CS 171: Introduction to Computer
Science ||

Algorithm Analysis + Simple
Sorting

Li Xiong

Today

* Algorithm Analysis (cont)
* Simple sorting algorithms

Tilde Notation

* Tilde notation: 1gnore insignificant terms
* Definition: we write f(n) ~ g(n) 1f f(n)/g(n)
approaches 1 as n grows

*2n+10 ~2n
e3n3+20n2+5 ~ 3n3

Big-Oh Notation

* Given functions f(n) and 10,000

g(n), we say that f(n) is =30
O(g(n)) if there are 1,000 20+10
positive constants —n

¢ and n, such that 100

fin) < cg(n) forn=n,

10

* Example:2n + 10is O(n) !

1 10 100 1,00(

—pick ¢ =3 and ny= 10 r

Important Functions in Big-Oh Analysis

—Constant: 1
—Logarithmic: log muose

—Linear: n 2048
1024

—N-Log-N:nlogn _,
—Quadratic: n? 256
—Cubic: n? 128
.) d 64
—Polynomial: n N

—Exponential: 2" 16

—Factorial: n! 9
4
2
|

© The McGraw-Hill Companies, Inc. all rights reserved.

n!

2
n

nlogn

n

log n

W il |

log-log plot

512T — E g {}E" {(‘\\Q
= S Q& N &
3 S/ /A
1 s § " *SNL
2 N W
1 £
64T -
W
£ -
8T -
4T -
2T — . .
logarithmic
T constant
| | | | | | | | | |
1K 2K 4K 8K 512K

size

Typical orders of growth

Practical method for Big-Oh Analysis

* Write down cost function f{(n)
1. Look for highest-order term (tilde notation)
2.Drop constant factors

* Examples
-3n3 + 20n2 + 5
—nlog n + 10

Common notations for algorithm analysis

10 N2 provide

Tilde leading term ~ 10 N2 10 N2+ 22 Nlog N approximate
ION2+2 N+ 37 model
' i lassif
Big Theta asymptotic O(N2) 10 N2 C a515| y
growth rate algorithms

5N2+ 22 Nlog N+ 3N

10 N2
Big Oh O(N2) and smaller O(N2) 100 N

22 Nlog N+ 3N

develop
upper bounds

Y2 N2
Big Omega O(N2) and larger Q(N2) N>
N3+ 22 NlogN+ 3N

develop
lower bounds

Useful Approximations

* Harmonic sum
1+1/2+1/3+...+1/N ~InN
* Triangular sum
1+2+3+..+N=N(N+1)/2 ~ N?/2
* Geometric sum
1+2+4+...+N=2N-1~2N when N =2"
e Stirling’s approximation
lg NI =1g1 +1g2 +1g3 + ... +|IgN ~ NIgN

Common order-of-growth classifications

grr%\{uéth name typical code framework description example
add two
| constant a=b + c; statement |
numbers
log N logarithmic while (N > 1) divide in half binary search ~ 1
_ L i o0 - find the
N linear for (int i 0; i € N; i++) |00p . 2
{ ... } maximum
. . : divide
N log N linearithmic [see mergesort lecture] mergesort ~ 2
and conquer
for (int i = 0; i < N; i++) check all
N2 quadratic for (int j = 0; j < N; 3++) double loop . 4
{ ... } pairs
for (int i = 0; i < N; i++) heck all
. for (int 3 = 0; j < N; j++) . cneck a
3
N cubic for (int k = 0. k < N ki+) triple loop triples 8
{ ... }
_ _ , exhaustive check all
2N exponential [see combinatorial search lecture] T(N)

search subsets

Practical implications of Order-or-growth

problem size solvable in minutes

1970s 1980s 1990s

tens of hundreds of

N millions o o billions
millions millions
hundreds of . . hundreds of
N log N millions millions L

thousands millions

N2 hundreds thousand thousands tens of
thousands
N3 hundred hundreds thousand thousands

20 20s 20s 30

Example 4
for (int i = 0; 1 < n; i ++) {
for (int j = i; j < n; j ++) {

sum += i*j;

}

Example 4

for (int i = 0; 1 < n; i ++) {
for (int j = i; j < n; j ++) {
sum += i*j;

}

n+(n—1)+(n-2)+..+1+0 = =) is

2

0.5 (n?+n) 2 0O(n?)

Example 5

double product =1.0;
for (int 1 = 1; 1 <= n;
product *= 1;

)

{

Example 5: Solution

double product =1.0;
for (int 1 = 1; 1 <= n; |1 *= 2) {
product *= 1;

}
* This has a|logarithmic|cost:

O(log2 n)

or O(logn) as the change of base is merely a
matter of a constant factor.

Example 6

double product =1.0;
for (int 1 = 1; 1 <= n; 1 *= 2) {
for (int jJ = 1; J <= 1i; J ++) {
product *= j;

Example 6

 What about this:
double product =1.0;
for (int 1 = 1; 1 <= n; i *=2) {
for (int §j = 1; J <= i; j ++) {
product *= j;

}

14+244+8+...+n 18 O(n)

Review Question

* What is the Order of growth (big-oh) of the
following code?

_ for (int i=1; i<=N; ++i){
—for (int j=1; j<=N; j*=2){
count++;

-

Search in Ordered vs. Unordered Array

» What's the big O function for linear search?
* Binary search?

Search in Ordered vs. Unordered Array

» What's the big O function for linear search?

O(N)

* Binary search? O(IgN)

* Binary search has much better running time,
particularly for large-scale problems

Today

* Algorithm Analysis (cont)
* Simple sorting algorithms

Sorting problem

Ex. Student records in a university.

Chen 3 A 991-878-4944 308 Blair
Rohde 2 A 232-343-5555 343 Forbes
Gazsi B 766-093-9873 101 Brown
o —s n-

Kanaga 898-122-9643 22 Brown

Andrews 3 A 664-480-0023 097 Little

key — s Battle 874-088-1212 121 Whitman

Sort. Rearrange array of N items into ascending order.

Andrews 3 A 664-480-0023 097 Little
Battle 4 G 874-088-1212 121 Whitman
Chen 3 A 991-878-4944 308 Blair
Furia I A 766-093-9873 101 Brown
Gazsi 4 B 766-093-9873 101 Brown

Kanaga 3 B 898-122-9643 22 Brown
Rohde 2 A 232-343-5555 343 Forbes

thwﬂ
nmm“

Sorting Problem

* How do you sort a hand of poker cards?

Simple sort

e Bubble sort
e Selection sort
* Insertion sort

Two useful sorting abstractions

Helper functions. Refer to data through compares and exchanges.

Less. Isitem v less thanw ?

private static boolean less (Comparable v, Comparable w)

{ return v.compareTo(w) < 0; }

Exchange. Swap item in array a[1 at index i with the one at index 3.

private static wvoid exch (Comparable[] a, int i, int j)

{
Comparable swap = al[i];
a[i] = a[3jl;
alj] = swap;

Bubble Sort

e |ntuition:

— Find t
— Find t
— Find t

ne biggest number.
he second biggest number.

ne third biggest number.

* This gives you an ordering of the numbers.

* Bubble

sort achieves this by repeatedly

swapping two adjacent numbers.

tihfaitd
i“\gﬂl?ﬂ
whiftith

Bubble Sort

» After one pass, we find the biggest number.

thtﬁiﬁ“

* |t’s like the biggest ‘bubble’ floats to the top
of the surface, hence the name ‘bubble sort’.

Bubble Sort

In the second pass, we repeat the same

process, but now we only have N-1 numbers
to work on.

The third pass is the same, with only N-2
numbers.

Repeat until all players are in order.

Analysis of Bubble Sort

* Number of comparisons?

* Number of swaps?

Analysis of Bubble Sort

 Number of comparisons?

NN -1)
2

= O(N?)

* Number of swaps?
best case: O(1)

NN —1)

worst cast: , - O(N?)

NN -1)
4

average: - O(N'?)

Selection Sort

1. Keep track of the index of the smallest
number in each round.

2. Swap the smallest number towards the
beginning of the array.

3. Repeat the above two steps.

Selection Sort

Algorithm. 1 scans from left to right.

Invariants.

» Entries the left of | (including 1) fixed and in ascending order.
» No entry to right of | is smaller than any entry to the left of 1.

3
212)2

in final order !

Selection Sort

* Move the pointer to the right.

T o
 Identify index of minimum entry on right.

int min = 1i;
for (int j = i+l; j < N; j++)
if (less(al[jl, alminl]))

min = j;

» Exchange info position.

exch(a, i, min); I

Selection Sort Implementation

int N = a.length;
for (int i = 0; i < N; i++)
{
int min = 1i;
for (int j = i+l; j < N; j++)
if (less(a[j], a[min]))

min = j;

exch(a, 1, min);

Selection Sort

* Online demo

—http://www.sorting-algorithms.com/selection-sort

* Gypsy dance demo
—http://www.youtube.com/watch?v=Ns4TPTC8whw

Selection Sort

* Number of comparisons?

* Number of swaps?

Selection Sort

* Number of comparisons?

O(N?)

* Number of swaps?

O(N)

