CS 171: Introduction to Computer Science II

Algorithm Analysis + Simple Sorting

Li Xiong

Today

- Algorithm Analysis (cont)
- Simple sorting algorithms

Tilde Notation

- Tilde notation: ignore insignificant terms
- Definition: we write f(n) ~ g(n) if f(n)/g(n) approaches 1 as n grows

- $2n + 10 \sim 2n$
- $3n^3 + 20n^2 + 5 \sim 3n^3$

Big-Oh Notation

Given functions f(n) and 1
 g(n), we say that f(n) is
 O(g(n)) if there are
 positive constants
 c and n₀ such that

 $f(n) \leq cg(n)$ for $n \geq n_0$

• Example: 2n + 10 is O(n)- pick c = 3 and $n_0 = 10$

Important Functions in Big-Oh Analysis

- –Constant: 1
- –Logarithmic: log n₄₀₉₆
- –Linear: *n*
- $-N-Log-N: n \log n$
- –Quadratic: *n*²
- **–**Cubic: *n*³
- –Polynomial: *n*^d
- -Exponential: 2^n
- -Factorial: *n*!

© The McGraw-Hill Companies, Inc. all rights reserved.

Practical method for Big-Oh Analysis

• Write down cost function *f*(*n*)

Look for highest-order term (tilde notation)
 Drop constant factors

- Examples
 - $-3n^3 + 20n^2 + 5$ -n log n + 10

Common notations for algorithm analysis

notation	provides	example	shorthand for	used to
Tilde	leading term	~ 10 N ²	10 N ² 10 N ² + 22 N log N 10 N ² + 2 N + 37	provide approximate model
Big Theta	asymptotic growth rate	Θ(N ²)	¹ / ₂ N ² 10 N ² 5 N ² + 22 N log N + 3N	classify algorithms
Big Oh	Θ(N²) and smaller	O(N ²)	10 N ² 100 N 22 N log N + 3 N	develop upper bounds
Big Omega	Θ(N ²) and larger	Ω(N ²)	½ N ² N ⁵ N ³ + 22 N log N + 3 N	develop lower bounds

Useful Approximations

- Harmonic sum
 - $1 + 1/2 + 1/3 + ... + 1/N \sim \ln N$
- Triangular sum
 - $1 + 2 + 3 + ... + N = N(N+1)/2 \sim N^2/2$
- Geometric sum
 - $1 + 2 + 4 + ... + N = 2N 1 \sim 2N$ when $N = 2^n$
- Stirling's approximation
 lg N! = lg1 + lg2 + lg3 + ... + lgN ~ NlgN

Common order-of-growth classifications

growth rate	name	typical code framework	description	example	T(2N) / T(N)
1	constant	a = b + c;	statement	add two numbers	1
log N	logarithmic	<pre>while (N > 1) { N = N / 2; }</pre>	divide in half	binary search	~ 1
Ν	linear	<pre>for (int i = 0; i < N; i++) {</pre>	loop	find the maximum	2
N log N	linearithmic	[see mergesort lecture]	divide and conquer	mergesort	~ 2
N ²	quadratic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) {</pre>	double loop	check all pairs	4
N ³	cubic	<pre>for (int i = 0; i < N; i++) for (int j = 0; j < N; j++) for (int k = 0; k < N; k++) { }</pre>	triple loop	check all triples	8
2 ^N	exponential	[see combinatorial search lecture]	exhaustive search	check all subsets	T(N)

Practical implications of Order-or-growth

growth rate	problem size solvable in minutes				
	1970s	1980s	1990s	2000s	
1	any	any	any	any	
log N	any	any	any	any	
N	millions	tens of millions	hundreds of millions	billions	
N log N	hundreds of thousands	millions	millions	hundreds of millions	
N ²	hundreds	thousand	thousands	tens of thousands	
N ³	hundred	hundreds	thousand	thousands	
2 ^N	20	20s	20s	30	

for (int i = 0; i < n; i ++) {
 for (int j = i; j < n; j ++) {
 sum += i*j;
 }
}</pre>

for (int i = 0; i < n; i ++) { for (int j = i; j < n; j ++) {</pre> sum += i*j; } } $n+(n-1)+(n-2)+...+1+0 = \frac{n(n+1)}{2}$ is

 $0.5(n^2 + n) \rightarrow O(n^2)$

```
double product = 1.0;
for (int i = 1; i <= n; i *= 2) {
    product *= i;
}</pre>
```

Example 5: Solution

• This has a logarithmic cost:

 $O(\log_2 n)$

or $O(\log n)$ as the change of base is merely a matter of a constant factor.

```
double product = 1.0;
for (int i = 1; i <= n; i *= 2) {
  for (int j = 1; j <= i; j ++) {
     product *= j;
  }
}
```

• What about this:

double product = 1.0; for (int i = 1; i <= n; i *= 2) { for (int j = 1; j <= i; j ++) { product *= j; } }

1+2+4+8+...+n is O(n)

Review Question

• What is the Order of growth (big-oh) of the following code?

```
for (int i=1; i<=N; ++i){
    for (int j=1; j<=N; j*=2){
        count++;
    }
}</pre>
```

Search in Ordered vs. Unordered Array

- What's the big O function for linear search?
- Binary search?

Search in Ordered vs. Unordered Array

- What's the big O function for linear search?
 O(N)
- Binary search? O(IgN)
- Binary search has much better running time, particularly for large-scale problems

Today

- Algorithm Analysis (cont)
- Simple sorting algorithms

Sorting problem

Ex. Student records in a university.

Sort. Rearrange array of N items into ascending order.

Andrews	3	А	664-480-0023	097 Little
Battle	4	С	874-088-1212	121 Whitman
Chen	3	А	991-878-4944	308 Blair
Furia	1	А	766-093-9873	101 Brown
Gazsi	4	В	766-093-9873	101 Brown
Kanaga	3	В	898-122-9643	22 Brown
Rohde	2	А	232-343-5555	343 Forbes

Sorting Problem

Sorting Problem

• How do you sort a hand of poker cards?

Simple sort

- Bubble sort
- Selection sort
- Insertion sort

Two useful sorting abstractions

Helper functions. Refer to data through compares and exchanges.

Less. Is item v less than w?

private static boolean less(Comparable v, Comparable w)
{ return v.compareTo(w) < 0; }</pre>

Exchange. Swap item in array a[] at index i with the one at index j.

```
private static void exch(Comparable[] a, int i, int j)
{
    Comparable swap = a[i];
    a[i] = a[j];
    a[j] = swap;
}
```

Bubble Sort

• Intuition:

. . .

- Find the biggest number.
- Find the second biggest number.
- Find the third biggest number.
- This gives you an ordering of the numbers.
- Bubble sort achieves this by repeatedly swapping two adjacent numbers.

Bubble Sort

• After one pass, we find the biggest number.

• It's like the biggest 'bubble' floats to the top of the surface, hence the name 'bubble sort'.

Bubble Sort

- In the second pass, we repeat the same process, but now we only have N-1 numbers to work on.
- The third pass is the same, with only N-2 numbers.
- •
- Repeat until all players are in order.

Analysis of Bubble Sort

• Number of comparisons?

• Number of swaps?

Analysis of Bubble Sort

• Number of comparisons?

$$\frac{N(N-1)}{2} = O(N^2)$$

Number of swaps?
 best case: O(1)

worst cast:
$$\frac{N(N-1)}{2} = O(N^2)$$

average: $\frac{N(N-1)}{4} = O(N^2)$

- 1. Keep track of the **index** of the smallest number in each round.
- 2. Swap the smallest number towards the beginning of the array.
- 3. Repeat the above two steps.

Algorithm. \uparrow scans from left to right.

Invariants.

- Entries the left of \uparrow (including \uparrow) fixed and in ascending order.
- No entry to right of \uparrow is smaller than any entry to the left of \uparrow .

• Identify index of minimum entry on right.

```
int min = i;
for (int j = i+1; j < N; j++)
    if (less(a[j], a[min]))
       min = j;
```


• Exchange into position.

Selection Sort Implementation

```
public class Selection
{
   public static void sort(Comparable[] a)
      int N = a.length;
      for (int i = 0; i < N; i++)
      {
         int min = i;
         for (int j = i+1; j < N; j++)</pre>
            if (less(a[j], a[min]))
               \min = j;
         exch(a, i, min);
      ł
   }
   private static boolean less (Comparable v, Comparable w)
   { /* as before */ }
   private static void exch(Comparable[] a, int i, int j)
   { /* as before */ }
}
```

- Online demo
 - -http://www.sorting-algorithms.com/selection-sort
- Gypsy dance demo
 - <u>http://www.youtube.com/watch?v=Ns4TPTC8whw</u>

• Number of comparisons?

• Number of swaps?

- Number of comparisons? $O(N^2)$
- Number of swaps?

O(N)