
Unreliable machines

(i) The status of the machines (assuming there is always work) can be described by a
Markov process with states i, i = 0, 1, 2, where i denotes the number of operational
machines. Let ρi be the probability (or fraction of time) of being in state i. Balancing
the flow between state 0 and 1 yields

ρ0θ = ρ1η,

and similarly, balancing the flow between state 1 and 2,

ρ1θ = ρ22η.

Together with the normalization ρ0 + ρ1 + ρ2 = 1 we get

ρ0 =

[
1 +

θ

η
+

θ2

2η2

]−1

, ρ1 =
θ

η
ρ0, ρ2 =

θ2

2η2
ρ0.

(ii) The maximal throughput of the machines is ρ0 · 0 + ρ1 · µ + ρ2 · 2µ, which should be
greater than the inflow. So for stability we have to require

ρ1 · µ + ρ2 · 2µ > λ.

(iii) The transition rate diagram is shown below.
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Figure 1: Transition-rate diagram for the model with two machines subject to operational
failures and a single repair man

The balance equations in states (i, j) with i ≥ 2 are given by

p(i, 0)(λ + θ) = p(i − 1, 0)λ + p(i, 1)η,

p(i, 1)(λ + µ + θ + η) = p(i − 1, 1)λ + p(i + 1, 1)µ + p(i, 0)θ + p(i, 2)2η,

p(i, 2)(λ + 2µ + 2η) = p(i − 1, 2)λ + p(i + 1, 2)2µ + p(i, 1)θ,
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where p(1, 0) = 0 by convention. For the balance equations in the boundary states
(0, 2), (1, 1) and (1, 2) we get

p(0, 2)λ = p(1, 2)µ, (1)

p(1, 2)(λ + µ + η) = p(0, 2)λ + p(2, 2)2µ + p(1, 1)θ, (2)

p(1, 1)(λ + θ) = p(2, 1)µ + p(1, 2)η. (3)

Substitution of the trial solution

p(i, j) = xiy(j), i = 1, 2, . . . , j = 0, 1, 2,

in the balance equations for states (i, j) with i ≥ 2, we find

yA(x) = 0, (4)

where y = (y(0), y(1), y(2)) and

A(x) =

λ − x(λ + θ) xθ 0
xη λ + x2µ − x(λ + µ + θ + η) xθ
0 x2η λ + x22µ − x(λ + 2µ + 2η)

 .

Equation (4) has a non-null solution for y if det(A(x)) = 0. Provided the system is
stable, it can be shown that the determinantal equation has exactly three roots x
with |x| < 1. Label these roots x0, x1, x2 and let yj be a non-null solution of (4) with
x = xj, j = 0, 1, 2. We set

pi = (p(i, 0), p(i, 1), p(i, 2)) =
2∑

j=0

cjyjx
i−1
j , i = 1, 2, . . . ,

and then determine the unknown coefficients c0, c1 and c2 from the boundary equa-
tions and the normalization equation. Substitution of this linear combination in (3)
yields

2∑
j=0

cjxj (yj(1)(λ + θ − xjµ) − yj(2)η) = 0,

and the convention p(1, 0) = 0 gives

2∑
j=0

cjxjyj(0) = 0.

From the normalization equation we get

1 = p(0, 2) +
∞∑
i=1

(p(i, 0) + p(i, 1) + p(i, 2))

=
2∑

j=0

cjxjyj(2)
µ

λ
+

2∑
j=0

cj
xj

1 − xj

(yj(0) + yj(1) + yj(2)),
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where the expression for p(0, 2) follows from (1). The coefficients c0, c1 and c2 can
now be solved from the above three equations.

(iv) Let Lq denote the number of jobs waiting in the queue. Then we have

E(Lq) =
∞∑
i=2

(i−2)(p(i, 0)+p(i, 1)+p(i, 2)) =
2∑

j=0

cj

x3
j

(1 − xj)2
(yj(0)+yj(1)+yj(2)),

and E(W ) = E(Lq)/λ by Little’s law. For the mean total number of jobs in the
system, E(L), we find

E(L) =
∞∑
i=1

i(p(i, 0) + p(i, 1) + p(i, 2)) =
2∑

j=0

cj
xj

(1 − xj)2
(yj(0) + yj(1) + yj(2)),

from which E(S) follows by Little’s law. The mean number of machines waiting for
repair is given by

E(Lq
M) =

∞∑
i=2

p(i, 0) =
2∑

j=0

cj

x2
j

1 − xj

yj(0),

and the utilization of the repair man by

ρR =
∞∑
i=1

(p(i, 0) + p(i, 1)) =
2∑

j=0

cj
xj

1 − xj

(yj(0) + yj(1)).

Finally, the mean waiting time for repair follows from Little’s law, i.e.

E(WM) =
E(Lq

M)

ρRθ
.

(v) Some of the performance characteristics in (iv) are listed in the table below for µ = 1
and η/θ = 0.1.

λ η E(W ) E(S) E(Lq
M)

1.5 1 2.52 3.63 0.012
0.025 3.62 4.73 0.013

1.7 1 8.96 10.1 0.015
0.025 13.0 14.1 0.015
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Points

(i) (ii) (iii) (iv) (v)
2 1 3 2 2

4


