
CS 171: Introduction to Computer
Science II

Algorithm Analysis

Li Xiong

Today

• Hw1 discussion

• Recap: linear search and binary search

• Algorithm Analysis

• Big-O Notation• Big-O Notation

• Loop Analysis

Hw1 Discussion

• Read the instructions carefully

• Think before you code

• Useful classes/methods

–ArrayList–ArrayList

–Random Number generation

ArrayList

• Use generics - parameterized types

–Type parameters have to be instantiated as reference
types

• Autoboxing

–Autoboxing: Automatically casting a primitive type to a –Autoboxing: Automatically casting a primitive type to a
wrapper type

–Auto-unboxing: automatically casting a wrapper type to
a primitive type

ArrayList<Integer> numbers = new ArrayList<Integer>();

numbers.add(1001);

int mynumber = numbers.remove(0);

ArrayList
• Useful methods
–add(E e): Appends the specified element to the end of

this list

–size(): returns the number of elements in this list

–remove(int index): Removes the element at the
specified position in this list. Shifts any subsequent
elements to the left (subtracts one from their indices)
specified position in this list. Shifts any subsequent
elements to the left (subtracts one from their indices)

–get(int index): Returns the element at the specified
position in this list.

ArrayList<Integer> numbers = new ArrayList<Integer>();

numbers.add(1001);

int n = numbers.size();

int mynumber2 = numbers.get(0);

int mynumber = numbers.remove(0);

Random number generation

• If you want to generate random test numbers

Math.random() method:

double x = Math.random();

This generates a double between [0.0, 1.0].

Today

• Hw1 discussion

• Recap: linear search and binary search

• Algorithm Analysis

• Big-O Notation• Big-O Notation

• Loop Analysis

Search in an

Array

• Unordered array: ~N

• Order array: ~lgN

Review question 1

• The maximum number of elements to

examine to complete binary search of 30

elements is:

–A: 1

–B: 30–B: 30

–C: 7

–D: 5

Review Question 2

• True or false: It is generally faster to find an

existing item in an ordered array than a

missing one (item not there).

• Trust or false: It is generally faster to search

an item in an ordered array than in an an item in an ordered array than in an

unordered array of the same size

Algorithm Analysis

• An algorithm is a method for solving a problem

expressed as a sequence of steps that is suitable for

execution by a computer (machine)

–E.g. Search, insertion, deletion in an array

• We are interested in designing good algorithms• We are interested in designing good algorithms

–Linear search vs. binary search

• Good algorithms

–Running time

–Space usage (amount of memory required)

Running time of an algorithm

• Running time typically increases with the input

size (problem size)

• Also affected by hardware and software

environment

• We would like to focus on the relationship

between the running time and the input size

AlgorithmInput Output

How to measure running time

• Experimental studies

• Theoretical analysis

Experimental Studies

• Write a program
implementing the algorithm

• Run the program with inputs
of varying size and
composition 6000

7000

8000

9000

T
im
e
 (
m
s
)

• Use a method like
System.currentTimeMillis() to get
an accurate measure of the
actual running time

• Plot the results
0

1000

2000

3000

4000

5000

0 50 100

Input Size

T
im
e
 (
m
s
)

Limitations of Experiments

• It is necessary to implement the algorithm,
which may be difficult

• Results may not be indicative of the running
time on other inputs not included in the
experiment.
time on other inputs not included in the
experiment.

• In order to compare two algorithms, the same
hardware and software environments must be
used

Mathematical Analysis - insight

• Total running time of a program is

determined by two primary factors:

–Cost of executing each statement (property of

computer, Java compiler, OS)

–Frequency of execution of each statement –Frequency of execution of each statement

(property of program and input)

Algorithm Analysis

• Algorithm analysis:

–Determine frequency of execution of statements

–Characterizes running time as a function of the

input sizeinput size

• Benefit:

–Takes into account all possible inputs

–Allows us to evaluate the speed of an algorithm

independent of the hardware/software

environment

Analysis Method

• Count the number of primitive operations
executed as a function of input size

• A primitive operation corresponds to a low-level
(basic) computation with a constant execution
time

–Evaluating an expression–Evaluating an expression

–Assigning a value to a variable

–Indexing into an array

• The number of primitive operations is a good
estimate that is proportional to the running time
of an algorithm

Average-case vs. worst-case

• Average case: taking the average over all possible

inputs of the same size

–Depends on input distribution

• An algorithm may run faster on some inputs than it

does on others (with the same input size)

–Depends on input distribution

• Best case

• Worst case

–Easier analysis

–Typically leads to better algorithms

Loop Analysis

• Programs typically use loops to enumerate

through input data items

• Count number of operations or steps in loops

• Each statement within the loop is counted as

a stepa step

Example 1

double sum = 0.0;

for (int i = 0; i < n; i ++) {

sum += array[i];

}

How many steps?

Only count the loop statements (update to the

loop variable i is ignored).

Example 1: Solution

double sum = 0.0;

for (int i = 0; i < n; i ++) {

sum += array[i];

}

How many steps?

Loop will be executed n times; and there is 1

loop statement. So overall:

n

Example 2

double sum = 0.0;

for (int i = 0; i < n; i += 2) {

sum += array[i];

}

How many steps?

Example 2: Solution

double sum = 0.0;

for (int i = 0; i < n; i += 2) {

sum += array[i];

}

How many steps?

Loop will be executed n/2 times. So overall:

n/2

Example 3 – Multiple Loops

for (int i = 0; i < n; i ++) {

for (int j = 0; j < n; j ++) {

int x = i*j;

sum += x;

}}

}

How many steps?

Example 3 – Solution

for (int i = 0; i < n; i ++) {

for (int j = 0; j < n; j ++) {

int x = i*j;

sum += x;

}}

}

How many steps?

2 loops, each loop n times, so overall:

22 n

– If n is 3 times larger, both costs are 3 times larger

Increase of Cost w.r.t. n

• Example 1 takes twice as many steps (n) as

Example 2 (n/2), but both of them are linear to

the input size n

If n is 3 times larger, both costs are 3 times larger

• Example 3 (2n2)is different:

– If n is 3 times larger, it becomes 9 times more

expensive.

– Therefore the cost is quadratic w.r.t. to problem

size.

• In practice we care a lot about how the cost

increases w.r.t. the problem size, rather than
the absolute cost.

Increase of Cost with Growth of n

• Therefore we can ignore the constant scale• Therefore we can ignore the constant scale

factor in the cost function, and concentrate
on the part relevant to n

• We need formal mathematical definitions

and tools for comparing the cost

Tilde Notation

• Tilde notation: ignore insignificant terms

•Definition: we write f(n) ~ g(n) if f(n)/g(n)

approaches 1 as n grows

• 2n + 10 ~ 2n

• 3n3 + 20n2 + 5 ~ 3n3

Big-Oh Notation

• Given functions f(n) and

g(n), we say that f(n) is

O(g(n)) if there are

positive constants

c and n0 such that 100

1,000

10,000

3n

2n+10

n

c and n0 such that

f(n) ≤ cg(n) for n ≥ n0

• Example: 2n + 10 is O(n)

– pick c = 3 and n0 = 10

1

10

1 10 100 1,000

n

Big-Oh Example

• Example: the function

n2 is not O(n)

–n2 ≤ cn

–n ≤ c
1,000

10,000

100,000

1,000,000
n^2

100n

10n

n

–n ≤ c

–The above

inequality cannot

be satisfied since c

must be a constant 1

10

100

1,000

1 10 100 1,000
n

Big-Oh and Growth Rate

• The big-Oh notation gives an upper bound on the

growth rate of a function

• The statement “f(n) is O(g(n))” means that the

growth rate of f(n) is no more than the growth rate

of g(n)of g(n)

• We can use the big-Oh notation to rank functions

according to their growth rate

Important Functions in Big-Oh Analysis

–Constant: 1

–Logarithmic: log n

–Linear: n

–N-Log-N: n log n

–Quadratic: n2

–Cubic: n3–Cubic: n3

–Polynomial: nd

–Exponential: 2n

–Factorial: n!

O(3)

O(2)

O(n)

O(n)

Growth Rate
n

n

3

2

• From calculus we

know that: in terms

of the order:

exponentials >

Exponential

Polynomial

O(n)2

O(nlogn)

O(n)

O(logn)

O(1)

exponentials >

polynomials >

logarithms >

constant.

Increasing order

Log-linear

Linear

Log

Constant

Big-Oh Analysis

• Write down cost function f(n)

1. Look for highest-order term

2. Drop constant factors

• Examples

–3n3 + 20n2 + 5

–n log n + 10

Example 4

for (int i = 0; i < n; i ++) {

for (int j = i; j < n; j ++) {

sum += i*j;

}

}}

Example 4: Solution

for (int i = 0; i < n; i ++) {

for (int j = i; j < n; j ++) {

sum += i*j;

}

}}

n(n+1)

2
n+(n−1)+(n−2)+...+1+0 = is O(n)

0.5 (n2 + n) � O(n2)

Example 5

double product = 1.0;

for (int i = 1; i <= n; i *= 2) {

product *= i;

}

Example 5: Solution

double product = 1.0;

for (int i = 1; i <= n; i *= 2) {

product *= i;

}

• This has a logarithmic cost:

O(log2 n)

or O(logn) as the change of base is merely a
matter of a constant factor.

Search in Ordered vs. Unordered Array

• What’s the big O function for linear search?

• Binary search?

Search in Ordered vs. Unordered Array

• What’s the big O function for linear search?

O(N)

• Binary search? O(lgN)

• Binary search has much better running time, • Binary search has much better running time,

particularly for large-scale problems

Review Question

•What is the Order of growth (big-oh) of the

following code?

for (int i=1; i<=N; ++i){

for (int j=1; j<N; j*=2){

count++;count++;

}

}

Summary

• Today

–Algorithm Analysis

–Loop Analysis

• Next lecture

–Simple sorting algorithms and analysis

