
CS 171: Introduction to Computer
Science II

Stacks and Queues

Li Xiong

Today

• Stacks: implementations and applications

• Queues: implementations

• Applications using queues

• Deque• Deque

• Iterators

• Java collections library – List, Stack,
Queue

• Maze application (Hw3)

Queue: applications

• Josephus problem

N people arrange themselves in a circle (at

positions numbered from 0 to N-1) and

proceed around the circle, eliminating every proceed around the circle, eliminating every

Mth person until only one person is left.

Print out the order in which people are

eliminated.

public class Josephus {
public static void mainmainmainmain(String[] args) {

int M = Integer.parseIntparseIntparseIntparseInt(args[0]);
int N = Integer.parseIntparseIntparseIntparseInt(args[1]);

// initialize the queue
Queue<Integer> q = new Queue<Integer>();
for (int i = 0; i < N; i++)

Queue: applications

for (int i = 0; i < N; i++)
q.enqueueenqueueenqueueenqueue(i);

// eliminating every Mth element
while (!q.isEmptyisEmptyisEmptyisEmpty()) {

for (int i = 0; i < M-1; i++)
q.enqueueenqueueenqueueenqueue(q.dequeuedequeuedequeuedequeue());
StdOut.printprintprintprint(q.dequeuedequeuedequeuedequeue() + " ");

}
StdOut.printlnprintlnprintlnprintln();

}
}

Deque

• Double-ended queue

• Can insert and delete items

at either end

• Can be a Stack OR a Queue!

– addFirst, addLast, removeFirst, removeLast

• Stack: if only addLast and removeLast

• Queue: if only addLast and removeFirst

Today

• Applications using queues

• Deque

• Iterators

• Java collections library – List, Stack, • Java collections library – List, Stack,

Queue

• Maze application (Hw3)

Today

• Stacks: implementations and applications

• Queues: implementations

• Applications using queues

• Deque• Deque

• Iterators

• Java collections library – List, Stack,
Queue

• Maze application (Hw3)

Java Queues and Deques

• java.util.Queue is an interface and has multiple

implementing classes

– insert() and remove()

• java.util.Deque is an interface and has multiple

implementing classesimplementing classes

– Supports insertion and removal at both ends

– addFirst(), removeFirst(), addLast(), removeLast()

Java ArrayDeque class

• java.util.ArrayDeque implements Deque interface

and supports both stack and queue operations

• Queue methods

– add(), addLast()

– remove(), removeFirst()– remove(), removeFirst()

– peek(), peekFirst()

• Stack methods

– push(), addFirst()

– pop(), removeFirst()

– peek(), peekFirst()

Java ArrayDeque Example

import java.util.ArrayDeque;

import java.util.Iterator;

public class DequeTest {

public static void main(String[] args) {

ArrayDeque<Integer> s = new ArrayDeque<Integer> ();

s.push(2);

}

}

s.push(2);

s.push(4);

s.push(6);

System.out.println(s);

System.out.println(s.pop());

// use iterator to access inner elements

Iterator<Integer> iter = s.iterator();

while (iter.hasNext())

System.out.println(iter.next());

Today

• Stacks: implementations and applications

• Queues: implementations

• Applications using queues

• Deque• Deque

• Iterators

• Java collections library – List, Stack, Queue

• Hw3: Maze application using stacks and

queues

HW3: Maze Traversal

2/21/2012 18

Maze Traversal
• A maze is a square space represented using two-dimensional

array

– Each cell has value 0 (passage) or 1 (internal wall).

– Entrance at upper left corner, an exit at lower right corner

• Find a path through from entrance to exit

2/21/2012 19

 ENTER --> X 1 1 1 0 0 X---X---X 0

 | | |

 X---X---X 1 0 0 X 1 X 0

 | | |

 0 1 X 1 1 X---X 1 X 0

 | | |

 0 1 X---X 1 X 1 1 X 0

 | | |

 0 1 0 X 1 X 1 1 X 0

 | | |

 1 1 1 X 1 X 1 X---X 0

 | | |

 0 0 1 X---X---X 1 X 1 1

 |

 0 0 1 0 0 0 1 X 1 1

 |

 0 1 1 0 1 0 1 X-- X-- X

 |

 0 0 0 0 1 0 1 1 0 X --> EXIT

Example Output
Path: ([0][0], [1][0], [1][1], [1][2], [2][2],

 [3][2], [3][3], [4][3], [5][3], [6][3],

 [6][4], [6][5], [5][5], [4][5], [3][5],

 [2][5], [2][6], [1][6], [0][6], [0][7],

 [0][8], [1][8], [2][8], [3][8], [4][8],

 [5][8], [5][7], [6][7], [7][7], [8][7],

 [8][8], [8][9], [9][9])

 ENTER --> X 1 1 1 0 0 X---X---X 0

 | | |

 X---X---X 1 0 0 X 1 X 0

2/21/2012 20

 X---X---X 1 0 0 X 1 X 0

 | | |

 0 1 X 1 1 X---X 1 X 0

 | | |

 0 1 X---X 1 X 1 1 X 0

 | | |

 0 1 0 X 1 X 1 1 X 0

 | | |

 1 1 1 X 1 X 1 X---X 0

 | | |

 0 0 1 X---X---X 1 X 1 1

 |

 0 0 1 0 0 0 1 X 1 1

 |

 0 1 1 0 1 0 1 X-- X-- X

 |

 0 0 0 0 1 0 1 1 0 X --> EXIT

Maze search

• Depth-first search

– At each choice point, follow one path until there is

no further choice or exit reached

– Back trace to previous choice point– Back trace to previous choice point

• Breadth-first search

– Split at every choice point

Maze Search Using Stack

• Create a search stack of positions, push the
entrance position, (0,0), to the search stack

• While the search stack is not empty
– Pop the current position from the search stack

– If it is the exit position, [n-1, n-1], then a path is – If it is the exit position, [n-1, n-1], then a path is
found, print out the path.

– else, mark the position as visited, push all valid up,
down, left, or right neighbor positions (with the
current position as its parent) to the stack

• If the stack is empty and a path is not found,
there is no path

2/21/2012 22

Maze Search Using Queue

• Create a search queue of positions, push the
entrance position, (0,0), to the search queue

• While the search queue is not empty
– remove a position from the search queue

– If it is the exit position, [n-1, n-1], then a path is – If it is the exit position, [n-1, n-1], then a path is
found, print out the path.

– else, mark the position as visited, insert all valid up,
down, left, or right neighbor positions (with the
current position as its parent) to the queue

• If the queue is empty and a path is not found,
there is no path

2/21/2012 23

Implementation Hints/details

• Use a simple object (e.g., Cell) to store the (i,

j) position in the maze

• Use built-in Java Deque to manage your Cells

– uses a Stack or a Queue to manage the search list– uses a Stack or a Queue to manage the search list

2/21/2012 24

