
CS 171: Introduction to Computer
Science II

1/30/2012 1

Methods, OO, Inheritance

Li Xiong

Announcement

• Eclipse/debugging lab

– 1/30, Monday, 5-6pm, E308

• Hw1

– To be assigned 1/31, Tuesday– To be assigned 1/31, Tuesday

– Due 2/7, Tuesday

Roadmap

• Review

– Types, variables, expressions

– Control flows

– Methods

1/30/2012 3

– OO and Inheritance

• Next lecture

– Arrays and binary search

Defining and Using Methods
• Define a method – give a definition of what the method is to do
modifier returnType methodName(list of parameters) {

collection of statements;

}

• Call or invoke a method – use a method

methodName(list of parameters)

4

Passing Parameters
� When calling a method, the arguments must match the
parameters in order, number, and compatible type

� When invoking a method, the value of the argument is
passed to the parameter. The variable itself is not

5

passed to the parameter. The variable itself is not
affected. This is referred to as pass-by-value.

Mechanics of the Method-Calling Process

Evaluate the argument expressions1.

Copy argument value into the corresponding
parameter, (allocated in a newly assigned region of
memory called a stack frame)

2.

Execute body, using the new stack frame for local3. Execute body, using the new stack frame for local
variables.

3.

On a return statement, compute the return value
and substitutes that value in place of the call.

4.

Discard the stack frame for the method and returns
to the caller, continuing where it left off.

5.

Sum Example: Call Stack

public static void main(String[] args) {

// 1. evaluate arguments
System.out.println("sum(1, 10) is: " + sum(1, 10)); // 1+2+...+10

System.out.println("sum(25, 30) is: " + sum(25, 30)); //25+26+...+30

System.out.println("sum(40, 50) is: " + sum(40, 50)); //40+41+...+50

}

public static int sum(int start, int end) { // 2. copy args, new SF

int sum = 0;

for (int i = start; i <= end; i++) { // 3. execute the body

sum += i;

}

return sum; //4. return the value, and discard stack frame

}

7

Trace Method Invocation

public static void main(String[] args) {
 int i = 5;
 int j = 2;
 int k = max(i, j);

 System.out.println(
 "The maximum between " + i +

public static int max(int num1, int num2) {
 int result;

 if (num1 > num2)
 result = num1;
 else
 result = num2;

8

 "The maximum between " + i +
 " and " + j + " is " + k);
}

 result = num2;

 return result;
}

Overloading Methods

public static double max(double num1, double num2) {
if (num1 > num2)

public static int max(int num1, int num2) {
if (num1 > num2)
return num1;

else
return num2;

}

9

if (num1 > num2)
return num1;

else
return num2;

}

max(1, 3);

max(1.0, 3.0);

max(1.0, 3);

Overloading Methods

public static double max(double num1, double num2) {
if (num1 > num2)

public static int max(int num1, int num2) {
if (num1 > num2)
return num1;

else
return num2;

}

10

if (num1 > num2)
return num1;

else
return num2;

}

max(1, 3);

max(1.0, 3.0);

max(1.0, 3);

Overloading methods
• Method overloading: multiple methods can

have the same name but different parameter

lists

• Compiler determines which method is used

based on the method signature (method based on the method signature (method

name and parameters)

– Early binding

Roadmap

• Java Review

– Types, variables, assignments, expressions

– Control flow statements

– Methods

1/30/2012 12

– OO and Inheritance

Objects and Classes

• Object: entity that you can manipulate in your
programs

– Data fields: state of an object

– Methods: instructions that accesses or modifies the
object

• Class: construct that defines objects of the same • Class: construct that defines objects of the same

type (set of objects with the same behaviour)

– Definition of data fields: properties of defined objects

– Definition of methods: behaviours of defined objects

• Constructors are special type of methods used to construct

and initialize objects from the class

Example
public class Employee

{

private String name; // name of the employee

public Employee (String n) { name = n; }

public Employee () { name = "Unknown"; }

public String getName() { return name; }

public String toString() { return name;}public String toString() { return name;}

}

public class EmployeeTester

{

public static void main(String[] args) {

Employee e = new Employee(“The Best Employee”);

System.out.println(e);

}

}

14

Have you heard about the object-oriented

way to become wealthy?

15

Inheritance

• Different types of employees

– Hourly employee

– Salaried employee

– Volunteer

16

– Volunteer

• What features are common for all employees?

• What features are specific?

Inheritance

17

• What features are common for all the shapes?

• What features are specific to:
– Triangle?

– Circle?

– Rectangle

Inheritance - idea

GeometricObject

color
isFilled

18

Triangle Circle Rectangle

sideLength radius width
height

extends keyword

• Use extends keyword to tell that one class

inherits from other class
public class GeometricObject {

public Color color;

public boolean isFilled;

}

19

public class Circle extends GeometricObject {

public double radius;

}

Inheritance
• A subclass inherits all fields and methods from

the superclass

• A subclass can also:

– Add new fields

– Add new methods

20

– Add new methods

– Override the methods of the superclass

• Superclass’s constructor are not inherited
– Unlike fields and methods

• They are invoked explicitly or implicitly

Using the Keyword super
• super refers to the superclass

• This keyword can be used in few ways:

– To call a superclass constructor

– To call a superclass method

– To access a superclass public data field

21

– To access a superclass public data field

Invoking Superclass Constructor
• Superclasses’ constructors can be invoked

from subclasses' constructors explicitly

– Use the keyword super to call the superclass constructor

– It must appear first in the constructor

• If no superclass constructor is explicitly

22

• If no superclass constructor is explicitly

invoked, the compiler puts super() as the first

statement in the constructor

public class Employee

{

private String name; // name of the employee

public Employee (String n) { name = n; }

public Employee () { name = "Unknown"; }

public String getName() { return name; }

public String toString() { return name;}

}

public class SalariedEmployee extends Employee

{{

private double weeklySalary;

public SalariedEmployee(String n; double salary) {

super(n);

weeklySalary = salary;

}

public double earnings() {

return weeklySalary;

}

}

Calling Superclass Methods
• super can be used to call method from superclass

public class Employee

{

private String name; // name of the employee

public Employee (String n) { name = n; }

public Employee () { name = "Unknown"; }

24

public String getName() { return name; }

public String toString() { return name;}

}

public class SalariedEmployee extends Employee

{

// …

public double printName() {

System.out.println(super.getName());

}

}

Overriding Methods in the Superclass

• Subclass can modify the implementation of a method

defined in the superclass

• Method overriding

• A private method cannot be overridden, because it is

not accessible outside its own classnot accessible outside its own class

25

public class Circle extends GeometricObject {

// Other methods are omitted

/** Override the toString method defined in GeometricObject */

public String toString() {

return super.toString() + "\nradius is " + radius;

}

}

Overriding vs. Overloading

 public class Test {
 public static void main(String[] args) {

 A a = new A();

 a.p(10);

 }

}

class B {

 public void p(int i) {

 }

public class Test {

 public static void main(String[] args) {

 A a = new A();

 a.p(10);

 }

}

class B {

 public void p(int i) {

 }

26

 }

}

class A extends B {

 // This method overrides the method in B

 public void p(int i) {

 System.out.println(i);

 }

}

 }

}

class A extends B {

 // This method overloads the method in B

 public void p(double i) {

 System.out.println(i);

 }

}

public class Employee

{

private String name; // name of the employee

public Employee (String n) { name = n; }

public Employee () { name = "Unknown"; }

public String getName() { return name; }

public String toString() { return name;}

}

public class SalariedEmployee extends Employee

{{

private double weeklySalary;

public SalariedEmployee(String n; double salary) {

super(n);

weeklySalary = salary;

}

public double earnings() {

return weeklySalary;

}

}

public class Employee

{

private String name; // name of the employee

public Employee (String n) { name = n; }

public Employee () { name = "Unknown"; }

public String getName() { return name; }

public String toString() { return name;}

}

public class SalariedEmployee extends Employee

{

// Other methods omitted

public String toString() {

return name + “, “ + earnings(); // wrong

}

}

public class Employee

{

private String name; // name of the employee

public Employee (String n) { name = n; }

public Employee () { name = "Unknown"; }

public String getName() { return name; }

public String toString() { return name;}

}}

public class SalariedEmployee extends Employee

{

// Other methods omitted

public String toString() {

return getName() + “, “ + earnings(); // correct

}

}

public class Employee

{

private String name; // name of the employee

// other methods omitted

public String getName() { return name; }

public String toString() { return name;}

}

public class SalariedEmployee extends Employee

{

// Other methods omitted// Other methods omitted

public String toString() {

return getName() + “, “ + earnings(); // correct

}

}

public class EmployeeTester {

public static void main(String[] args) {

Employee e = new SalariedEmployee(“BestEmployee”, 2000);

System.out.println(e);

}

}

Converting Between Subclass and Superclass
Types

• Ok to convert subclass reference to superclass
reference

• Need cast to convert from a superclass

reference to a subclass reference reference to a subclass reference

– This cast is dangerous: if you are wrong, an

exception is thrown

– Use the instanceof operator to test

instanceof

object instanceof TypeName

Example:
if (anObject instanceof Employee)

{ {

Employee e = (Employee) anObject;

. . .

}

Purpose:
To return true if the object is an instance of TypeName (or one of its

subtypes), and false otherwise

Polymorphism and Dynamic Binding
• Method calls are determined by type of actual object, not

type of object reference

– Late binding or dynamic binding (vs. Early binding for
overloaded methods)

• Suppose an object o is an instance of classes C1, and C1 is a

subclass of C2,..., and Cn-1 is a subclass of Cn (In java, Cn is subclass of C2,..., and Cn-1 is a subclass of Cn (In java, Cn is

the Object class), if o invokes a method p, the JVM searches

the implementation for the method p in C1, C2, ..., Cn-1 and

Cn, until it is found.

33

Cn Cn-1 C2 C1

Object

Since o is an instance of C1, o is also an

instance of C2, C3, …, Cn-1, and Cn

public class Employee

{

private String name; // name of the employee

// other methods omitted

public String getName() { return name; }

public String toString() { return name;}

}

public class SalariedEmployee extends Employee

{

// Other methods omitted// Other methods omitted

public String toString() {

return getName() + “, “ + earnings(); // correct

}

}

public class EmployeeTester {

public static void main(String[] args) {

Employee e = new SalariedEmployee(“BestEmployee”, 2000);

System.out.println(e);

}

}

Review questions
• Which of the following statements are true?

• Answer: B,C

A. A subclass is a subset of a superclass.

B. A subclass is usually created to contain more

functions and more detailed information than its functions and more detailed information than its

superclass.

C. "class A extends B" means A is a subclass of B.

D. "class A extends B" means B is a subclass of A.

Review questions
• Which of the following statements are true?

• Answer: A,D

A. A method can be overloaded in the same class.

B. A method can be overridden in the same class.

C. If a method overloads another method, these two

methods must have the same signature.

D. If a method overrides another method, these two

methods must have the same signature.

Another Example: Bank Accounts
• Bank Account

– getBalance

– deposit

– withdraw

– transfer

• Savings Account

– Earns interest that compounds monthly– Earns interest that compounds monthly

• Checking account

– no interest

– small number of free transactions per month, additional
transactions are charged a small fee

CheckingAccount Class

• Instance fields:

– balance (inherited from BankAccount)

– transactionCount (new to CheckingAccount)

• Methods:

– getBalance() (inherited from BankAccount) – getBalance() (inherited from BankAccount)

– deposit(double amount) (overrides BankAccount method) –
need to update the transaction count

– withdraw(double amount) (overrides BankAccount method) –
need to update the transaction count

– deductFees() (new to CheckingAccount)

Implementing deposit() method

public void deposit(double amount)
{

transactionCount++; transactionCount++;
// How to add amount to balance

balance = balance + amount;

//wrong - balance is a private field of the superclass

}

Implementing deposit() method

public void deposit(double amount)
{

transactionCount++; transactionCount++;
// How to add amount to balance

deposit(amount);

// wrong – infinite method call loop

}

Implementing deposit() method

public void deposit(double amount)
{

transactionCount++; transactionCount++;
// How to add amount to balance

super.deposit(amount);

// correct – calling the superclass method

}

SavingsAcount Class

• Savings account: earns interest with a interest
rate

• Instance fields:

– balance (inherited from BankAccount) – balance (inherited from BankAccount)

– InterestRate (new instance field)

• Methods:

– getBalance()

– deposit(double amount)

– withdraw(double amount)

– addInterest() (new to SavingsAccount)

Exercise
• BankAccountTester.java

– What’s the output?

– Hint: in the transfer method, depending on types

of other, different versions of withdraw and

deposit are called - polymorphismdeposit are called - polymorphism

Object: The Cosmic Superclass

• All classes defined without an explicit extends
clause automatically extend Object

 public class Circle {
 ...

}

Equivalent
public class Circle extends Object {

 ...

}

Object: The Cosmic Superclass

• Most useful methods:

– String toString()

– boolean equals(Object otherObject)

• Good idea to override these methods in your

classes classes

Roadmap

• Java Review

– Types, variables, assignments, expressions

– Control flow statements

– Methods

1/30/2012 46

– OO and Inheritance

• Next lecture

– Arrays and binary search

