CS 171: Introduction to Computer
Science I

Stacks and Queues

Li Xiong

Today

* Quick note on running book code

e Stacks
— Operations
— Implementations

Book code

* All book code are available at
~cs171000/share/book

* To go to the directory from a lab machine
cd ~cs171000/share/book

* To run a program from the directory
(classpath include stdlib.jar)

java -cp .:* Selection < tiny.txt

Stacks and queues

Fundamental data types.

* Value: collection of objects.

» Operations: insert, remove, iterate, test if empty.

e Intent is clear when we insert.

stack

Which item do we remove?

enqueue

push

pop

dequeue

Stack. Examine the item most recently added. <«— LIFO ="last in first out"

Queue. Examine the item least recently added. «— FIFo = "first in first out”

Stacks

* A stack stores an array of elements but with
only two main operations:

Push: add an element to the top of the stack
Pop: remove the top element of the stack.

* Pop always removes the last element that’s

added to the stack. This is called LIFO (Last-
In-First-Out).

Stacks — A Familiar Example

A can of tennis balls

— Imagine the entire can represents an array, and
each ball is an element.

— It only allows access to one element at a time:
the last element.

— If you remove the last element,
you can then access the

next-to-last element.

— There is no way to directly access
the element at the bottom.

Stacks — Another Example

* A dynamic list of tasks you perform everyday:

— Imagine you start your day by working on task A.

— At any time you may be interrupted by a co-
worker asking you for temporary help on task B.

— While you work on B, someone may interrupt
you again for help on task C.

— When you are done with C, you will resume
working on B.

— Then you go back to work on A.
— Think about the sequence of tasks you perform.

Stacks — Any other examples?

E ¥

Stack Examples

Stacks

An element cannot be inserted to or accessed
from the middle of the array.

The only way you modify the elements is
through the push and pop operations.

This capability turns out to be very useful in
many programming situations.

In a computer, the stack is an essential data

structure for handling program calls and
returns.

Stacks

* Programmer’s tool

— Arrays are typically used as data storage
structures in apps such as a database (e.g.
personal records, inventories ...)

— In contrast, stacks are often used as

programmer’s tool, and are not typically used
for data storage.

Client, implementation, interface

Separate interface and implementation.

Ex: stack, queue, bag, priority queue, symbol table, union-find,

Benefits.
* Client can't know details of implementation =
client has many implementation from which to choose.
» Implementation can't know details of client needs =
many clients can re-use the same implementation.
» Design: creates modular, reusable libraries.

» Performance: use optimized implementation where it matters.

Client: program using operations defined in interface.
Implementation: actual code implementing operations.

Interface: description of data type, basic operations.

Stack API

Warmup API. Stack of strings data type.

public class StackOfStrings
StackOfStrings () create an empty stack
void push(String s) insert a new item onto stack
String pop () remove and return the item
most recently added
boolean isEmpty () is the stack empty?
int size() number of items on the stack

Warmup client. Reverse sequence of strings from standard input.

Stack test client

public static void main(String[] args) push pop

{
StackOfsStrings stack = new StackOfsStrings();
while (!StdIn.isEmpty())

{

String item = StdIn.readString() ; —
if (item.equals("-")) StdOut.print(stack.pop());
else stack.push (item) ;

% more tobe.txt

to be or not to - be - - that - - - is

% Java StackOfstrings < tobe. txt

Stack test client

public static void main(String[] args) push pop

{
StackOfstrings stack = new StackOfStrings();
while (!StdIn.isEmpty())

{ .

String item = StdIn.readString() ; |
if (item.equals("-")) StdOut.print(stack.pop());
else stack.push (item) ;

% more tobe.txt

to be or not to - be - - that - - - is

% Java StackOfstrings < tobe. txt
to be not that or be

Stack: array implementation

Array implementation of a stack.
» Use array s[1 to store n items on stack.
» push(): add new item at s[n].

* pop(): remove item from s[n-1].

s[] to be or not to be null null null null

0 1 2 3 4 5 6 7 8 9

N capacity = 10

Stack: array implementation

use to index into array; _
then increment N '

decrement N;
then use to index into array

Stack: Array implementation

* Underflow: what happens if pop from an
empty stack?
— Throw exception

* Overflow: what happens if push to a full
stack?

— Use resizing array

Stack: resizing-array implementation

Problem. Requiring client to provide capacity does not implement APT!
Q. How to grow and shrink array?

First try.
* push(): increase size of array s[1 by 1.

« pop(): decrease size of array s(1 by 1.

Stack: resizing-array implementation

Problem. Requiring client to provide capacity does not implement APT!
Q. How to grow and shrink array?

First try.
* push(): increase size of array s[1 by 1.

« pop(): decrease size of array s(1 by 1.

Too expensive.

* Need to copy all item to a new array.

 Inserting first N items takes time proportional to 1+2+ ...+ N ~ N2/2.

T

infeasible for large N

Challenge. Ensure that array resizing happens infrequently.

Stack: resizing-array implementation

"repeated doubling"

?
Q. How to grow array: r

A. If array is full, create a new array of twice the size, and copy items.

public ResizingArrayStackOfStrings()
{ s = new String[l];, }

public void push(String item)

{
if (N == s.length) resize(2 * s.length);
s[N++] = item;

private void resize (int capacity)
{
String[] copy = new String[capacity];
for (int 1 = 0; 1 < N; i++4)
copyl[i] = s[i];

S = copy;

cost of array resizing is how
2+4+8+4+...+N ~ 2N

l

Consequence. Inserting first N items takes time proportional to N (not N2).

Stack: Array Implementation

* What's the cost of pushing/adding to a stack
of size N?

— Case 1: array resizing not required
— Case 2: array resizing required

Stack: amortized cost of adding to a stack

Cost of inserting first Nitems. N + 2+4+8+...+N) ~ 3N.

t 1

1 array accesses k array accesses
per push to double to size k
(ignoring cost to create new array)

128 .

N\

one gray dot 128

for each operation

N

ot red dots give cumulative average ;-

3 \ /

cost (array accesses)

R e

0 number of push() operations 128

Stack: resizing-array implementation
Q. How to shrink array?

First try.

* push(): double size of array s11 when array is full.

* pop(): halve size of array s11 when array is one-half full.

Stack: resizing-array implementation
Q. How to shrink array?

First try.
* push(): double size of array s11 when array is full.

* pop(): halve size of array s11 when array is one-half full.

"thrashing"
Too expensive in worst case. /

* Consider push-pop-push-pop-... sequence when array is full.
 Each operation takes time proportional to N.

N =5 to be or not to null null null

N =4 to be or not

N =25 to be or not to null null null

Stack: resizing-array implementation
Q. How to shrink array?

Efficient solution.

* push(): double size of array s(1 when array is full.

* pop(): halve size of array s11 when array is one-quarter full.

public String pop()
{

String item = s[--N];
s[N] = null;

if (N > 0 && N == s.length/4) resize(s.length/2);
return item;

Invariant. Array is between 25% and 100% full.

Stack resizing-array implementation: performance

Amortized analysis. Average running time per operation over

a worst-case sequence of operations.

Proposition. Starting from an empty stack, any sequence of M push and pop
operations takes time proportional to M.

construct 1

push

doubling and
halving operations

order of growth of running time
for resizing stack with N items

Parameterized stack

We implemen‘l'ed: StackOfStrings.

We also want: StackOfURLs, StackOfInts, StackOfVans,
Attempt 1. Implement a separate stack class for each type.

» Rewriting code is tedious and error-prone.

 Maintaining cut-and-pasted code is tedious and error-prone.

@#%*| most reasonable approach until Java 1.5.

Parameterized stack

We implemen'l'ed: StackOfsStrings.

We also want: stackofURLs, StackOfInts, StackOfVans,

Attempt 2. Implement a stack with items of type object.
 Casting is required in client.

 Casting is error-prone: run-time error if types mismatch.

StackOfObjects s = new StackOfObjects() ;
Apple a = new Apple();

Orange b = new Orange() ;

s.push(a) ;

s.push(b) ;

a = (Apple) (s.pop());

run-time error

Parameterized stack

We implemented: stackofstrings.

We also want: StackOfURLs, StackOfInts, StackOfVans,

Attempt 3. Java generics.
* Avoid casting in client.

» Discover type mismatch errors at compile-time instead of run-time.

type parameter

—

Stack<Apple> s = new Stack<Apple>();
Apple a = new Apple();

Orange b = new Orange();

s.push(a) ;

s .push (b) ; <
a = s.pop();

compile-time error

Guiding principles. Welcome compile-time errors; avoid run-time errors.

Generic stack: array implementation

the way it should be

{ s = new Item[capcity] 2

@#$*! generic array creation not allowed in Java

Generic stack: array implementation

the way it is

(Item[]) new Object[capacity]:;

the ugly cast

Generic data types: autoboxing
Q. What to do about primitive types?
Wrapper type.

» Each primitive type has a wrapper object type.
« Ex: 1integer is wrapper type for int.

Autoboxing. Automatic cast between a primitive type and its wrapper.

Syntactic sugar. Behind-the-scenes casting.

Stack<Integer> s = new Stack<Integer>()
s.push (17) ; // s.push(new Integer(17));
int a = s.pop(); // int a = s.pop().intValue() ;

Bottom line. Client code can use generic stack for any type of data.

Stack: Resizing Array
Implementation

 ResizingArrayStack.java

Today

* Quick note on running book code
e Stacks

* Coming up
— Applications using stack
— Queues

