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Today

• Hw1 discussion

• Recap: linear search and binary search

• Algorithm Analysis

• Big-O Notation• Big-O Notation

• Loop Analysis



Hw1 Discussion

• Read the instructions carefully

• Think before you code

• Useful classes/methods

–ArrayList–ArrayList

–Random Number generation



ArrayList

• Use generics  - parameterized types

–Type parameters have to be instantiated as reference 
types

• Autoboxing

–Autoboxing: Automatically casting a primitive type to a –Autoboxing: Automatically casting a primitive type to a 
wrapper type

–Auto-unboxing: automatically casting a wrapper type to 
a primitive type

ArrayList<Integer> numbers = new ArrayList<Integer>();

numbers.add(1001);

int mynumber = numbers.remove(0);



ArrayList
• Useful methods
–add(E e): Appends the specified element to the end of 

this list

–size(): returns the number of elements in this list

–remove(int index): Removes the element at the 
specified position in this list. Shifts any subsequent 
elements to the left (subtracts one from their indices) 
specified position in this list. Shifts any subsequent 
elements to the left (subtracts one from their indices) 

–get(int index): Returns the element at the specified 
position in this list.

ArrayList<Integer> numbers = new ArrayList<Integer>();

numbers.add(1001);

int n = numbers.size();

int mynumber2 = numbers.get(0);

int mynumber = numbers.remove(0);



Random number generation

• If you want to generate random test numbers

Math.random() method:

double x = Math.random();

This generates a double between [0.0, 1.0].



Today

• Hw1 discussion

• Recap: linear search and binary search

• Algorithm Analysis

• Big-O Notation• Big-O Notation

• Loop Analysis



Search in an 

Array

• Unordered array: ~N

• Order array: ~lgN



Review question 1

• The maximum number of elements to 

examine to complete binary search of 30 

elements is:

–A: 1

–B: 30–B: 30

–C: 7

–D: 5



Review Question 2

• True or false: It is generally faster to find an 

existing item in an ordered array than a 

missing one (item not there).

• Trust or false: It is generally faster to search 

an item in an ordered array than in an an item in an ordered array than in an 

unordered array of the same size



Algorithm Analysis

• An algorithm is a method for solving a problem 

expressed as a sequence of steps that is suitable for 

execution by a computer (machine)

–E.g. Search, insertion, deletion in an array

• We are interested in designing good algorithms• We are interested in designing good algorithms

–Linear search vs. binary search

• Good algorithms

–Running time

–Space usage (amount of memory required)



Running time of an algorithm

• Running time typically increases with the input 

size (problem size)

• Also affected by hardware and software 

environment

• We would like to focus on the relationship 

between the running time and the input size

AlgorithmInput Output



How to measure running time

• Experimental studies

• Theoretical analysis



Experimental Studies

• Write a program 
implementing the algorithm

• Run the program with inputs 
of varying size and 
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• Use a method like 
System.currentTimeMillis() to get 
an accurate measure of the 
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Limitations of Experiments

• It is necessary to implement the algorithm, 
which may be difficult

• Results may not be indicative of the running 
time on other inputs not included in the 
experiment. 
time on other inputs not included in the 
experiment. 

• In order to compare two algorithms, the same 
hardware and software environments must be 
used





Mathematical Analysis - insight

• Total running time of a program is 

determined by two primary factors:

–Cost of executing each statement (property of 

computer, Java compiler, OS)

–Frequency of execution of each statement –Frequency of execution of each statement 

(property of program and input)



Algorithm Analysis

• Algorithm analysis:

–Determine frequency of execution of statements

–Characterizes running time as a function of the 

input sizeinput size

• Benefit:

–Takes into account all possible inputs

–Allows us to evaluate the speed of an algorithm 

independent of the hardware/software 

environment



Analysis Method

• Count the number of primitive operations 
executed as a function of input size 

• A primitive operation corresponds to a low-level 
(basic) computation with a constant execution 
time

–Evaluating an expression–Evaluating an expression

–Assigning a value to a variable

–Indexing into an array

• The number of primitive operations is a good 
estimate that is proportional to the running time 
of an algorithm



Average-case vs. worst-case

• Average case: taking the average over all possible 

inputs of the same size

–Depends on input distribution

• An algorithm may run faster on some inputs than it 

does on others (with the same input size)

–Depends on input distribution

• Best case

• Worst case

–Easier analysis

–Typically leads to better algorithms





Loop Analysis

• Programs typically use loops to enumerate 

through input data items

• Count number of operations or steps in loops

• Each statement within the loop is counted as 

a stepa step



Example 1

double sum = 0.0;

for (int i = 0; i < n; i ++) {

sum += array[i];

}

How many steps?

Only count the loop statements (update to the

loop variable i is ignored).



Example 1: Solution

double sum = 0.0;

for (int i = 0; i < n; i ++) {

sum += array[i];

}

How many steps?

Loop will be executed n times; and there is 1

loop statement. So overall:

n



Example 2

double sum = 0.0;

for (int i = 0; i < n; i += 2) {

sum += array[i];

}

How many steps?



Example 2: Solution

double sum = 0.0;

for (int i = 0; i < n; i += 2) {

sum += array[i];

}

How many steps?

Loop will be executed n/2 times. So overall:

n/2



Example 3 – Multiple Loops

for (int i = 0; i < n; i ++) {

for (int j = 0; j < n; j ++) {

int x = i*j;

sum += x;

}}

}

How many steps?



Example 3 – Solution

for (int i = 0; i < n; i ++) {

for (int j = 0; j < n; j ++) {

int x = i*j;

sum += x;

}}

}

How many steps?

2 loops, each loop n times, so overall:

22 n



– If n is 3 times larger, both costs are 3 times larger

Increase of Cost w.r.t. n

• Example 1 takes twice as many steps (n) as   

Example 2 (n/2), but both of them are linear to

the input size n

If n is 3 times larger, both costs are 3 times larger

• Example 3 (2n2)is different:

– If n is 3 times larger, it becomes 9 times more

expensive.

– Therefore the cost is quadratic w.r.t. to problem

size.



• In practice we care a lot about how the cost

increases w.r.t. the problem size, rather than
the absolute cost.

Increase of Cost with Growth of n

• Therefore we can ignore the constant scale• Therefore we can ignore the constant scale

factor in the cost function, and concentrate
on the part relevant to n

• We need formal mathematical definitions  

and tools for comparing the cost



Tilde Notation

• Tilde notation: ignore insignificant terms

•Definition: we write f(n) ~ g(n) if f(n)/g(n) 

approaches 1 as n grows 

• 2n + 10  ~ 2n

• 3n3 + 20n2 + 5  ~ 3n3



Big-Oh Notation

• Given functions f(n) and 

g(n), we say that f(n) is 

O(g(n)) if there are 

positive constants

c and n0 such that 100
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c and n0 such that

f(n) ≤ cg(n)  for n ≥ n0

• Example: 2n + 10 is O(n)

– pick c = 3 and n0 = 10
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Big-Oh Example

• Example: the function 

n2 is not O(n)

–n2 ≤ cn

–n ≤ c
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–n ≤ c

–The above 

inequality cannot 

be satisfied since c

must be a constant 1
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Big-Oh and Growth Rate

• The big-Oh notation gives an upper bound on the 

growth rate of a function

• The statement “f(n) is O(g(n))” means that the 

growth rate of f(n) is no more than the growth rate 

of g(n)of g(n)

• We can use the big-Oh notation to rank functions 

according to their growth rate



Important Functions in Big-Oh Analysis

–Constant: 1

–Logarithmic: log n

–Linear: n

–N-Log-N: n log n

–Quadratic: n2

–Cubic: n3–Cubic: n3

–Polynomial: nd

–Exponential: 2n

–Factorial: n!
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Big-Oh Analysis

• Write down cost function f(n) 

1. Look for highest-order term

2. Drop constant factors

• Examples

–3n3 + 20n2 + 5

–n log n + 10



Example 4

for (int i = 0; i < n; i ++) {

for (int j = i; j < n; j ++) {

sum += i*j;

}

}}



Example 4: Solution

for (int i = 0; i < n; i ++) {

for (int j = i; j < n; j ++) {

sum += i*j;

}

}}

n(n+1)

2
n+(n−1)+(n−2)+...+1+0 = is O(n)

0.5 ( n2 + n) � O(n2)



Example 5

double product = 1.0;

for (int i = 1; i <= n; i *= 2) {

product *= i;

}



Example 5: Solution

double product = 1.0;

for (int i = 1; i <= n; i *= 2) {

product *= i;

}

• This has a logarithmic cost:

O(log2 n)

or O(logn) as the change of base is merely a
matter of a constant factor.



Search in Ordered vs. Unordered Array

• What’s the big O function for linear search?

• Binary search?



Search in Ordered vs. Unordered Array

• What’s the big O function for linear search? 

O(N)

• Binary search? O(lgN)

• Binary search has much better running time, • Binary search has much better running time, 

particularly for large-scale problems



Review Question

•What is the Order of growth (big-oh) of the 

following code?

for (int i=1; i<=N; ++i){

for (int j=1; j<N; j*=2){

count++;count++;

}

}



Summary

• Today

–Algorithm Analysis

–Loop Analysis

• Next lecture

–Simple sorting algorithms and analysis


