
CS171 Introduction to Computer
Science II

3/1/2012 1

Recursion

Li Xiong

Announcement

• Hw3 is extended to Monday

• Quiz 1 will be distributed Tuesday

Recursion

• Recursion concept

• Examples
– Factorial

– Fibonacci

– GCD– GCD

– Recursive graph Htree

• More examples
– Binary search

– Tower of Hanoi

• Cost analysis of recursive algorithms

• Divide and conquer

Recursive Method

• A method that calls itself (direct recursion)

• Every recursive method must have a base case that is not
recursive

void recursiveMethod() {
…

if (base case) {if (base case) {

… …

}

else {

… …

recursiveMethod();

… …

}

}

Divide and Conquer

– A big problem is divided into

two or more problems with smaller sizes (sub-problems).

– To solve a sub-problem, you again divide it into
even smaller problems.

– The process continues until you get to the base

case, which can be solved trivially.
The process continues until you get to the base

case, which can be solved trivially.

Recursion as a problem solving

technique

• Solve one or more problems that are identical to the
original problem but with smaller size

• Solve original problem by solutions of smaller
problems

Binary Search in Ordered Array

• Compares the middle element with search key
and reduces the search range by half in each

iteration

Binary Search – Recursive solution

public int find(long searchKey) {

return recFind(searchKey, 0, nElems-1);

}

private int recFind(long searchKey, int lowerBound,

int upperBound){

int curIn;

curIn = (lowerBound + upperBound) / 2;

if(a[curIn]==searchKey) // found it

return curIn;

else if(lowerBound > upperBound) // can’t find it

return nElems;

else if(a[curIn] < searchKey)// upper half

return recFind(searchKey, curIn+1, upperBound);

else // lower half

return recFind(searchKey, lowerBound, curIn-1);

}

Recursion vs. Iteration

• Recursion: calls itself one or more times until a
condition is met

• Iteration: repeating for a specified number of
times or until a condition is met

Every recursive function can be transformed to • Every recursive function can be transformed to
an iterative function using a stack and vice versa

• Recursion is an elegant way to solve many
practical problems but usually sacrifices memory

and computational efficiency (what is the
overhead?)

The Towers of Hanoi

A B C

The Towers of Hanoi

3/1/2012 11

The Towers of Hanoi

• How do we move the disks to achieve the goal?

• We also want to know in general, how many
steps it takes to move N disks.steps it takes to move N disks.

• Let’s play with it to get some intuition:

– N=1, N=2, N=3, N=4

http://www.mazeworks.com/hanoi/

The Towers of Hanoi

• Let’s call the initial pyramid-shaped
arrangements of disks on column A a tree.

• We call a smaller set of the disks a subtree.

• It turns out that the intermediate steps in the• It turns out that the intermediate steps in the
solution involves moving a subtree.

The Towers of Hanoi

• Idea:

• Assume, for now, that you have a (magical) way
of moving a subtree from A to B via C;

• Then you move A to C;• Then you move A to C;

• Finally move the subtree from B to C via A.

• This is similar to the 2-disk case, except the top
disk is now a subtree.

• How can we move the subtree?

• What’s the base case?

The Towers of Hanoi

• Suppose you want to move n disks from a

source tower S to a destination tower D, via an
intermediate tower I.

• Initially

– Source tower is A

– Destination tower is C

– Intermediate tower is B

The Towers of Hanoi

1. Move the subtree consisting of the top n-1
disks from S to I;

2. Move the remaining (largest) disk from S to D;

3. Move the subtree from I to D.3. Move the subtree from I to D.

Towers of Hanoi: Implementation

3/1/2012 18

General Approach: Recursion Tree

3/1/2012 19

The Tower of Hanoi

• How many steps does the solution take to
solve a N-disk problem?

• N=1:

• N=2:• N=2:

• N=3:

• N=4:

• When is the world going to end (N=64)?

The Tower of Hanoi

• How many steps does the solution take to
solve a N-disk problem?

• N=1: 1 step

• N=2: 3 steps• N=2: 3 steps

• N=3: 7 steps

• N=4: 15 steps

• When is the world going to end (N=64)?

Using Recurrence Relation for Cost

Analysis

• Define the cost function T(N) using recurrence

relation and define base cases

• Solve the recurrence relation

• Derive Big O function• Derive Big O function

Defining Recurrence Relation

• A recurrence relation is an equation that

recursively defines a sequence: each term of

the sequence is defined as a function of the

preceding termspreceding terms

• Examples:

– T(n) = T(n-1) + 1

Solving Recurrence Relations

• Rewrite T(N), T(N-1), T(N-2), …, with the

recurrence formula

• Discover the patterns and find an expression

• Check the correctness• Check the correctness

– Substitute solution in initial conditions

– Substitute solutions in the recurrence relation

Example

• Loop

for (i=0; i<N; i++) {

do_something();

}}

• Recurrence relation

• T(n) = T(n-1) + 1

• T(1) = 1

Example (cont’d)

• T(n) = T(n-1) + 1

• T(1) = 1

• Expansion

– T(n) = T(n-1) + 1 = T(n-2) + 1 + 1 = T(n-3) + 1 + 1 + 1 = …– T(n) = T(n-1) + 1 = T(n-2) + 1 + 1 = T(n-3) + 1 + 1 + 1 = …

• Discover pattern and solution

– T(n) = T(1) + n – 1 = n

• Verification

– T(1) = 1

– T(n) = T(n-1) + 1

Binary Search Example

• Binary Search Cost Function

• T(n) = T(n/2) + 1

• T(1) = 1

Binary Search Example: Solution

• Binary Search Cost Function

• T(n) = T(n/2) + 1

• T(1) = 1

• N=2k

• T(2k) = T(2k-1) + 1 = T(2k-2) + 1 + 1 + …

• T(2k) = T(20) + k = 1 + k

• T(N) = 1 + lgN

The Tower of Hanoi

• How many steps does the solution take to

solve a N-disk problem?

• Use recursive formula

T(N) = T(N-1) + 1 + T(N-1) = 2*T(N-1) + 1

+...+1= 2 - 1

T(N) = T(N-1) + 1 + T(N-1) = 2*T(N-1) + 1

• So how to solve this?

• So it takes an exponential number of steps!

+2+2
N

N−3N−2N-1
T(N) = 2

When is the world going to end?

• Takes 585 billion years for N = 64 (at rate of 1

disc per second).

Summary

• Recursion: powerful tool allows for elegant

solutions

– But, computational overhead is high

• Can analyze runtime: • Can analyze runtime:

– Intuition: draw recursive call tree

– Analysis: Recurrence relations

3/1/2012 31

