
Two phase production

(i) For stability we assume that

ρ = λ ·
(

1

µ1

+
1

µ2

)
< 1;

note that ρ is the utilization rate of the machine. Balancing the flow between {(i −
1, 1), (i− 1, 2)} and {(i, 1), (i, 2)} yields

(p(i− 1, 1) + p(i− 1, 2))λ = p(i, 2)µ2,

so

p(i, 2) =
λ

µ2

(p(i− 1, 1) + p(i− 1, 2)). (1)

Further, balancing the flow out of and into state (n, 2) gives

p(i, 2)(λ + µ2) = p(i− 1)λ + p(i, 1)µ1,

and thus

p(i, 1) =
λ + µ2

µ1

p(i, 2)− λ

µ1

p(i− 1, 2).

Substituting (1) into the equation above yields

p(i, 1) =
λ

µ2

(
λ + µ2

µ1

p(i− 1, 1) +
λ

µ1

p(i− 1, 2)

)
. (2)

Hence, with (1) and (2) we find

pi = (p(i, 1), p(i, 2)) = pi−1R = . . . = p1R
i−1, i ≥ 1,

where

R =
λ

µ2

(
(λ + µ2)/µ1 1

λ/µ1 1

)
.

Finally, p(0) = 1−ρ and p(1, 2) and p(1, 1) follow from the balance equations in state
0 and (1, 2), respectively. This yields

p(1, 2) =
λ

µ2

p(0) =
λ

µ2

(1− ρ), p(1, 1) =
λ + µ2

µ1

p(1, 2) =
λ(λ + µ2)

µ1µ2

(1− ρ).
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(ii) By PASTA we have

E(S) = (E(L) + 1) · ( 1

µ1

+
1

µ2

)− ρ2 ·
1

µ1

,

where ρ2 = λ/µ2; the last term is subtracted, since, if the machine works on phase 2
on arrival, then the order does not have to wait for phase 1. Further, by Little’s law,

E(L) = λE(S).

Combining the two equations yields

E(S) =
1

1− ρ

(
1

µ1

(1− ρ2) +
1

µ2

)
.

Alternatively, E(L) can be obtained from the matrix-geometric solution, which gives

E(L) =
∞∑
i=1

ipie = p1

∞∑
i=1

iRi−1e = p1(I −R)−2e,

where e is the column vector of ones and I the indentity matrix. Then E(S) follows
form Little’s law. For µ1 = 6, µ2 = 30 and λ = 3 we get E(S) = 11/24 hours.

(iii) Define a cycle as an idle period followed by a busy period. An idle period is expo-
nential with mean 1/λ (by virtue of the memoryless property). Since the fraction of
time the machine is working is equal to ρ, we get

ρ =
E(busy period)

E(idle period) + E(busy period)
=

E(busy period)

1/λ + E(busy period)
.

Hence,

E(busy period) =
ρ/λ

1− ρ
=

1/µ1 + 1/µ2

1− ρ
,

and thus

E(cycle) = E(idle period) + E(busy period) =
1/λ

1− ρ
=

5

6
hours.

So the average switch-on cost per hour is equal to

20

E(cycle)
= 24 dollar per hour.

Alternatively, the average switch-on cost per hour is equal to

p(0) · λ · 20 = (1− ρ) · λ · 20 =
6

5
· 20 = 24 dollar per hour.
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(iv) Replace state 0 by two states, (0, 1) and (0, 2). In the first state the system is empty
and the machine is preparing phase 1; in (0, 2) the system is still empty, but the
machine has completed phase 1.

(v) The production lead time of an order is now the same as in the system where phase
1 and 2 are interchanged (i.e. first phase 2 and then phase 1) and where an order
does not have to wait for phase 1 (i.e. the order immediately leaves as soon as phase
2 has been completed). Hence, the mean production lead time is equal to the mean
production lead time in (ii) minus the mean production time of phase 1,

E(S) = E(S(ii))− 1

µ1

=
11

24
− 1

6
=

7

24
hours.

Alternatively, we may derive a relation for E(S) by PASTA, yielding

E(S) = (E(L) + 1) · ( 1

µ1

+
1

µ2

)− ρ2 ·
1

µ1

− (1− ρ) · 1

µ1

,

where the last term is subtracted, since, if the machine is idle on arrival, then phase
1 has already been completed. Together with E(L) = λE(S) we obtain

E(S) =
1

1− ρ

(
ρ1

µ1

+
1

µ2

)
=

7

24
hours.

(vi) The average swith-on cost per hour is the same as in (iii), so 24 dollar per hour.

Points
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