CS 171: Introduction to Computer
Science I

Linked List

Li Xiong

What we have learned so far

* Basic data structure
—Arrays
* Abstract data types

—Stacks
e Last-In-First-Out (LIFO)
 Operations: push, pop
—Queues
* First-In-First-Out (FIFO)
* Operations: enqueue, dequeue

Arrays

* Arrays have certain disadvantages:
— Search is slow in unordered array
— Insertion is slow in ordered array
— Deletion is slow in both cases
— Both insertion into ordered array and deletion
require moving elements
— Difficult to support dynamic size

A Different Data Structure

* Linked List

— A general-purpose storage structure
— Can replace arrays in many cases

— Insertion and deletion are fast

— Truly supports dynamic size

Linked list

_inked list concept

_inked list operations
Different versions of linked list

Re-implementing stacks and queues using linked
st

Linked List

* A Linked List is a sequence of nodes chained
together.

 Each node, element, or link contains a data item,

and a reference to next node
A chain of objects

A /E g L
e
f

First object
in the chain

Node

class Node {
Item item; — Data

Node next; — Reference to
} the next node

* This is called self-referential.
— A class containing a reference to itself.

Self-Referential

* |[n Java, an object type variable stores a
reference, a pointer, to an object,

it does not contain the object.

* Areference is a memory address
to the actual object.

 All references are of the same size:

(regardless of what they point to)
— 4 bytes in a 32-bit program

— 8 bytes in a 64-bit program

Object vs. Object Reference

object object reference

1600 E’enﬂsy[vcmia Ave
¥ Washington, D.C. ¥

ok §

/

First object
in the chain

\

e

4

Linked List

A chain of objects

B

L

p

What is actually stored in memory

2000

2012

\

1

2012

A

L L 1 Bf—

o

3004

>

5678

C

5678

Difference with Arrays

The major difference of Linked List with Array

is that Array stores elements continuously in
memory while linked list does not.
Linked list supports dynamic size

There is no simple indexing in Linked List.

Linked List incurs some memory overhead,
because of the need to store references.

Building a linked list

* Example: to build a linked list fode Tirst = new NodeD:

first.item = "to";
that contains the A
items ”to”, ”be”, and "or” =
* Create a Node for each item ode second - new hodeO);
—set the item field to the ﬁri’:;:”) 5“”:“
desired value N\

"] ke

—set the next field to next node [

. . . . Node third = new Node():
e Maintains a link to the first ooy iie - oewt

] second. next = third;
node of the list, also called e s
root, head e TR

ar

rii

Linked List Operations

e Insert
— Inserts an element at the front.
— It’s possible to insert at the end as well.

* Find (search)
— Find an element with a specific key.

 Delete
— Delete an element at the front

— Delete an element with a specific key

Insert at the beginning

First eicand
e t. I'd

 Example: insert “not” at : x
the beginning —l

7o

]

R

Insert at the beginning

* Example: insert “not”
at the beginning

save a link 1o the flst

Mode oldfirst = first:

oldfirst
i PaT

ta

Creae a new node for the beginring

tirst = new Node();

first =

sat thie instance variables in the new niode

first.item
first.next

First —=

— L T
— oir
I_.'J i
plofirst
b
-5
K]
_|—__'
e
= rlnutlr;
= ogldfirst:
nok
e S to !
| — b
_’ —

or

Remove from the beginning

First eicand
e t. I'd

 Example: remove “to” at 3 :
the beginning T

7o

]

R

Remove from the beginning

 Example: remove “to” at first = Firstinexs;

the beginning e T —
== — =] or

e Set the root to the next =L]
node in the list == =

Removing the first node in a linked list

Insert at the end

* Example: insert “not” at it cecond

tin
L i 5
T = L

the end =1

R

* Example: insert “not” at

the end

e Maintain a link to the last

node in the list

Insert at the end

save a linkto the last node

Node oldlast = last;

atdlast
™ '
.M1h:t
R
11— b=
- | N
e

cieate a new mode for the end

Node last = new Node():
last.item = "not”;

aldlast
LY Tast
Firs: =1 to | 4 ,
| b x 1
L I — o e
T
fiull
link the new node to the end of the list
oldlast.next = last;
oldias
\ last
firsg —a= ro 5, LY
R—

Double-ended Linked List

 Similar to an ordinary linked list, but in addition to
keep ‘first’, it also keeps a reference to the ‘last’

element in the list.
 What happens when the list is empty? Has only one

element?

next next next
Null

Traversing a linked list

* Example: print out the g
values of the linked list —

7o

7

R

Traversing a linked list

* Example: print out the R s ¥ g
values of the linked list e TR

* Traversing a linked list
= first; x != null; x = X.next)

for (Node x =
// process x.litem

J

* Traversing an array

for (int 1 = 0; 1< N; 1++) {

// process ali]

J

Search in a linked list

* Example: search if thereis = firt

thvird
o "'-,,. 3

“be” in the linked list e

R

* Traversing a linked list

for (Node x = first; x != null; X = x.next)
1f x.1ltem.equals (VYbe”) return x;

Remove a given item

* Example: remove “be” AR acond

thir
i
b o .

from the linked list _—

7o

rnil

Remove a given item

* Example: remove “be” from the

. . firs o
linked list a— i
e Search the item in the list, then —— =B §.
1 ki raili
remove It
for (Node x = first; x != null; x = x.next) {

1f x.1tem.equals (“be”)
// remove X°?

Remove a given item

* Example: remove “be” from the linked list

* Search the item, then remove it X N thind
o '
— "| Lae "
* Need to keep the reference to the = g X
previous element as well as current
element.
Node current = first;
Node previous = first;
while (current != null && !current.item.equals (“be”)) {
previous = current;
current = current.next;

J

// remove current?
previous.next = current.next;

Remove a given item

Example: remove “be” from the linked list
Search the item, then remove it N

ar

Need to keep the reference to the = =
previous element as well as current
element.

it

Need to consider the case when current is
first

Node current = first;
Node previous = first;
while (current != null && !current.item.equals (“be”)) {
previous = current;
current = current.next;
}
// remove current
1if (current == first)
first = first.next;
else
previous.next = current.next;

Doubly Linked List

* A doubly linked list has bidirectional
references, one pointing to the next link, and

one pointing to the previous link.

Null

Doubly Linked List

Pros: flexibility

Cons: complexity, memory consumption

For clarity, we often call the ordinary linked list
explicitly as singly linked list.

Do not confuse Doubly Linked List with
Double-ended List!

Linked List vs. Arrays

* Both are general purpose data structures

° Lin

° Lin

KeC

KeC

ist support faster delete
ist truly support dynamic size (compares

favorably even with expandable arrays)

° Lin
° Lin

KeC

KeC

ist does occur memory overhead

ist does not support index based access

* (Singly) linked list

* Dou
* Dou

0

0

e ended linked list
vy linked list

Halloween Costume — Linked List

Doubly Linked List

Circularly Linked List

Binary Tree

Null Pointer

Linked list

_inked list concept

_inked list operations

Different versions of linked

Re-implementing stacks and
st

Ist
gueues using linked

Using Linked List

* Linked List is interchangeable with array
iIn many cases, we can re-implement Stacks

and Queues using Linked List.

* Implementing Stack using Linked List
— The underlying storage using a linked list
instead of an array

— The stack interface methods are exactly the same
with before.

Stack: linked-list representation

Maintain pointer to first node in a linked list; insert/remove from front.

StdIn StdOut

tO to
null
be be
t
first — =
\ null
insert at front or o] e
of linked list — — —>| to
null
not not
._.____________..-—I-— o b
—F— | — | to
anll
tD to
—— | | ___>| or
= —£ — bf_Jr__,...:-r to
nuldl
- to “T_;__,...J-‘l" or ba =
_____._.--r
— —8 > +to
remove from front il
i i be
of linked list be = e N
| —] bi_r___,..rr to
null
not
— | —H _——>f to
aull

Stack pop: linked-list implementation

save item to return

String item = first.item;

delete first node

first = first.next;

inner class
. first —=| or
public class Node — > be
. - Hid
String 1tem;
Node next;
first \\\
}] be
—— % to
null

return saved item

return item;

Stack push: linked-list implementation

inner class

public class Node

{
String item;
Node next;

save a link to the list

Node oldfirst = first;

oldfirst

first — or

— | — > to
null
create a new node for the beginning
first = new Node();
oldfirst
first —
or
'-___________y be

set the instance variables in the new node

first.item = "not";
first.next = oldfirst;

first — not

to

reuldl

Stack: linked-list implementation in Java

private class Node

{

String item; - inner class
Node next;

Generic stack: linked-list implementation

dric type name

Stack iterator: linked-list implementation

import java.util.Iterator;
public class Stack<Item> implements Iterable<Item>
{
public Iterator<Item> iterator() { return new ListIterator(); }

private class ListIterator implements Iterator<Item>

{

private Node current = first;
public boolean hasNext() { return current != null; }
public void remove () { /* not supported */ }

public Item next()
{

Item item = current.item;

current = current.next;
return item;

first current

| !

Linked list stack implementation performance

* Every operation takes constant time
* No array resizing cost

Queue: linked-list representation

Maintain pointer to first and last nodes in a linked list;

insert/remove from opposite ends.

StdIn StdOut

to

be _
first

or

not

to

= to
remove from front /
of linked list

be

to

null

be

last

null

N\

| __——> or

rull

| | not

aull

or
— | | | not

not
— |l o

null

insert at end
of linked list

Queue dequeue: linked-list implementation

inner class

public class Node
{
String item;
Node next;

save item to return

String item = first.item;

delete first node

first = first.next;

first —| to

or

null

—
o-"'""-'-.-r
. last
first \,_ \
be
..-________._--'-"P

return saved item

return item;

Remark. Identical code to linked-list stack pop ().

or

il

Queue enqueue: linked-list implementation

save a link to the last node

Node oldlast = Tast;

oldlast

Tast
first — to \

__—>| be
| >| or

—
null

create a new node for the end

Node last = new Node();
inner class last.item = "not";

public class Node last.next = null;

{ oldlast
String 1item; First — oo \ Tast
Node next; — = [e \
- null not
} null

link the new node to the end of the list

oldlast.next = last;
oldlast

be

first — to \ 1as§

Queue: linked-list implementation in Java

public class LinkedQueueOfStrings
{

private Node first, last;

private class Node
{ /* same as in StackOfStrings */ }

public boolean isEmpty ()
{ return first == null; }

public void enqueue (String item)

{
Node oldlast = last;
last = new Node() ;

last.i1tem = item;

last.next = null; special cases for
if (isEmpty()) first = last; < empty queue
else oldlast.next = last;

public String dequeue ()

{

String item = first.item;
first = first.next;
if (1isEmpty()) last = null;
return item;

