
CS 171: Introduction to Computer
Science II

Algorithm Analysis + Simple
Sorting

Li Xiong

Today

• Algorithm Analysis (cont)

• Simple sorting algorithms

Tilde Notation

• Tilde notation: ignore insignificant terms

•Definition: we write f(n) ~ g(n) if f(n)/g(n)

approaches 1 as n grows

• 2n + 10 ~ 2n

• 3n3 + 20n2 + 5 ~ 3n3

Big-Oh Notation

• Given functions f(n) and

g(n), we say that f(n) is

O(g(n)) if there are

positive constants

c and n
0

such that 100

1,000

10,000

3n

2n+10

n

c and n
0

such that

f(n) ≤ cg(n) for n ≥ n
0

• Example: 2n + 10 is O(n)

– pick c = 3 and n
0
= 10

1

10

1 10 100 1,000

n

Important Functions in Big-Oh Analysis

–Constant: 1

–Logarithmic: log n

–Linear: n

–N-Log-N: n log n

–Quadratic: n2

–Cubic: n3–Cubic: n3

–Polynomial: nd

–Exponential: 2n

–Factorial: n!

Practical method for Big-Oh Analysis

• Write down cost function f(n)

1. Look for highest-order term (tilde notation)

2. Drop constant factors

• Examples

–3n3 + 20n2 + 5

–n log n + 10

Common notations for algorithm analysis

Useful Approximations

• Harmonic sum

1 + 1/2 + 1/3 + … + 1/N ~ lnN

• Triangular sum

1 + 2 + 3 + … + N = N(N+1)/2 ~ N2/21 + 2 + 3 + … + N = N(N+1)/2 ~ N /2

• Geometric sum

1 + 2 + 4 + … + N = 2N -1 ~ 2N when N = 2n

• Stirling’s approximation

lg N! = lg1 + lg2 + lg3 + … + lgN ~ NlgN

Common order-of-growth classifications

Practical implications of Order-or-growth

Example 4

for (int i = 0; i < n; i ++) {

for (int j = i; j < n; j ++) {

sum += i*j;

}

}}

Example 4

for (int i = 0; i < n; i ++) {

for (int j = i; j < n; j ++) {

sum += i*j;

}

}}

n(n+1)

2
n+(n−1)+(n−2)+...+1+0 = is O(n)

0.5 (n2 + n) � O(n2)

Example 5

double product = 1.0;

for (int i = 1; i <= n; i *= 2) {

product *= i;

}

Example 5: Solution

double product = 1.0;

for (int i = 1; i <= n; i *= 2) {

product *= i;

}

• This has a logarithmic cost:

O(log2 n)

or O(logn) as the change of base is merely a
matter of a constant factor.

Example 6

double product = 1.0;

for (int i = 1; i <= n; i *= 2) {

for (int j = 1; j <= i; j ++) {

product *= j;

}

}

Example 6

• What about this:

double product = 1.0;

for (int i = 1; i <= n; i *= 2) {

for (int j = 1; j <= i; j ++) {

product *= j;

}

}

is O(n)1+2+4+8+...+ n

Review Question

•What is the Order of growth (big-oh) of the

following code?

for (int i=1; i<=N; ++i){

for (int j=1; j<=N; j*=2){

count++;count++;

}

}

Search in Ordered vs. Unordered Array

• What’s the big O function for linear search?

• Binary search?

Search in Ordered vs. Unordered Array

• What’s the big O function for linear search?

O(N)

• Binary search? O(lgN)

• Binary search has much better running time, • Binary search has much better running time,

particularly for large-scale problems

Today

• Algorithm Analysis (cont)

• Simple sorting algorithms

Sorting problem

Sorting Problem

Sorting Problem

• How do you sort a hand of poker cards?

Simple sort

• Bubble sort

• Selection sort

• Insertion sort

Two useful sorting abstractions

Bubble Sort

• Intuition:

– Find the biggest number.

– Find the second biggest number.

– Find the third biggest number.– Find the third biggest number.

– …

• This gives you an ordering of the numbers.

• Bubble sort achieves this by repeatedly
swapping two adjacent numbers.

• After one pass, we find the biggest number.

Bubble Sort

• It’s like the biggest ‘bubble’ floats to the top

of the surface, hence the name ‘bubble sort’.

• In the second pass, we repeat the same

process, but now we only have N-1 numbers
to work on.

• The third pass is the same, with only N-2

Bubble Sort

• The third pass is the same, with only N-2
numbers.

• …

• Repeat until all players are in order.

Analysis of Bubble Sort

• Number of comparisons?

• Number of swaps?• Number of swaps?

= O(N)

Analysis of Bubble Sort

• Number of comparisons?

• Number of swaps?

2N(N −1)

2

= O(N)

• Number of swaps?

best case:

worst cast:

average:

= O(N2)

2

N(N −1)

2

N(N −1)

4

O(1)

Selection Sort

1. Keep track of the index of the smallest
number in each round.

2. Swap the smallest number towards the
beginning of the array.beginning of the array.

3. Repeat the above two steps.

Selection Sort

Selection Sort

Selection Sort Implementation

Selection Sort

• Online demo

–http://www.sorting-algorithms.com/selection-sort

• Gypsy dance demo

–http://www.youtube.com/watch?v=Ns4TPTC8whw

Selection Sort

• Number of comparisons?

• Number of swaps?

O(N2)

Selection Sort

• Number of comparisons?

O(N2)

• Number of swaps?

O(N)

