Unreliable machines

(i)

(i)

The status of the machines (assuming there is always work) can be described by a
Markov process with states ¢, ¢ = 0, 1,2, where ¢ denotes the number of operational
machines. Let p; be the probability (or fraction of time) of being in state i. Balancing
the flow between state 0 and 1 yields

potl = p1n,

and similarly, balancing the flow between state 1 and 2,

p10 = pa2n.

Together with the normalization pg + p; + p2 = 1 we get
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The maximal throughput of the machines is py - 0 + p1 - £ + p2 - 21, which should be
greater than the inflow. So for stability we have to require

preptp2 20> A

The transition rate diagram is shown below.
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Figure 1: Transition-rate diagram for the model with two machines subject to operational
failures and a single repair man

The balance equations in states (4, j) with ¢ > 2 are given by

p(i,0)(A+0) = p(i —1,0)A+p(i, 1)n,
p(i, YA+ p+0+mn) = pi— 1, )X+ p(i+ 1, 1)+ p(i,0)0 + p(i, 2)2n,
p(i,2)(A+2u+2n) = p(i—1,2)A+p(i +1,2)2u + p(4,1)0,
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where p(1,0) = 0 by convention. For the balance equations in the boundary states
(0,2), (1,1) and (1,2) we get

p(0,2)A = p(1,2)u, (1)
p(L2)A+p+n) = p(0,2)A+p(2,2)2p + p(1,1)0, (2)
p(LL)A+0) = p(2,1)p+p(1,2)n. (3)

Substitution of the trial solution

p(i,7) = 2'y(j), i=1,2,...,7=0,1,2,

in the balance equations for states (i, j) with i > 2, we find

yA(z) =0, (4)
where y = (y(0),y(1),y(2)) and
A —2(A+6) 0 0
Ax) = xn A 2?pu—x(XN+p+60+mn) xf
0 x2n A+ 2220 — x( X + 21 + 21)

Equation (4) has a non-null solution for y if det(A(z)) = 0. Provided the system is
stable, it can be shown that the determinantal equation has exactly three roots x
with |z| < 1. Label these roots g, z1, 2 and let y; be a non-null solution of (4) with
r=uwxj,7=0,1,2. We set

2
pi = (p(i,0),p(i,1),p(5,2)) = > cyypal’,  i=1,2,...,
=0

and then determine the unknown coefficients ¢g, ¢; and ¢, from the boundary equa-
tions and the normalization equation. Substitution of this linear combination in (3)
yields

Z ¢y (Y (DA 40 — zp) — y;(2)n) = 0,

and the convention p(1,0) = 0 gives

2
Z ijjyj(o) =0.
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From the normalization equation we get

L = p(0,2) + Z(p(% 0) +p(i,1) + (i, 2))

= D)5 + 2 e (0) () + 55(2),
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where the expression for p(0,2) follows from (1). The coefficients ¢y, ¢; and ¢y can
now be solved from the above three equations.

Let L7 denote the number of jobs waiting in the queue. Then we have

B(L) = 3= 2)(p(0, 049 ) +p(3:2) = 65455 (050) +35(1) +35(2)

and E(W) = E(L?)/X by Little’s law. For the mean total number of jobs in the
system, E(L), we find
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from which E(S) follows by Little’s law. The mean number of machines waiting for
repair is given by
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and the utilization of the repair man by
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pR—Z( (4,0) + p(i,1)) :chl—x 0) + y;(1)).
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Finally, the mean waiting time for repair follows from Little’s law, i.e.

E(Ly)

EWu) = prY

Some of the performance characteristics in (iv) are listed in the table below for p = 1
and /0 = 0.1.

A7 EW) E(S) E(Ly)

1.5 1 252  3.63 0.012
0.025 3.62 473  0.013
1.7 1 8.96  10.1  0.015

0.025 13.0 14.1  0.015
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