
CS 171: Introduction to Computer Science II
Project (Option 1): Emory FaceSpace

Due: Friday, May 4, 11:59pm
(Optional) demo due: Sunday, April 30, 11:59pm

1 Introduction

For this project, you will create a social network application called FaceSpace. A social net-
work, in the simplest sense, is a means of keeping track of a set of people (each of whom
have a ”profile” in the social network) and the relationships (usually involving friendship)
between them. A common way to represent this network is using a graph. Each node in
the graph represents a user profile, and an edge connects two users if they are friends.

Figure 1: Example of a social network. Alice, Bob and Tom are friends with each other. Mary and
Tom are also friends with each other.

Other than the basic requirements outlined below, the project is very open ended. A
sample GUI and a suggested design are provided. You can work as a team of up to 2
students.

2 Requirements

The basic requirement of the project is a graphical application that supports the following
operations:

Add a User: Adds a new user profile with a given name to the network. All user profiles
should be uniquely identified by their names. Your program should not allow a user
profile to be added if the given name already exists in the network.

Select a User: Retrieves the user profile with a given name and displays all its informa-
tion including the name, a list of its friends, and other optional information (such as
current status and profile picture).

Add a Friend for the Selected User: Adds a profile with a given name to the the list of
friends of the selected user. We assume all the friendships are reciprocal. In other
words, if Bob adds Alice into his list of friends, Bob will also be added into Alice’s
list of friends. Moreover, only users present in the network can be added as friends.

1



Find Shortest Path to a User from the Selected User: Computes the shortest path (the min-
imum number of hops) between the selected user and a user with a given name. Note
that the graph is unweighted so the shortest path is simply the path with minimum
number of edges between the two nodes and can be computed using a breadth-first
search algorithm. Note that there may be cases where two users are not connected at
all.

A README file is also required with the instructions for starting and using the application
as well as a discussion of your design choices.

2.1 Sample Graphic Interface Design

A sample user interface is shown in Figure 2. This is only intended to be an example,
please feel free to modify it or design your own. In this interface, the screen is divided
into three areas. The top part contains the buttons and text fields (implemented using
GButtons and JTextFields objects) for operations that edit the network (i.e. add, delete
and select/look-up a profile). The left part contains the buttons and text fields for opera-
tions that edits the selected profile (i.e. editing the current status, finds shortest path to a
given user). The middle part (implemented using a GCanvas object) displays the informa-
tion about the selected profile (e.g. for a selected profile Alice, it shows she has Bob as a
friend, and her status is ”‘Coding...”’).

Figure 2: A sample interface partitioned in three areas (dashed lines)

2.2 Suggested Class Design and Data Structures

You may consider implementing your program using several classes with the suggested
data structures. Please feel free to modify it or design your own (in which case please
justify it in your README file).

2



1. A class that represents a user profile. It stores all the information about a profile
including name (the key of the profile), a list of friends (you can use an ArrayList of
String to store the list of the names of the friends), and other optional information.

2. A class that represents the network, i.e. all the profiles and their relationships in
the social network. You can use an ArrayList to store the profiles (the nodes in
the graph). For better efficiency, you can implement a Binary Search Tree (BST) for
storing the user profiles. Note that the list of friends in each profile stores the edge
information in the network. You can implement the methods needed to find, insert,
and delete (delete is not required) a node (i.e. a profile), and method to find the
shortest path in this class.

3. Classes for the GUI interface. You may have a main GUI class for building and man-
aging the mouse click events (you can extend Program). You can also have a class
for the GUI component that displays a user profile (extend GCanvas).

3 Grading

Base credits:

• Functionally correct program. (70 credits)

• Well organized code (good design of classes/methods). (10 credits)

• Application quality (Easy to use, clean interface, good use of the data structures and
algorithms). (15 credits)

• Error condition handling. (5 credits)

Extra credits:

• Additional functionality and exceptional efforts and creativity. (up to 10 credits)

4 Submission

Please make sure that you have added the following statement at the top of each source
code file you wrote and include the name of each team member.

/*
THIS CODE IS MY OWN WORK, IT WAS WRITTEN WITHOUT CONSULTING
A TUTOR OR CODE WRITTEN BY OTHER STUDENTS. Team Member Names.

*/

Please submit your project to Amy as a tar or zip file containing: your source files, the
README file and any other files you are using in your project.

The project is due on May 4. However, you are encouraged to submit a demo version
of your program by April 29. Based on the submitted demo versions, selected teams will
be invited to present/demonstrate their project in class on May 1 (for 5 extra points). This
demo version will not be used for grading.

3


	Introduction
	Requirements
	Sample Graphic Interface Design
	Suggested Class Design and Data Structures

	Grading
	Submission

