Two phase production

(i) For stability we assume that
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note that p is the utilization rate of the machine. Balancing the flow between {(i —
1,1),(i —1,2)} and {(i,1),(4,2)} yields

(p(i —1,1) + p(i — 1,2))X = p(3, 2) o,
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Further, balancing the flow out of and into state (n,2) gives

and thus
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Substituting (1) into the equation above yields
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Hence, with (1) and (2) we find

pi=(p(i,1),p(i,2)) =piR=...=p R, i>1,
where
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Finally, p(0) = 1—p and p(1,2) and p(1, 1) follow from the balance equations in state
0 and (1, 2), respectively. This yields
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(i)

(iii)

By PASTA we have

where ps = A\/pus; the last term is subtracted, since, if the machine works on phase 2
on arrival, then the order does not have to wait for phase 1. Further, by Little’s law,

E(L) = \E(S5).
Combining the two equations yields
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Alternatively, E(L) can be obtained from the matrix-geometric solution, which gives
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where e is the column vector of ones and I the indentity matrix. Then E(S) follows
form Little’s law. For py = 6, o = 30 and A\ = 3 we get E(S) = 11/24 hours.

Define a cycle as an idle period followed by a busy period. An idle period is expo-
nential with mean 1/ (by virtue of the memoryless property). Since the fraction of
time the machine is working is equal to p, we get

B E(busy period) _ E(busy period)
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Hence,
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and thus
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= — hours.

E(cycle) = E(idle period) 4+ E(busy period) = 1 5
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So the average switch-on cost per hour is equal to
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W = 24 dollar per hour.

Alternatively, the average switch-on cost per hour is equal to
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(iv) Replace state 0 by two states, (0,1) and (0,2). In the first state the system is empty
and the machine is preparing phase 1; in (0,2) the system is still empty, but the
machine has completed phase 1.

(v) The production lead time of an order is now the same as in the system where phase
1 and 2 are interchanged (i.e. first phase 2 and then phase 1) and where an order
does not have to wait for phase 1 (i.e. the order immediately leaves as soon as phase
2 has been completed). Hence, the mean production lead time is equal to the mean
production lead time in (ii) minus the mean production time of phase 1,

E(S) = E(S(if)) — i _ % _ % _ % hours.

Alternatively, we may derive a relation for E(S) by PASTA, yielding

where the last term is subtracted, since, if the machine is idle on arrival, then phase
1 has already been completed. Together with E(L) = AE(S) we obtain
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(vi) The average swith-on cost per hour is the same as in (iii), so 24 dollar per hour.

Points

(i) (i) (i) (@v) (v) (Vi)
2 2 1 2 2 1




