CS171 Introduction to Computer
Science ||

Graphs

Graphs

* Search
— Depth-first search
— Breadth-first search
* Applications
— Find a path
— Connected component
— Shortest path

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

j=1]

(=8
e
—
e

M o~ o AW R RO

=
H o W

=
%]

ZAANNNS

~E-0]

~o]

Bag objects

~[o]

(5 4]

563

~EHEr

[0 f+{4]

=]
> representations

of the same edge

~E-[o-[2]

~[9]

~9 {22

~1o]

Depth-first search

Goal. Systematically search through a graph.

Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked

vertices w adjacent to v.

Typical applications. [ahead]
» Find all vertices connected to a given source vertex.

» Find a path between two vertices.

Pathfinding in graphs

Goal. Does there exist a path from s to r? If yes, find any such path.

public class Paths

Paths (Graph G, int s) find paths in G from source s
boolean hasPathTo (int wv) is there a path from s to v’

Iterable<Integer> pathTo(int wv) path from s to v; null if no such path

Depth-first search (pathfinding)

Goal. Find paths to all vertices connected
to a given source s.

Idea. Mimic maze exploration.

Algorithm.
» Use recursion (ball of string).
* Mark each visited vertex by keeping

track of edge taken to visit it.

Return (retrace steps) when

no unvisited options.

Data structures.

®* boolean[] marked TO mark visited vertices.

* int[] edgeTo To keep tree of paths.
* (edgeTo[w] == v) means that e.dge. v-w

was taken to visit w the first time

dfs(0)

dfs(2)
check 0

dfs(1)
check ©
check 2
1 done

dfs(3)

dfs(5)
check 3
check O
5 done

dfs(4)
check 3
check 2
4 done
check 2
3 done
check 4
2 done
check 1
check 5§
0 done

()
()

()
()

()
()

©

Z © (1:@
A

el RO

N

©

(5)3)

edgeTo[]

o

b P = [N

LAl R

e L R

[*%) (o8 N N [=1 (=N

L L B S R

[y

Depth-first search (pathfinding)

public class DepthFirstPaths

{
private boolean[] marked; parent-link representation
private int[] edgeTo; of DES tree

private final int s;

public DepthFirstPaths (Graph G, int s)
{
marked = new boolean|[G.V()]:;
edgeTo = new int[G.V()];
this.s = s;
dfs (G, s);
}
private void dfs(Graph G, int v)
{
marked|[v] = true;
for (int w : G.adj(v))
if ('marked|w])
{
edgeTo[w] = v; + set parent link
dfs (G, w);

public boolean hasPathTo(int v)
public Iterable<Integer> pathTo(int wv)

ahead

F

Depth-first search (pathfinding iterator)

edgeTo[] is a parent-link representation of a tree rooted at s.

@ e edgeTo[] @

public boolean hasPathTo(int wv)
{ return marked[v]; }

public Iterable<Integer> pathTo(int v)

{
if ('hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>()
for (int x = v; x '= s; x = edgeTo[x])

path.push (x) ;

path.push(s) ;
return path;

Connectivity queries
Def. Vertices v and w are connected if there is a path between them.

Goal. Preprocess graph to answer queries: is v connected fo w ?

in constant time.

public class CC

CC (Graph G) find connected components in G
boolean connected(int v, int w) are v and w connected?
int count/() number of connected components

int id(int wv) component identifier for v

Connected components

The relation "is connected to" is an equivalence relation:
» Reflexive: v is connected to v.
o Symmetric: if vis connected to w, then w is connected to v.

» Transitive: if v connected to w and w connected to x, then v connected to x.

Def. A connected component is a maximal set of connected vertices.

v id[v]
0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 all
8 i i
8 2
10 -
3 connected components 11 2
12 2

Remark. Given connected components, can answer queries in constant time.

Connected components

Goal. Partition vertices into connected components.

Connected components

Initialize all vertices v as unmarked.

For each unmarked vertex v, run DFS to identify all

vertices discovered as part of the same component.

Finding connected components with DFS

public class CC
{

private boolean marked[];
private int[] id; <

private int count;

id[v] = id of component containing v

number of components

public CC(Graph G)
{
marked = new boolean[G.V()]:;
id = new int[G.V()]:
for (int v = 0; v < G.V(); v++)
{
if ('marked[v])
{

dfs (G, V) «— run DFS from one vertex in
each component
count++;

public int count()

public int id(int v) < see next slide
private void dfs (Graph G, int W)

Finding connected components with DFS (continued)

public int count()
{ return count; }

number of components

public int id(int v) id of component containing v
{ return id[v]; }

all vertices discovered in
same call of dfs have same id

Finding connected components with DFS (trace)

count marked[] id[]
0123456 7 8 9101112 01234656 7 8 9101112
dfs(0) 0o T 0
dfs(6) (N T 0 0
check 0
dfs(4) (N T T 0 0 0
dfs(5) 0o T TTT 0 000
dfs(3) 0o T TTTT 0 0000
check 5
check 4 ‘)
3 done
check 4 o e o
check 0
5 done 0 9 @
check 6 o’o @\@
check 3
4 done
6 done
dfs(2) O T TTTTT 0 00000
check 0
2 done
dfs(1) 0O TTTTTTT 0 0000O00O0
check 0
1 done
check 5

0 done

0 done
dfs(7)
dfs(8)
check 7
8 done
7 done
dfs(9)
dfs(11)
check 9
dfs(12)
check 11
check 9
12 done
11 done
dfs (10)
check 9
10 done
check 12
9 done

Finding connected components with DFS (trace)

count marked[] id[]

01234567 8 9101112 01234567 8 9101112

1 TTTTTTTT 00000001

1 TTTTTTTTT 000000011

2 TTTTTTTTTT 0000000112

2 T TTTTTTTTT T 0000000112 2

2 TTTTTTTTTT TT 0000000112 2 2

2 T TTTTTTTTTTTT 0000000112222

Connected components application: study spread of STDs

8 Yo
, W SR 7
":&“:ﬁ ‘r‘ R s .
e =3, P s ()
. .
el 1\.\!; :%‘!th,l’
e e —— $- o
TR g _ h?‘ .
(4(& T ._1_::;“)(1
o BAEEE Rl Y M o o oo
] ';f;'\y:

/
\\. / “ {\ et e
-\ 1 PR T i Fomals

Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of
adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

Graph Search

e Breadth-first search

Breadth-first search

Depth-first search. Put unvisited vertices on a stack.

Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from s to ¢ that uses fewest number of edges.

BFS (from source vertex s) \\Iy‘: i\
Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty:

- remove the least recently added vertex v \Iiv/f f
- add each of v's unvisited neighbors to the queue,

and mark them as visited.

Intuition. BFS examines vertices in increasing distance from s.

first search (pathfinding)

Breadth

adj[]

marked[] edgeTo[]

Ll B B =]
Lo Bl I g

(=T e R B Ty

o Mmoo

t s)

te void bfs(Graph G, in

priva

Lo B Bl o)
[=R=T i e a]

(= B B B]

e
A
0
§
(=
H
b
s
5
o
o
=
I
o
A
0 ~
o n
0 —
Lo
(=N
} &
o
o o
[= R
o o

St

true;

marked[s]

L] =5 O
=] w i

L= N R g B i T]

(==t B o B]

E=10 e e R

el S

E=10 e R B]

— 1]
= §
g &
m o)
0 o
. I
o
ol P
P
Q0 (=
— o
”m_
B =

adj(v))

G.

-
-

for (int w

= D
w o on

[= e N B B ol]

[=R= R R e]

(=R N B B - ol

e

o Mmoo

=

-
B b
5 b
50
-~ o
(T

i

true;

marked|[w]

= ™
T

L= e R B o]

=R R R o R]

(=N N M B o

R

(=N N M B o

-
r

edgeTo [w]

FEERE

(=T N B B

N

Breadth-first search properties

Proposition. BFS computes shortest path (number of edges) from s

in a connected graph in time proportional to E + 7.

Pf.
» Correctness: queue always consists of zero or more vertices of distance &

from s, followed by zero or more vertices of distance i+ 1.

* Running time: each vertex connected to s is visited once.

standard drawing dist =0 dist=1 dist =2

Six degrees of separation

Everyone is on average approximately six steps
away, by way of introduction, from any other
person on Earth

Online social networks
— Facebook: average distance is 4.74 (Nov 2011)
— Twitter: average distance is 4.67

Erdos number

Bacon number

Breadth-first search application: Erdés numbers

SR Ers D
VN D G
(Twamason) Vien NESH AN
LA MAcwnL ATy {EHM&!{:)

a A
= ; y g%jqr

2
aDz==t
=

=)\w”

EEE

*{FPPO LOL GEITE) ouyels uwoy

CaArpiiANLR

p {eannas
(s ey L2900 S ERTE

(irsGavii s e
hand-drawing of part of the Erdés graph by Ron Graham

Breadth-first search application: Kevin Bacon numbers

Kevin Bacon numbers.

ann Thar Qracie of Racon
L‘.J. Lﬁll"" il - I.- € emp 0w e PR Oy, - B e | el = DR P PR = v e R 0 S O
ﬂmmi_dhﬂlﬂﬂﬂ-ﬂﬂqmﬂjnt—-mﬂnm_ »

THE ORACLE
OF BACON

Uma Thurman
Taieal

Be Cunl {2!]4}5}

Ecntt Adsﬂ

The Inior mant' (2009)

Matt I:Inrm:ln

SixDegrees iPhone App

http:/ /oracleofbacon.org

Map Routing (Shortest Path)

Monlpalisr, W1

‘I Augusta
Caoncard

e
ﬂ - n‘l:ﬂ'l. MA
30 W Provicdence
2 . SHartlord, CT
Tmrrrnn. NJ
Sacr * c“f.“:k‘ ' .-‘-"‘17;‘:,_ Dovar, DE
! Egﬁfl‘lﬂ'l E-:Iétlfub:i * i esAnnapolis, MD
. TI' Denver et Richmond, VA
Co i] art
OK AR W
m A7 i-l;ll'lﬁ Fe ok ma 'ﬁm AL
o L ROk
Phoenix . an
- Jun=a X on
) =~ N . ;] Q5508
MOTE: o et Rouge
ALASKA & HAWAI ke
MNOT TO SCALE Honolulu

N~
v

Application: Web Search Engines

A Search Engine does three main things:

i. Gather the contents of all web pages (using
a program called a crawler or spider)

ii. Organize the contents of the pages in a
way that allows efficient retrieval
(indexing)

iii. Take in a query, determine which pages
match, and show the results (ranking and
display of results)

Basic structure of a search engine:

> | Crawler

Search.com
Query: “computer” |

=

indexing

Crawler | —

' | =] Crawler

» fetches pages from the web

* starts at set of “seed pages”

» parses fetched pages for hyperlinks
* then follows those links

* variations:
- recrawling
- focused crawling

- random walks

Breadth-First Crawl:

* Basic 1dea:
- start at a set of known URLSs
- explore 1n “concentric circles” around these URLSs

‘ start pages ‘ /
‘ distance-one pages /

‘ distance-two pages ‘ /‘\‘

\‘

Project

@)

otion 1: The Emory MapQuest Project (TEMP)
otion 2: FaceSpace

@)

Option 3: Oracle of Bacon (?)

Project workshop: May 1, 2012

Midterm Exam

* Maximum: 101
* Mean: 86.57
* Median: 90.5

