
CS 171: Introduction to Computer Science II

Simple Sorting (cont.) + InterfaceSimple Sorting (cont.) + Interface

Li Xiong

Today

• Simple sorting algorithms (cont.)

–Bubble sort

–Selection sort

–Insertion sort

Interface• Interface

Sorting problem

Two useful sorting abstractions

= O(N)

Analysis of Bubble Sort

• Number of comparisons?

• Number of swaps?

2N(N −1)

2

= O(N)

• Number of swaps?

best case:

worst cast:

average:

= O(N2)

2

N(N −1)

2

N(N −1)

4

O(1)

Selection Sort

1. Keep track of the index of the smallest
number in each round.

2. Swap the smallest number towards the
beginning of the array.beginning of the array.

3. Repeat the above two steps.

Selection Sort Implementation

O(N2)

Selection Sort

• Number of comparisons?

O(N2)

• Number of swaps?

O(N)

Card Sorting Exercise

• How do you sort a hand of poker cards?

Insertion Sort

• Idea

– Assume the left portion of the array is partially
sorted (however, unlike selection sort, the

elements are not necessarily in their final
positions)positions)

– For each remaining element on the right portion,

insert it to the left portion (similar to insertion in
an ordered array).

– Repeat until done.

Insertion Sort Implementation

Insertion Sort

• Online demo

–http://www.sorting-algorithms.com/insertion-sort

• Romanian dance demo

–http://www.youtube.com/watch?v=ROalU379l3U

Insertion Sort

• Number of comparisons?

• Number of exchanges?

Insertion sort

• Best case

–N-1 comparisons

–0 exchanges

•Worst case

–~N2/2 comparisons

–~N2/2 exchanges

• Average case

–~N2/4 comparisons

–~N2/4 exchanges

Summary

• Both selection and insertion sort are comparison

based.

• Both have an average comparison cost of O(N2)

• Later we will learn several faster sorting

algorithms, with a typical cost of O(N logN)

Hw2

• Implement Bubble Sort

• Compare the runtime for bubble sort,

selection sort, and insertion sort

Java’s Sorting Methods

• Primitive Type Arrays:
Arrays.sort(int[]);

Arrays.sort(int[], int fromIdx, int toIdx);

Arrays.sort(float[]);

…………

What sorting algorithm is used?

Java’s Sorting Methods
• Object Type Arrays:

Arrays.sort(Object[], Comparator);

Arrays.sort(Object[], int fromIdx, int
toIdx, Comparator);

……

Arrays.sort(Object[]);

……

• Comparator is used to define how to compare two
objects (i.e. which is bigger / smaller).

int comparecomparecomparecompare(T o1, T o2)

boolean equalsequalsequalsequals(Object obj)

What sorting algorithm is used?

Today

• Simple sorting algorithms (cont.)

–Bubble sort

–Selection sort

–Insertion sort

Interface• Interface

Insertion Sort Implementation

Callback Mechanism: Interface

Abstract Classes and Interfaces

• Abstract class and abstract methods

• Interfaces

Superclasses and Subclasses

27

Abstract Classes and Abstract

Methods
 GeometricObject

-color: String

-fi lled: boolean

-dateCreated: java.util.Date

#GeometricObject()

+getColor(): String

+setColor(color: String): void

+isFilled (): boolean

+setFilled(fi lled: boolean): void

+getDateCreated(): java.uti l.Date

+toStrin g(): String

The # sign indicates

protected modifer

Abstract class

28

+toStrin g(): String

+getArea(): double

+getPerimeter(): double

Circle

-radiu s: double

+Circle()

+Circle(radius: double)

+getRadius(): double

+setRadius(radius: d ouble): void

+getDiameter(): double

Rectangle

-width: double

-height: double

+Rectangle()

+Rectangle(width: double, heigh t: double)

+getWid th(): double

+setWidth(wid th: double): void

+getHeight(): double

+setHeight(height: doub le): void

Abstract methods
Methods getArea an d getPerimeter are overridden in
Circle and Rectangle. Overrid den methods are

generally omitted in the UML d iagram for subclasses.

abstract method in abstract class

public abstract void method();

• If a class contains abstract methods, it must be

declared abstract

• If a subclass of an abstract superclass does not

29

• If a subclass of an abstract superclass does not

implement all the abstract methods, the subclass

must be declared abstract

Instance cannot be created from abstract class

• An abstract class cannot be instantiated using the new

operator

• You can still define its constructors, which are invoked

in the constructors of its subclasses

• For instance, the constructors of GeometricObject are

30

• For instance, the constructors of GeometricObject are

invoked in the Circle class and the Rectangle class.

superclass of abstract class may be concrete

• A subclass can be abstract even if its superclass is

concrete

• For example, the Object class is concrete, but its

subclasses, such as GeometricObject, may be abstract

31

abstract class as type

• You cannot create an instance from an abstract class

using the new operator, but an abstract class can be

used as a data type

GeometricObject obj = new Circle(10);

32

GeometricObject[] geo = new GeometricObject[10];

GeometricObject obj = new Circle(10);

Review questions

•Which of the following declares an abstract

method in an abstract Java class?

A. public abstract method(); A. public abstract method();

B. public abstract void method();

C. public void abstract Method();

D. public void method() {}

E. public abstract void method() {}

33

Review questions

Which of the following statements regarding

abstract methods are true?

A. An abstract class can have instances created using

the constructor of the abstract class.the constructor of the abstract class.

B. An abstract class can be extended.

C. A subclass of a non-abstract superclass can be

abstract.

D. An abstract class can be used as a data type.

34

Review questions

Suppose A is an abstract class, B is a concrete

subclass of A, and both A and B have a default

constructor. Which of the following is correct?

A a = new A();A a = new A();

A a = new B();

B b = new A();

B b = new B();

35

Interfaces

•What is an interface?

•Why is an interface useful?

• How do you define an interface?

• How do you use an interface?• How do you use an interface?

36

What is an interface?

Why is an interface useful?
• An interface is a classlike construct that contains

only constants and abstract methods

• In many ways, an interface is similar to an

abstract class, but the intent of an interface is to

specify behavior for objectsspecify behavior for objects
– Specify objects that are comparable, edible, cloneable using appropriate

interfaces such as Comparable, Edible, and Cloneable

• A class that implements an interface need to

implement all the abstract methods
– define Orange and Chicken classes that implement Edible interface

37

Interface is a Special Class

• Like an abstract class, you cannot create an

instance from an interface using the new

operator

• You can create an instance from a class that

implements an interfaceimplements an interface

• You can use an interface as a data type for a

variable, as the result of casting, and so on.

38

Define an Interface

public interface InterfaceName {
constant declarations;
method signatures;

}

public interface Edible {

39

public interface Edible {

/** Describe how to eat */

public abstract String howToEat();

}

Omitting Modifiers in Interfaces

–All data fields are public final static (constants)

in an interface

–All methods are public abstract in an interface

 public interface T1 {
 public static final int K = 1; Equivalent

public interface T1 {

 int K = 1;

40

 public static final int K = 1;

 public abstract void p();

}

Equivalent int K = 1;

 void p();
}

The Comparable Interface

// This interface is defined in

// java.lang package

package java.lang;

41

public interface Comparable {

public int compareTo(Object o);

}

String and Date Classes

•Many classes (e.g., String and Date) in the

Java library implement Comparable to define

a natural order for the objects
 public class String extends Object

 implements Comparable {

 // class body omitted

public class Date extends Object

 implements Comparable {

 // class body omitted

42

 // class body omitted

}

 // class body omitted

}

Declaring Classes to Implement

Comparable

Rectangle

-

GeometricObject
-

«interface»

java.lang.Comparable

+compareTo(o: Object): int

ComparableRectangle

43

ComparableRectangle rectangle1 = new ComparableRectangle(4, 5);

ComparableRectangle rectangle2 = new ComparableRectangle(3, 6);

System.out.println(Max.max(rectangle1, rectangle2));

ComparableRectangle
-

Callback Mechanism: Interface

