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Abstract

In this paper we analyse a multi-server queueing model with locking. The model
is motivated by a situation we encountered at a maintenance facility for trains. Main-
tenance is done at parallel tracks, where each track offers space to two trains. Trains
can enter and leave the tracks from one and the same side only. This gives rise to
locking of the front train: in order to leave the maintenance track the front train has
to wait till maintenance of the back train (if there is one) has also been completed.
Hence, part of the maintenance (or track) capacity is lost. The queueing model is
used to investigate the loss of capacity and its effect on sojourn times. The perfor-
mance of this system is also compared with other designs. A surprising result is that
in light traffic it is better to use only half of the track capacity by allowing no more
than one train at a maintenance track.

1 Introduction

In this paper we consider a multi-server queueing model, in which the servers are clustered
into small groups of two servers. Within a group, one of the servers is called the front
server and the other one is called the back server. A special feature of the model is that
if the service of a customer at the front server has been completed and there is another
customer in service at the back server, the customer can not leave the system (is locked
in) until also the service of the customer at the back server has been completed. During
this period the front server is blocked and can not serve a new customer. Hence, part of
the capacity of this server is lost.

Performance measures of interest are the (loss of) capacity of the system, the equilib-
rium distribution of the number of customers in the system and the waiting time distribu-
tion. Under the assumption of Poisson arrivals and exponential service times, we are able
to derive a closed form expression for these performance measures.



The model is motivated by a situation we encountered at the maintenance department
of the Dutch railway company. Maintenance on trains is done on a number of separate
parallel tracks. On each of these tracks there is room for two trains. Trains can leave the
tracks only on the same side as they enter the tracks. Hence, a train may, after completion
of its maintenance, be locked in by a train that arrived later on the same track and that
has not yet completed its maintenance. Clearly the front part and the back part of a
maintenance track correspond to a group of a front and a back server in the queueing
model described above. This queueing model may be used to investigate the impact of
locking on the performance of the maintenance facility, and to compare the performance
of this system with other designs. A surprising result is that, in light traffic, allowing at
most one train at a maintenance track reduces the sojourn times. So, use of only half of
the track capacity may be better than use of the full capacity.

The remainder of this paper is organized as follows. In section 2 we describe the
queueing model in detail. Next, in section 3 we determine the equilibrium distribution of
the number of customers in the system. From that, we derive the waiting time distribution
in section 4. In section 5 we compare the performance of this system with several other
systems. In particular, we are interested in a comparison with the system in which only
the front servers may be used and with the system in which the servers are not clustered
but can work independently. The first system corresponds to the situation in which only
the front part of a maintenance track may be used and in the second system there are
twice as many tracks, but they now have room for only one train. In section 6 we relax
the assumption of exponential service times. Finally, section 7 is devoted to conclusions
and comments.

2 Model description

Customers arrive according to a Poisson process with rate A. Service times are exponen-
tially distributed with parameter p. There are s groups of servers, each group consisting
of two servers (see figure 1). Within a group, one of the servers is called the front server
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Figure 1: Queueing model for a maintenance facility for trains



and the other one is called the back server. Customers are served by front servers as long
as these are available. If all front servers are occupied, new customers are served by back
servers. If the service of a customer at the front server has been completed and there is
another customer in service at the back server, the customer can not leave the system until
also the service of the customer at the back server has been completed. During this period
the front server is blocked and can not serve a new customer.

This system can be described by a continuous-time Markov process. To specify the
states of the Markov process we distinguish between the situation where all the server
positions are occupied and the situation where some of the server positions are not occupied.
In the first situation we can describe the state of the system by the pair (n,m) where n
denotes the number of customers waiting in the queue and m the number of customers that
already completed their service but that are locked in by a customer at the back server.
The states (n,m) will be termed the saturated states. So the possible saturated states are
the pairs of integers (n, m) where n ranges from 0 to co and m from 0 to s.

In the situation where not all server positions are occupied the description of the system
is a little bit more complicated. Then we can describe the state of the system by the
quadruple (ko, k1, ko, k3). Here ko denotes the number of groups of servers for which both
server positions are empty, k; the number of groups of servers for which only the front
server is working, ko the number of groups of servers for which only the back server is
working (and at the front server a customer is locked in) and k3 the number of groups of
servers for which both servers are working. The states (ko, k1, ks, k3) will be termed the
unsaturated states. So the possible unsaturated states are all quadruples of non-negative
integers (ko, k1, ko, k3) which satisfy ko + k1 + ko + k3 = s and ky + k3 < s. Hence, the total
number of unsaturated states equals (533) —(s+1).

Note that when there are always customers waiting in the queue (i.e., in heavy traffic),
the front server in a group will lose half of its capacity, because the server always has to
wait for a service completion of the server at the back position. So each group can serve
3u/2 (instead of 2u) customers per unit of time. Hence, the capacity of the system is equal
to 3us/2, and to guarantee that the system can handle all customers, we have to require
that

A< gus. (1)

The stability condition (1) can be rigorously proved by using Neuts’ mean drift condition,
i.e. formula (1.7.11) in [9]. From now on we assume that condition (1) holds. Note that
when the servers are not clustered, but can work independently (i.e. an M/M/2s system)
the capacity is 2us. Hence, the locking of customers due to clustering reduces the capacity
with 25%.

We denote the equilibrium probabilities for the saturated states (n, m) and the unsatu-
rated states (ko, k1, ko, k3) by p(n, m) and p(ko, k1, k2, k3), respectively. In the next section
we formulate the equilibrium equations and determine a closed form expression for the
equilibrium probabilities p(n, m) in the saturated states.



3 The equilibrium distribution

The flow diagram for the saturated states is shown in figure 2. From this diagram we
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Figure 2: Flow diagram for the saturated states (n,m)

obtain by equating in each state (n,m) with n > 0 the flow out of and into that state the
following balance equations for p(n, m):

A+ (2s —m)ulp(n,m) = Ap(n—1,m)+ (s—m+1)up(n,m —1)
+(m+ Dpp(n+2,m+ 1)+ (s — m)up(n + 1, m),
n=12---,m=0,---,s, (2)

where by definition p(n, —1) = p(n, s+ 1) = 0. The balance equations for the states (0, m)
and the unsaturated states can be obtained similarly. We will refer to these equations as
the boundary equations. The precise form of the boundary equations is not relevant to the
analysis, and therefore, they are omitted.

The approach to solve the balance equations is inspired on earlier work [1, 2, 5, 6, 10]
and proceeds as follows. We first construct a set of solutions of the balance equations (2)
of the form

p(n,m) = y(m)z". (3)

Then we use the solutions in this set to construct a linear combination which also satisfies
the boundary equations and the normalization equation.
Substitution of the form (3) into (2) and dividing by the common power z"~! yields

(s —m+ Dpzy(m — 1) + [(s — m)px® — [A + (25 — m)p)z + Ny(m)
+(m+ Dpxly(m+1) =0, m=0,--,s, (4)

where by convention y(—1) = y(s + 1) = 0. For given z this is a system of linear homo-
geneous equations for y(0),...,y(s). Now we have to find the values of z for which this
system has a non-null solution. Since we must be able to normalize the solution afterwards,
only values of z satisfying |z| < 1 are useful.

Note that the linear system (4) has a non-null solution if and only if the determinant
of this system is equal to zero. Hence, the desired values of x are the zeros inside the unit
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circle of the determinant, which is a high-degree polynomial in x. It will be difficult to
prove directly that there are sufficiently many zeros inside the unit circle and to numerically
determine these zeros. Therefore we employ an idea of [10, 6, 3] to transform the difference
equations (4) into a single differential equation for the generating function of the sequence
y(m). This approach, in fact, leads to a nice factorization of the determinantal equation.
So, let us introduce the generating function

Y(z2)= zs_:o y(m)z".

Multiplying (4) by 2™ and adding with respect to m we obtain the differential equation
suzzY (2) — px2?Y'(2) + [+ spuz® — (A + 2sp) 7]V (2)
+pz(l —)2Y'(2) + px®Y'(2) = 0,
which may be rewritten in the form

Y'(z)  spzz+[A+ spa® — (A + 2sp)z] _ A=) L5z A(x) 5)

Y(z)  pz2?—pr(l —z)z — pad z—z2(z)  z— 2(x)

where

1—2z++vhx2—-22+1 1—2—+Vbx?2—-2z+1
Zl(x): 2 ? ZQ(./I/'): 2

and A(z) is such that

2A(z) — s = s 3)5;2_A (zlx_+x1) fpz)

The general solution of the differential equation (5) is
Y(2) = K(2z — 21(2))" (2 = z5(2))* 4,

with K an arbitrary constant. Now the key idea to proceed is that, since Y(z) is a
polynomial in z, the exponents A(z) and s — A(x) should be equal to a non-negative
integer, i.e. A(z) =4,5 =0,...,s. Hence, for each j we get an equation for z and it can
be shown that, under the stability condition (1), this equation has exactly one root, x; say,
in the interval (0,1). This is summarized in the following lemma.

Lemma 3.1 Provided condition (1) holds, we have for all j =0, ..., s that the equation

s(z —3)+ 221 — z)/(ux)
5x2 —2x 41

(6)

2] —s=

has a unique solution © = x; in the interval (0,1). Further, the solutions x; satisfy

Tog>T1 > >Tg1 > Tg.
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Figure 3: The right-hand side of equation (6) for s =4, A=2and p =1

Proof: Let f(x) denote the right-hand side of (6). Since f'(0) = —oo and f’(1) > 0 by
virtue of (1) it holds that f’(x) has at least one zero in (0,1). Straightforward algebra
shows that there is exactly one zero, say Z. So f(z) decreases on (0, %) and increases on
(#,1). Now the lemma follows by using that f(0) = 400 and f(1) = —s (see figure 3). O

Remark 3.2 (Factorization) From Lemma 3.1 we can obtain a nice factorization of the
determinant of linear system (4). Denoting the determinant by D(z), it holds that

D(z) = <%>s+1 f[o(,uxs(x —3)+2A(1 —z) — px(2§ — s)Vbx? — 2z + 1) .

The lemma provides a simple and efficient way to determine the desired values of . For
each j we determine the unique root z; of equation (6) in (0, 1) by using, e.g., bisection.
For given z = z; the corresponding y;(m) follow from the recursion (4) and the initial
values y;(s +1) = 0 and y,(s) = 1. Summarizing, we have found a set of s + 1 basis
solutions of the equations (2). The general solution of (2) can be expressed as a linear
combination of these basis solutions, i.e.,

S
p(n,m):ZC’jyj(m)x?, n=0,1,2,---,m=0,...,s.
j=0

The remaining equations still to be satisfied are the boundary equations and the normal-
ization equation. These equations (where one of the boundary equations may be dropped,

6



since the balance equations are dependent) form a system of (ng?’) linear, inhomogeneous
equations for, just as many, unknown coefficients C; and unknown equilibrium probabili-
ties p(ko, k1, k2, k3). It is now a matter of routine to prove that this system indeed has a
unique solution (cf. section 4 in [2]). The results are formulated in the following theorem.

Theorem 3.3 There erist unique coefficients C; such that the equilibrium probabilities
p(n, m) in the saturated states can be erpressed as

p(n7m):ZC]y](m)x?’ n:05172a"'7m:07"'757 (7)
7=0

where x; is the unique root of equation (6) in the interval (0,1) and the corresponding
yj(m) are a non-null solution of the linear homogeneous system (4) with © = ;.

Remark 3.4 (Stability condition) If stability condition (1) does not hold, then the left-
hand side of (6) is decreasing on the whole interval (0,1). This implies that for j = 0
equation (6) has no solution in (0, 1), and thus we have a set of s instead of s + 1 basis
solutions. This number is not sufficient to construct a linear combination (other than the
null solution) which also satisfies the boundary equations.

Remark 3.5 (Mean values) Based on expression (7) for the probabilities p(n, m) it is easy
to derive expressions for E[L,|, the mean number of jobs in the queue, and E[WW], the mean
waiting time in the queue. It follows from (7) that

and by applying Little’s law,

B[] = Z 6 (X wm) 35 2 ®

z;)

4 Waiting time distribution

In this section we show that the probability distribution of the waiting time is a finite
mixture of exponentials. The proof follows the same line of thoughts as in [4].

Theorem 4.1 The waiting time distribution is given by
S S 1
Pr[W > t] =Y C; (Z yj(m)> 176)‘(1_1/“”)’5, t>0. 9)
m=0 -

=0 Ty



Proof: Define F, ,,(t) as the probability that the waiting time of a customer is greater
than ¢, given that the customer sees the saturated state (n,m) on arrival. Clearly, by the
PASTA property and substitution of expression (7) for the probabilities p(n, m) we have

Pr[W > t] =Y p(n, m)F,m( ZC (ioyj(m)> iﬂFn,m(t):c?. (10)

n,m
It is easy to check that the functions F,, ,,,(t) satisfy the set of differential equations

d

T Fum(t) + (25 = m)uFom(t) = (5= m)pFmia (t)

+(s —m)pFy_1;m(t) + muF,_om_1(t),
n:()ala?a"'a m=0,---,s,

where, by convention, the function F,, ,,,(t) = 0 if (n, m) is not feasible. Hence, the Laplace
transform F  (0) = J5° e *F, ,(t)dt satisfies

[0+ (25 —m)u|Fy,,(0) = 1+ (s—m)uFy,,.,(0)
+(s —m)uF,_, ,m(e) +muky;_ 2,m— 1(0)- (11)

Now, if we introduce G (0) = 02 Fyr . (0)2] and H;(0) = 327, y;(m)Gjm(0), then we
obtain from (11) by straightforward calculations that

0+ (2s — m)pl|Gjm(0) =

1
g =M )

+(s — m)uGjm(0) + 23mpGjm-1(0),

which, by adding over all m, subsequently yields

) + Z (25 = m)py;(m)Gjm(0) = — Z yi(m) + D Gim(0)
1 X
I m m=0

[(s —m+ Dpy;(m — 1) + z;(s — m)py;(m) + 22(m + py;(m +1)] .

Finally, by using equation (4) we can conclude from the relation above that

5 1 1
- (E0) 725 0=
and hence, by (10),

W*(6) = /oo e " Pr[W > t]dt = ;Cj (Tnzs_:o yj(m)) 1 —1xj 0— )\(11— 1/x;)’

0

from which the theorem immediately follows. a



5 Performance evaluation

As mentioned in the introduction the possibility of locking in customers, and consequently
that of blocking the servers reduces the service capacity. The loss of service capacity can be
quantified by the mean number of servers that is blocked divided by 2s, the total number
of servers. Figure 4 shows the loss of capacity as a function of A. Obviously, it increases
in ), and tends to a maximal loss of 25% of the available service capacity as A tends to

3us/2.

0.25 T T T T T T T T T
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0.05 | _
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1 15 2 25 3 35 4 45 5 55 6

Figure 4: The loss of service capacity as a function of the arrival rate in the situation s = 4
and p =1

Next we compare the performance of our train model with several related systems. First
of all we compare the model with the M/M/s and the M /M /2s systems. The first system
corresponds to the situation in which only the front part of a maintenance track may be
used and in the second system there are twice as many tracks, but they now have room
for only one train. The performance measure we primarily focus on is the mean sojourn
time. In the train model the sojourn time S is the sum of the waiting time in the queue,
the service time and the time a train is locked in. By Little’s law, we have

1
B8 = {BlL,
where E[L] is the mean number of customer in the system, which is given by
E[L] = > (k1 + 2ks + 2k3)p(ko, k1, ko, k3) + > (n+ 2s)p(n, m)
(ko k1,k2,k3) (n,m)

= Z (k‘l + 2k2 + 2k3)p(/€0, kl, kQ, k‘3)
(ko,k1,k2,k3)

+§Cj (éoyj(m)> <(1_$j S+ 25 )

.73]') 1-— .73]'
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Clearly, one expects that the mean sojourn time in the train model is less than the mean
sojourn time for the M/M/s model and greater than the one in the M/M/2s model. In
figures 5 and 6 we compare the mean sojourn time in the train model with 4 tracks with
the mean sojourn times in the M/M/4 and M/M/8 model. The mean sojourn time is
shown as a function of the arrival rate A. The mean service time is equal to 1.

10 T T T T T T

Figure 5: The mean sojourn time as a function of the arrival rate for the train model and
for the M/M/s and M /M /2s models in the situation s =4 and p =1
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Figure 6: The mean sojourn time as a function of the arrival rate in light traffic for the
train model and the M /M /s model in the situation s =4 and p =1

At first glance, figure 5 shows the expected behaviour that the performance of the train

model is sandwiched between those of the M /M /4 and M /M /8 models. However, figure 6
shows the surprising phenomenon that in light traffic the train model behaves even worse
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than the M/M/4 system. An explanation of this phenomenon is the following. In light
traffic there is a trade-off between waiting time before service (in the queue) versus waiting
time after service (locking). Now, consider the situation where a customer arrives when
all s front servers are occupied. Assume furthermore that no new customers arrive until
all s+ 1 customers have left (which is likely in light traffic). Then the expected remaining
sojourn time of all customers in the train model is equal to 1/u, except for the one that is
locked in by the new customer. His expected remaining sojourn time is equal to 1/p+1/2p.
Hence the sum of the remaining sojourn times of the s 4+ 1 customers in the train model
is equal to (s + 3/2)/u. But the corresponding quantity in the M/M /s system is equal to
(s+1+1/s)/u. This suggests that in light traffic it is better to use only the servers in the
front position, provided s is greater than 2.

Figure 5 illustrates that the mean sojourn times explode when the systems nearly
operate at maximum capacity. The capacity of our train model with s tracks is equal to
3us/2, so the capacity of the M /M /s and M /M /2s system is less and greater, respectively.
It is interesting to compare the train model with a multi-server system with the same
capacity, namely the one with 3s/2 servers, which of course only makes sense if s is even.

10 T T T T

1 2 3 4 5 6

Figure 7: The mean sojourn time as a function of the arrival rate for the train model and
the multi-server model with 3s/2 servers in the situation s =4 and u =1

In figure 7 we see that for all values of A the train model with 4 tracks behaves worse
than the M/M/6 model. This may be intuitively explained by the random availability
of the servers in the trainmodel (on the average there are 6 servers available) versus the
deterministic availability of the servers in the M /M /6 model. The difference in performance
of the two systems can be explicitly quantified when the workload p tends to 1, where p is
defined as

2\

p:3—/$8'
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The performance of the train model for p close to 1 can be determined by exploiting that
the first term in (7) dominates the others, since zo converges to 1 whereas the other roots
stay away from 1. In fact, it follows from (6) that as p tends to 1, then

13
zo=1+—(p—1)+0(p—1)

12
which implies that
13 1
ElLll=———+0(1
L= 17—, + O

In the multi-server system with 3s/2 servers the mean number of customers in the system
satisfies
3 1
E[L(M/M/Zs)] = ——+0(1),
2 1—p
as p tends to 1. Hence, we can conclude that, when p is close to 1, the mean number of
customers in the train model is approximately 13/12 times the mean number of customers

in the multi-server model with 3s/2 servers. By Little’s law, the same holds for the mean
sojourn times.

6 General service times

So far we assumed exponential service times. In this section we discuss the generalization
to more general service times. First, we concentrate on the loss of capacity of the system
and after that on the analysis of the equilibrium probabilities.

Consider a single group of two servers and assume that there are always customers
waiting in the queue. Then the time points that a customer leaves the front server form
regeneration points for that particular group of servers. Denote with X, the service time
of a customer at the front server and with X, X5, ... successive service times of customers
at the back server. The X;’s have common distribution function F(-) and finite mean
EX. From the theory of regenerative processes it follows that the long-run fraction of
time that the front server is working is equal to EX divided by the expected length of the
regeneration cycle. If we define N = inf{n : X;+---+X,, > Xy}, then the expected length
of the regeneration cycle is given by F(X;+---+Xy) = EN-EX. The last equality follows
from Wald’s formula and the fact that NV is a stopping time for the sequence X7, Xo, ...
Hence, the fraction of time that the front server is working equals 1/EN. This implies
that, due to locking, the capacity of the system is reduced with (1 — 1/EN) - 50%.

We can calculate EN by using that EN = 1+ [;° E[N(x)] dF(x), where E[N(x)] is
the expected number of renewals in (0,x) of the renewal process corresponding to F(+).
Straightforward calculations yield that EN = 2 for the exponential distribution, 1.5 <
EN < 2 for the Erlang distribution and 2 < EN < 4 for the hyperexponential distribution
of order 2. For distributions with heavy tails we expect that FN can be arbitrarily large,
and thus the loss of capacity arbitrarily close to 50%.
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When the service time distribution is taken from the general class of Coxian distrib-
utions, the queueing model can still be formulated as a Markov process. The state de-
scription is of course more complicated than in the exponential model. For Coxian service
times with & stages the saturated states can be described by (n, ) where

m=(m(1,1),...,m(k+1,1),m(1,2),...,m(k+1,2),...,m(1,k),...,m(k + 1, k)),

in which the variable m(i, j) denotes the number of groups for which the customer at the
front position is in service stage ¢ and the one at the back position in service stage j. Stage
1 = k 4+ 1 means here that the customer at the front position completed service but is
locked in by the one at the back position.

We can try to follow the same approach as in section 3 to determine the equilibrium
probabilities p(n,m). In this case, substitution of the form

p(n,m) = y(m)z"

into the balance equations leads to a set of difference equations for the sequence y(1), which
can be transformed into a partial differential equation for the multi-dimensional generating
function of the sequence y(m). The solution of this partial differential equation, however,
is not as easy as the solution of (5). In [5] it is shown that the analysis of the balance
equations for the multi-server queue with Coxian interarrival and service times leads to a
similar partial differential equation. There, the equation is elegantly solved by using the
method of characteristics (see e.g. [7]). It is worthwhile to investigate whether or not this
technique also works for the system with locking and Coxian service times.

7 Conclusions and comments

In this paper we analysed an exponential multi-server model for train maintenance. The
characteristic feature of the model is that customers can be locked in after service com-
pletion. This model has been used to gain insight into the effect of this locking on the
performance of the system, where we mainly focused on sojourn times and loss of capacity.
The conclusions can be summarized as follows:

e The loss of maintenance capacity is increasing in the workload, and it is 25% in a
heavily loaded system.

e In light traffic usage of only half of the track capacity by allowing at most one train
at a track reduces the sojourn times of trains;

e In heavy traffic the mean sojourn time in a maintenance facility with s tracks for
two trains is approximately 8% more than in a facility with 3s/2 tracks for only one
train;

In our model customers are served by front servers if these are available and by back
servers otherwise. It turned out that, at least in light traffic, this allocation of customers to
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servers is not optimal. An interesting open problem is to determine the optimal customer
allocation strategy.

The train model can be described by a Markov process whose state space is a semi-
infinite strip. We presented a method to express the equilibrium probabilities of this process
as a finite sum of terms which are geometric in the number of waiting customers. The
geometric factors are the roots (inside the unit circle) of a determinantal equation. This
approach is closely related to the one in [8]. By using a generating-function technique we
have shown that the determinant can be factorized (see remark 3.2), which considerably
simplifies the determination of the roots. It seems important to investigate when such
a factorization is possible, and in particular, when it can be established by using the
generating-function technique presented in this paper.
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