
CS 171: Introduction to Computer 
Science II

Linked List

Li Xiong



What we have learned so far

• Basic data structure

–Arrays

• Abstract data types

–Stacks

• Last-In-First-Out (LIFO)

•Operations: push, pop

–Queues

• First-In-First-Out (FIFO)

•Operations: enqueue, dequeue



Arrays

• Arrays have certain disadvantages:

– Search is slow in unordered array

– Insertion is slow in ordered array

– Deletion is slow in both cases– Deletion is slow in both cases

– Both insertion into ordered array and deletion 

require moving elements 

– Difficult to support dynamic size



A Different Data Structure

• Linked List

– A general-purpose storage structure

– Can replace arrays in many cases

– Insertion and deletion are fast– Insertion and deletion are fast

– Truly supports dynamic size



Linked list

• Linked list concept

• Linked list operations

• Different versions of linked list

• Re-implementing stacks and queues using linked • Re-implementing stacks and queues using linked 

list



Linked List
• A Linked List is a sequence of nodes chained 

together.

• Each node, element, or link contains a data item,

and a reference to next node



Node

class Node {

Item item;

Node next;

}

Data

Reference to

the next node}

• This is called self-referential.

– A class containing a reference to itself.

the next node



Self-Referential
• In Java, an object type variable stores a 

reference, a pointer, to an object,

it does not contain the object.

• A reference is a memory address• A reference is a memory address

to the actual object.

• All references are of the same size:
(regardless of what they point to)
– 4 bytes in a 32-bit program

– 8 bytes in a 64-bit program



Object vs. Object Reference

object object reference



Linked List



Difference with Arrays

• The major difference of Linked List with Array

is that Array stores elements continuously in
memory while linked list does not.

• Linked list supports dynamic size

• There is no simple indexing in Linked List.

• Linked List incurs some memory overhead,
because of the need to store references.



Building a linked list

• Example: to build a linked list 

that contains the 

items ”to”, ”be”, and ”or”

• Create a Node for each item

–set the item field to the –set the item field to the 

desired value

–set the next field to next node

• Maintains a link to the first 

node of the list, also called 

root, head



Linked List Operations

• Insert

– Inserts an element at the front.

– It’s possible to insert at the end as well.

• Find (search)• Find (search)

– Find an element with a specific key.

• Delete

– Delete an element at the front

– Delete an element with a specific key



• Example: insert “not” at 

the beginning

Insert at the beginning



• Example: insert “not” 

at the beginning

Insert at the beginning



• Example: remove “to” at 

the beginning

Remove from the beginning



• Example: remove “to” at 

the beginning

• Set the root to the next 

node in the list

Remove from the beginning



• Example: insert “not” at 

the end

Insert at the end



• Example: insert “not” at 

the end

• Maintain a link to the last 

node in the list

Insert at the end



Double-ended Linked List
• Similar to an ordinary linked list, but in addition to

keep ‘first’, it also keeps a reference to the ‘last’

element in the list.

• What happens when the list is empty? Has only one

element?



• Example: print out the 

values of the linked list

Traversing a linked list



• Example: print out the 

values of the linked list

• Traversing a linked list

Traversing a linked list

for (Node x = first; x != null; x = x.next) { 

// process x.item

• Traversing an array

// process x.item

}

for (int i = 0; i< N; i++) { 

// process a[i] 

}



• Example: search if there is 

“be” in the linked list

• Traversing a linked list

Search in a linked list

for (Node x = first; x != null; x = x.next) { 

if x.item.equals(“be”) return x; if x.item.equals(“be”) return x; 

}



• Example: remove “be”

from the linked list

Remove a given item



• Example: remove “be” from the 

linked list

• Search the item in the list, then 

remove it

Remove a given item

for (Node x = first; x != null; x = x.next) { 

if x.item.equals(“be”) 

// remove x?

}



• Example: remove “be” from the linked list

• Search the item, then remove it

• Need to keep the reference to the

previous element as well as current

element.

Remove a given item

Node current = first;
Node previous = first;
while (current != null && !current.item.equals(“be”)){

previous = current;
current = current.next;

}
// remove current?
previous.next = current.next;



• Example: remove “be” from the linked list

• Search the item, then remove it

• Need to keep the reference to the

previous element as well as current

element.

• Need to consider the case when current is 

first

Remove a given item

first

Node current = first;
Node previous = first;
while (current != null && !current.item.equals(“be”)){

previous = current;
current = current.next;

}
// remove current
if (current == first) 

first = first.next;
else

previous.next = current.next;



Doubly Linked List

• A doubly linked list has bidirectional
references, one pointing to the next link, and

one pointing to the previous link.



Doubly Linked List

• Pros: flexibility

• Cons: complexity, memory consumption

• For clarity, we often call the ordinary linked list
explicitly as singly linked list.explicitly as singly linked list.

• Do not confuse Doubly Linked List with
Double-ended List!



Linked List vs. Arrays

• Both are general purpose data structures

• Linked list support faster delete 

• Linked list truly support dynamic size (compares 

favorably even with expandable arrays) 

• Linked list does occur memory overhead

• Linked list does not support index based access



• (Singly) linked list

• Double ended linked list

• Doubly linked list



Halloween Costume – Linked List



Doubly Linked List



Circularly Linked List



Binary Tree



Null Pointer



Linked list

• Linked list concept

• Linked list operations

• Different versions of linked list

• Re-implementing stacks and queues using linked • Re-implementing stacks and queues using linked 

list



Using Linked List

• Linked List is interchangeable with array
in many cases, we can re-implement Stacks

and Queues using Linked List.

• Implementing Stack using Linked List• Implementing Stack using Linked List

– The underlying storage using a linked list
instead of an array

– The stack interface methods are exactly the same
with before.















Linked list stack implementation performance 

• Every operation takes constant time

• No array resizing cost










