in (n, ).

Several things are worth recalling here: (a) Just as in the scalar case, the
derivation of the matrix-geometric result was by a trial-and-error scheme; (b)
the simple iterations of equation (9) also have only linear convergence and could
suffer from slow convergence, and typically so when r ~ 1; (c) although r is
nonnegative and sp(r) < 1, it is not true that r is a stochastic or substochastic
matrix. Finally, unlike that for g, the function > r"a,, is not a contraction map,
and standard results on such maps do not apply directly [25].

3.3 Quasi Birth-and-Death Processes

The matrix analogue of the simple birth and death process is a Markov chain
{(Xn,Jn)} on the two-dimensional state space {(i,j) : ¢ > 0, 1 < j < m}
and transition matrix of the form given in equation (2), where by and a; are
matrices of order m. A canonical example is, of course, a birth and death
process in a Markovian environment, where the birth and death rates depend
on the environment state J. Hence such a process goes by the name Quasi-
birth-and-death process (QBD). Clearly, this class of chains is a special case of



both the M/G/1 type and the GI/M/1 type chains we discussed above, and
either methodology applies. We have both the g matrix and the r matrix, with
the same interpretations, but they now satisfy the matrix quadratic equations:

g:a2+a1g+a0g2, r = ag + ra; + rlas. (10)

Note that since the quantities involved are matrices, the terms of the products
may not be interchanged.

Once again, many interesting questions arise from the above. (a) Given the
closeness in appearance of the equations for r and g, is there a relationship
between them? (b) How special is the QBD case? (c¢) Can the fact that the
equations involve only matrix-quadratics (and not an infinite sum as in the
general cases considered earlier) lead to better methods?

Thus, while providing a powerful unified approach to a wide class of models,
the matrix-analytic results also generated a host of other interesting questions:
How general can the structure be made and the qualitative flavor of the results
maintained? How can one speed up computations? What are the implications of
the matrix-geometric result for derived quantities? It has taken several decades
since the discovery of the above mentioned matrix-analytic results to answer
some of these interesting questions, and much further questions do remain open.
Those are what we discuss next.

For much of the early work on matrix-analytic methods and for numerous
interesting examples to which they apply, we refer the reader to the two mono-
graphs of Neuts [21], [20]. A delineation of the theory as it stands today is
presented in [15] using mainly Quasi Birth and Death Processes; that work,
however, limits itself mostly to the core methodology and does not delve in
detail into applications and examples.

4 OPERATOR UNDERPINNINGS

We noted that the early work on matrix analytic methods by Neuts restricted
itself to finite dimensional blocks—i.e., to the case where the second co-ordinate
J assumed only a finite set of values. Note that even with this, J could itself
be multi-dimensional, and the requirement is simply that the totality of values
assumed by J be finite.

The reasons for restricting to finite dimension were many: (a) The approach
was by and large ad hoc; (b) computations were the main thrust of the approach;
and (c) in proving the results, a heavy reliance was made on Perron-Frobenius
theory for finite dimensional, nonnegative matrices. Nevertheless, it was con-
jectured very early on by Neuts that the approach was much more general and
should have operator analogues in the general cases; the connection with nonlin-
ear maps and fixed point theorems of functional analysis were highly suggestive
of this.

Following a conjecture by Neuts, Tweedie [39] demonstrated soon that the
matrix-geometric solution extends in a natural manner to an “operator geomet-
ric” form when one allows the second coordinate J to be in an arbitrary (Polish)



space, but retains for the transition kernel the structure in (4); as an example,
Tweedie considered the GI/G/1 queueing model at arrival epochs, with the
elapsed service time of the customer in service playing the role of the phase
variable. The techniques, however, continued to have an ad hoc—*let us guess
and verify”— flavor, and did not really provide deep insights into wherefrom the
geometric structure arises. Although Tweedie’s work dates quite early in the
story of these methods, for a long while, extensions to the operator case were
not pursued further on account of perceived technical difficulties and doubts
about their computational merit. Some recent work, however, shows that some
of these fears may indeed be exaggerated, and we discuss some key developments
below.

4.1 Level Crossing Arguments

In a tutorial paper on matrix-analytic methods, Ramaswami [31] demonstrated
that the implication of a geometric structure by the the skip-free-to-the-right
property and spatial homogeneity becomes obvious once we use a sample path
argument using the level crossing approach. Furthermore, the techniques of
proof can be entirely probabilistic and elementary (based on renewal theory for
terminating renewal processes). The true merit of this approach lies in the fact
that these arguments hold good even in the case when J is no longer finite-
dimensional. Let us quickly recap the main ideas of [31].

Consider the chain of equation (4). Denote by P(0,n + 1;t) the matrix of
probabilities of being in level m 4 1 at time ¢ given that the process starts in
level 0 at time 0; we have a matrix since we need to keep track of the phase (J)
at time O as well as at time ¢. Since the chain is skip-free-to- the-right, starting
in level 0, it cannot be at level n + 1 at time ¢ without being at level n at least
once before time ¢. Indeed, there should be a unique time point 1 < k <t-1
such that Xy =n and X; >n fori =k +1,...,t. Thus, we can write

t—1
P(0,n+ 1;t) =ZP(0,n;k)Q(n,n+ 1;t — k), (11)
k=1

where Q(n,n + 1;s) is the taboo probability that, having started in level n at
time 0, the chain is at level » + 1 at time s avoiding the levels 0,... ,n in
intermediate steps. Clearly, the successive visits to n 4+ 1 avoiding lower levels
form a Markov renewal process; that Markov renewal process is also terminating
if the chain is irreducible. This implies, by taking the limit as ¢ — oo in
equation (11), that the steady state probabilities must satisfy the relation

Tpt1 = Tp ZQ(n,n + 1;¢). (12)

t=1

The matrix-geometric structure m,4; = m,r is immediate by using the spatial
homogeneity property which implies that

Q(n,n +1;t) = Q(0,151),



and therefore we may write ), Q(n,n + 1;t) = r as a quantity independent of
n. As mentioned earlier, the beauty of the above argument is that it does not
require J to be finite-dimensional.

4.2 Continuum of Phases

Extending the methods to the case when the phase variable (J) assumes in-
finitely many values is not only a matter of mathematical curiosity, but also of
practical value. In many practical queueing systems, particularly in the high
speed communications area using the internet protocols, there is evidence—
see [23], [1]—of quantities such as delay distributions exhibiting heavy tails and
of traffic processes exhibiting long range dependence and self-similarity over
many time scales. The matrix-geometric result w, = mwor™ with a finite di-
mensional matrix r automatically implies geometric decay of the steady state
distribution. For queueing models, this would in turn imply an exponentially
decaying tail for waiting time distributions and certain hitting time distribu-
tions of interest. These imply that the models covered by the finite dimensional
matrix analytic theory may be inadequate for certain applications of current
interest.

In using matrix-analytic methods in such contexts, the trend in the litera-
ture has been to approximate complex distributions and processes with finite
dimensional phase type distributions; see [11] for an example. Typically, these
use increasingly larger and larger number of phases to effect better approxi-
mations, by pushing the exponential asymptotics farther out. A more direct
method may be to construct infinite dimensional models up front. Although a
truncation will be needed for numerical computations, the general mathemat-
ical framework could possibly provide guidelines for such truncations and for
developing useful asymptotic results. Coming to using a continuum of values
for the variable J, its use is predicated on our belief that continuous models are
much more convenient from a mathematical modeling perspective, particularly
in dealing with phenomena such as self-similarity.

The extension to a countable of number of phases is almost immediate and
does not change the results much. However, using a continuum of phases changes
the mathematical setting significantly. Leaving aside the measure theoretic as-
pects, operationally, we need to replace transition matrices by transition kernels,
and matrix multiplication by composition integrals of the form

ab(z,y) = /a(x,z)b(z,y)dz. (13)

Thus, when J, is allowed to assume a continuum of values, a skip-free-upward
Markov chain {(X,,J,)} has a transition kernel of the form in equation (4)
with the major difference that the a;, b; are now transition kernels; in these, we
interpret a;(y, z) and b;(y, z) as the probability densities of a change to the value
z from the value y of the phase variable J along with a jump of appropriate size
in the value of the level variable X.

10



We have shown in [22] that the level crossing argument, carried out in
the context of a suitably defined semi-Markov process, will yield an operator-
geometric form for the steady state density m,(y), the steady state density of
the state (n,y). Specifically,

Ta(y) = / Tt (2)r(z,y) dz, (14)

where the kernel r(z,y) is the minimal nonnegative solution of the equation (8)
with matrix multiplications being replaced by composition integrals as defined
in equation (13).

A key result we demonstrated in [22] is that for sufficiently smooth kernels
an that can be expanded in terms of an orthonormal family of functions, the
kernel r also has a similar expansion, and that the coefficients of the expansion
for r can be computed using steps similar to those in the matrix case. While the
matrices in such computations do not have some key properties (nonnegativity
and substochasticity), yet it appears possible to effect accurate computations
using the more recent algorithms that limit the number of steps in the iterations
significantly. Unfortunately, this work has not attracted enough attention, and
there is significant scope for developing useful models and analysis along the
directions given there.

From the perspective of theory, the extension of the results to the countable
case has already yielded some interesting results. In Taylor & Ramaswami [29]
we demonstrated how product form results for networks of queues come from
certain special properties of the operator in the operator-geometric characteri-
zation of the steady state distribution. That also helped to discover some new
product form networks. Nevertheless, not much else is known in this area at
the present time.

A systematic examination of the infinite dimensional extensions, and partic-
ularly the continuous case, would be beneficial to application areas such as high
speed networking. Although we used classical special functions in our work,
interesting are the possibilities of using others such as wavelet functions for the
orthonormal expansions, particularly in the context of modeling self-similarity
and scaling behaviors. This is an open area for research where hardly anything
has been done yet.

4.3 Continuum of Levels

There is obviously an analogous theory for two-dimensional Markov processes in
continuous time that exhibit skip-free properties in at least one direction. The
literature covers such processes as well.

In the continuous time context, one may also wish to consider the case
where the level variable is defined over a continuum, say [0, 00). The skip-free
properties now are simply appropriate continuity conditions on the paths of the
coordinate X; and, modulo technicalities, the level crossing arguments continue
to hold.

11



The continuous analogue of the geometric sequence is the exponential func-
tion. It is therefore natural for one to conjecture that models of this type have
a “matrix exponential” steady state distribution with “a generator” that can be
obtained as the solution of a nonlinear matrix equation. Such extensions of the
matrix analytic methods can be found in Sengupta [36] and Ramaswami [28],
[33]; the level crossing idea is again the fundamental tool.

While space here does not allow a detailed presentation of results of the
matrix exponential type, we do wish to make some comments, particularly in
the case of the so-called “Markov-modulated fluid flow” model of [33].

The fluid model of [33] is a Markov model {(X, J;)}, in which J; is a con-
tinuous time Markov chain assuming a finite set of values, and X; changes
continuously at constant rate a; in those intervals for which J; = i. Such mod-
els are used, for example, in the context of high speed communications, where
the flow of information bits is modeled as a continuous fluid, and the Markovian
environment either depicts some aspect of the system such as the number of ac-
tive connections or is a simple modeling artifice to capture randomly fluctuating
changes in traffic rates.

Traditional techniques of analysis of such models were based on partial dif-
ferential equations obtained from the Chapman-Kolmogorov equations—see [2].
Due to singularities, the numerical solution of those equations is unstable. The
methods based on the operator analytic approach in [33], however, yield the
steady state distribution in a matrix exponential form in terms of a generator
matrix that can be computed using stable algorithms. Indeed, the computation
of the generator matrix has been reduced in [33] to the computation of the ma-
trix g for a suitably defined Quasi-birth-and-death process in discrete time with
a discrete state space. We refer the reader to [33] for the details of the analysis
and the implications of the results.

We conjecture that the advantages of our new approach to fluid flow models
will go beyond the development of stable algorithms for numerical computation.
At present, there is no elegant and tractable way in which one can incorporate
phenomena such as heavy tails and self-similarity in the context of fluid models.
Even as a formal solution, the traditional approach based on differential equa-
tions stops with the finite dimensional case. The level crossing analysis which
is at the heart of our approach, however, extends naturally, to the case where
the phase space is infinite dimensional; and combined with techniques similar to
those in [22], it may actually provide a tractable way to extend the fluid models
in a manner useful for the cited applications. Once again, nothing has yet been
done in this direction, and this is a worthwhile area for much further research.

4.4 General Skip-free Processes

Of the two assumptions that underlie the structures discussed thus far, spatial
homogeneity (the repeating row or column structure) could be relaxed. This
allows for consideration of such examples as state dependent queues, where tran-
sition rates change with “level;” the “shorter of the two queues problem” is a
simple example. From applications perspective, there is certainly considerable

12



interest in such extensions since in many practical systems, some form of state
dependent control of the process is exercised (e.g., different levels of congestion
control triggered at various queue sizes) that may nullify spatial homogeneity
without affecting the skip-free nature. With the skip-free structure still avail-
able, one can invoke the level crossing argument and extend many results of the
matrix analytic type—see [31], [30], [29], [8]. What is lost in relaxing the spa-
tial homogeneity assumption is the ability to reduce everything to the solution
of a single nonlinear matrix equation; we get a nonlinear matrix equation for
each level separately. Although some formulas have been generalized to such a
general case (e.g., the “logarithmic reduction method” in [29]), at this level of
generality, from a computational perspective, not much more can be done. The
work of Bright and Taylor [8], however, serves to show that there is scope for de-
veloping results that hold good across large subclasses of problems. In addition
to the many open algorithmic questions related to these, there are also inter-
esting mathematical issues related to tail behavior of steady state distributions,
convergence rates, etc., that are wide open.

5 UNITY OF THE STRUCTURES

This section is a brief interlude to demonstrate the interplay between purely
mathematical and algorithmic work in this area. They relate to two important
developments related to the various structures considered thus far.

5.1 Duality of the Structures

Historically, the methodologies for skip-free-upward and skip-free-downward
processes were developed in parallel and independently of each other. How-
ever, the striking similarities in many of the results, particularly the nonlin-
ear matrix equations (5) and (8) were begging some result unifying the two
paradigms. Motivated by some equations in a work of Asmussen on a special
case, Ramaswami [27] obtained some results that accomplished this through an
argument that, in its generality, was later clarified by him and Asmussen [4] as
rooted in time reversal.

First of all, note that at first sight it appears that one can obtain an equation
of either form (5), (8) from the other by matrix transposition. However, sim-
ple transposition takes one out of the probabilistic framework altogether. The
matrices a, in these equations are not arbitrary, but nonnegative matrices such
that )" a, is row stochastic; transposition could destroy the row stochasticity
property.

What was obtained in [27] was algebraically a simple fact. Consider the
common case where a = )_  ay, the matrix of phase transitions, is irreducible
so that a has a steady state probability vector £&. Let A denote a diagonal
matrix with & on the main diagonal.

Given a g satisfying equation (5), it is trivial to verify that the matrix
r = A7'g'A satisfies the equation 7 = Y, r™c,, an equation of the type (8),
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with ¢, = Afla’nA and that the matrices ¢, are nonnegative and such that
>, Cn is row stochastic. Thus, associated with the g of each skip-free downward
chain, there is an associated r of a suitably defined skip-free upward chain. A
similar result clearly holds the other way too relating each r to an appropriately
defined matrix g.

Readers familiar with time reversal for Markov chains will not be surprised
to learn that the above are rooted in the notions of duality and time reversal.
A first passage interval from level n 4+ 1 to level n in a skip-free downward
process, when looked at backwards in time, is after all an interval that takes
one from n to n 4+ 1 in the dual where upward and downward movements in
levels have been reversed and states below level n are taboo; the dual is, of
course, a process skip-free upward. These results are elementary in the scalar
case and are well-known—see Takacs [38]; but they are quite non-trivial in the
general case, since we not only have to switch upward and downward jumps of
the level process, but we also have to simultaneously reverse the phase process
at the same time.

From a theoretical perspective, the duality results demonstrated the unity of
the two structures that underly the matrix analytic approach. Besides this, they
have had many other uses. They are useful for proving, using only elementary
arguments, some interesting results such as the phase type nature of waiting
time distributions in many queues [28]. They have been used recently to develop
algorithms in other contexts such as spatial point process models [35] of phase
type. They are also fundamental to the argument that reduces the analysis of
the fluid flow model to that of a discrete time QBD [33].

Yet, this theoretical result, born out of mathematical curiosity, is not without
algorithmic value either. We noted earlier that while the matrix g is always
substochastic, nothing much can be said about r except that it is nonnegative.
The duality result allows us to transform the computation of r always to an
equivalent problem of computing g, wherein the iterates remain in a bounded
set and make the algorithms behave in predictable ways.

5.2 Generality of the QBD

Recently, Ramaswami [32] demonstrated that any discrete time, discrete state
space Markov chain can be obtained as an embedded chain in a QBD (with
possibly level dependent, infinite dimensional blocks). He used this to deduce
the equations for the general structures from those of the QBD, showing thereby
that QBDs and the quadratic equations are both fundamental and very general
in the study of Markov chains.

Stripped of all notation and technicalities, the idea of [32] is extremely sim-
ple: given a Markov chain that is not skip-free, for each step introduce an addi-
tional variable that tracks the number of levels by which the chain must jump
and pretend as though there are intermediate steps (in the enlarged process)
wherein this number gets depleted by one in each step and the level variable
gets changed only by £1. The original process is equivalent to the embedded
Markov chain obtained at epochs when the newly introduced variable assumes
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the value zero.

This work, which at first sight, appears to be an exercise to satisfy some
mathematical curiosities, however, has recently turned out to show value in
algorithmic contexts as well. Specifically, the technique of converting to a QBD
has led to quite efficient algorithms for much more general classes of problems
—see [7]. Also, researchers are currently using these ideas to develop efficient
algorithms for solving general matrix polynomial equations [D. Bini - personal
communication].

6 ALGORITHMS

Having discussed the scope of the methods in terms of the structures to which
they apply and the theoretical underpinnings, we are now ready to recap some
of the major developments in the algorithmic arena.

6.1 Simple Iterations

We noted in Section 3 that the simple iterative techniques of (7) and (9) have
only linear convergence and could bog down for models such as nearly saturated
queues. Thus, there has been significant interest in the literature from early
on in finding faster procedures for solving the nonlinear matrix equations of
interest—see [25]. Concurrently, there have also been attempts to interpret
the steps of various algorithms in a probabilistic sense, mostly as a matter of
curiosity. Important among these is a piece of work by Latouche [13] that
developed an alternate version of the simple iteration that lends itself to nice
probabilistic interpretations.

In [13], Latouche considered the Quasi-birth-and-death process of equa-
tion (2), and introduced an additional matrix u defined as follows: wu;; is the
conditional probability, starting in the state (1,7), of returning to the level 1
in the state (1, j) avoiding the lower level 0 in intermediate steps. Recall that
for this model, g is the matrix of probabilities of an eventual first passage from
level 1 to level 0. With the definition of u as stated, it is easy to show that u
and g satisfy the equations

w=ay +apg, g=I—u)"las. (15)

Of these, the first equation follows by a simple conditioning on the first step of
the chain, and the second by considering the number of returns to level 1 before
the first visit to level 0. These naturally suggest the recursions:

go =0; up=a1 + aogn; gn+1 = (I - u")71a2 (16)

Latouche showed that the matrices u,, and g,, are (element-wise) monotonically
increasing in n and converge as n — oo to the matrices v and g respectively.
Furthermore, he showed that u,, and g,41 are the respective first passage prob-
abilities under the taboo condition that during the passage interval no visit can
be made to levels above n.
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There are some interesting findings that come out immediately from the
above approach. With each iteration in the algorithm, we are grabbing paths
that span exactly one additional level. For this reason, the algorithm may be
called a “linear algorithm.” The number of steps needed to get an accuracy of
€ is N, the smallest index for which a level has probability less than € of being
entered during a first passage to level 0. Naturally, if a model is such that a
very large level n will be visited in the first passage to level 0 from level 1 (as
for example in a nearly saturated queue where busy periods may see large build
ups of the queue), then a large number of steps would be required.

Thus, the above variant of the simple iteration scheme in equation (5) helps
to show the difficulties associated with simple iterative schemes in a probabilis-
tically clear manner. One of the major advantages of the algorithmic approach
has been the ability it provides to interpret the steps of the analysis directly in
terms of the dynamic behavior of the model.

6.2 Quadratically Convergent Algorithms

For a long while, the difficulties with convergence (in certain cases like satu-
rated queues) went ignored in the belief that these were only of pathological
interest. Waking us all up came then a paper by Daigle and Lucantoni [10]
that considered a QBD model of a voice-data application and demonstrated the
unacceptable performance of the simple iterative scheme and many of its known
variants even for some practical problems. This paper accelerated the quest for
an implementable, quadratically convergent algorithm.

Let us now turn to the QBD and recall that the simple iteration process
suffers slow convergence, when for large values of n, the probability of visiting
level n cannot be ignored. Thus, in these cases, the decay parameter of the
steady state distribution 7,, = mor™, which of course is the largest eigenvalue of
r, must be close to unity. This leads one to ask the natural question: why not
then attempt to compute 72 (or some higher power of r) directly, because once
we know r? we can, after all, get r from a simple linear equation—recall (8).
Latouche and Ramaswami [14], effectively turned this idea into a quadratically
convergent algorithm (that also avoided the computational burden of the New-
ton method.) Following are the key ideas used.

Taking note of the duality and the advantage of considering g, the methods
were developed in [14] in terms of g. Writing g in terms of g% gives

9= CA7/2 + &0927 (]‘7)

where a; = (I — a;)"'a;. Now, one observes that the matrix g2 is the g-matrix
of the QBD obtained at visits to even numbered levels {0, 2,4, ...}, and we can
apply a similar argument to write g2 in terms of g*. Continuing this process ad
infinitum, it is possible to obtain an “explicit” formula for g as:

g=>1 II &&')a", (18)

k>0 \0<i<k—1
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where the matrices appearing in the right side can be computed recursively as:

aE.O] =(I—-ay)) " a,

and
ol — (I _ u[k]) -t (aEk])Q ,
with
ul® = el + aff1alfl.
With a little effort, it is easy to demonstrate that the matrices agk] appearing

in (18) are indeed the blocks of the embedded QBD at level transitions when the
levels visited are of the form n x 2% for some n. This enables an interpretation
of the sum in (18) truncated at N as an approximation to the matrix of first
passage probabilities obtained under taboo of the levels above level 2%.

Thus, the new algorithm based on successive truncations of the sum in (18)
captures in its n-th step all paths that go up to level 2™. That is what gives
quadratic convergence. In fact, it is proved in [14] that the rate of convergence
is n2", where 7 is the largest eigenvalue of the matrix r. To grasp the practical
meaning of this result, note that if under this new algorithm, a certain number
N of iterations is needed to attain an accuracy of €, then the process can cross
level 2V with a probability greater than e; in other words, the algorithm can
handle even processes subject to enormous excursions to very high levels.

The above work naturally lead to the consideration of the more general
models, and soon, numerical analysts Bini and Meini [5], [6] obtained a set of
quadratically convergent algorithms for the general M/G/1 type chains using
cyclic reduction methods for Hessenberg matrices. Curiously, they found that
for the QBD process, their algorithms, modulo minor differences, were equiv-
alent to the algorithm of [14]. To complete the story, recent work cited in
Section 5.2 has shown that even in the general case, it is indeed equivalent to
the algorithm obtained in [14].

These in toto have served to establish the matrix/operator analytic approach
as a viable solution method for a very large class of stochastic models.

7 CONCLUDING REMARKS

The story of matrix/operator analytic methods for stochastic models illustrates
the major impact the progress in computing and communications technologies
is having on mathematical disciplines. For us dealing with stochastic modeling,
the increased ability to compute has not only enabled the examination of models
in greater generality, but it has also provided ways to model more faithfully, to
analyze models in a unified manner, and to give results in a usable form. As in
other instances, here too, while computing has been a great aid to mathematical
analysis, it certainly does not replace it. The questions have changed, or rather
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the set of questions has become larger, but the questions remain fundamentally
mathematical in nature. Also, the technologies which are aiding mathematics
are simultaneously goading mathematical research further. Indeed, the interplay
among mathematics, computing and applications is ever increasing as are the
challenges for mathematics and the mathematician.
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