
CS171 Introduction to Computer Science II

Recursion (cont.) + MergeSort

3/8/2012 1

Recursion (cont.) + MergeSort

Li Xiong

Reminders

• Hw3 due yesterday (use late credit if needed)

• Hw4 due Friday

3/8/2012 2

Today

• Recursion (cont.)

– Concept and examples

– Analyzing cost of recursive algorithms

– Divide and conquer– Divide and conquer

– Dynamic programming

• MergeSort

3/8/2012 3

Fibonacci Numbers

• Recursive formula:

F(n) = F(n−1)+ F(n−2)

F(0) = 0, F(1) =1

• 0, 1, 1, 2, 3, 5, 8, 13, …..

Fibonacci Numbers

int F(int n)

{

if (n==0)

return 0;

else if (n==1)else if (n==1)

return 1;

else

return F(n-1)+F(n-2);

}

Consider F(5), how is it computed?

Runtime of Recursive Fibonacci

F(5)

/ \

F(4) F(3)

/ \ / \/ \ / \

F(3) F(2) F(2) F(1)

/ \

F(2) F(1)

3/8/2012 6

Dynamic programming

• Dynamically solve a smaller problem

– Solve each small problem only once

• Applicable when

– Overlapping subproblems are slightly smaller (vs. – Overlapping subproblems are slightly smaller (vs.

divide and conquer)

– Optimal substructure: the solution to a given

optimization problem can be obtained by the

combination of optimal solutions to its subproblems.

Memoization

• A technique for dynamic programming

– A memoized function "remembers" the results
corresponding to some set of specific inputs.

– Subsequent calls with remembered inputs return the
remembered result, rather than recomputing itremembered result, rather than recomputing it

• General structure
static int sol[]; //save solutions for each problem

static … recursiveFunc(int N) {

if (sol[N] is available)

return sol[N];

…

similar to regular recursion

except: saving the solution sol[N]

}

Fibonacci with Dynamic Programming

static int sol[];

static int F(int n) {

if (sol[n] > 0) //pre-computed already

return sol[n];

if (n==0) {

sol[n] = 1;

return 1;

Example: F(5)

return 1;

}

else if (n==1) {

sol[n] = 1;

return 1;

}

else {

sol[n] = F(n-1) + F(n-2);

return sol[n];

}

}

Today

• Recursion (cont.)

– Concept and examples

– Analyzing cost of recursive algorithms

– Divide and conquer– Divide and conquer

– Dynamic programming

• MergeSort

3/8/2012 10

Advanced Sorting

• We’ve learned some simple sorting methods,
which all have quadratic costs.

– Easy to implement but slow.

• Much faster advanced
sorting methods:

–Merge Sort

– Quick Sort

– Radix Sort

MergeSort

• Basic idea

– Divide array in half

– Sort each half (how?)

–Merge the two sorted halves–Merge the two sorted halves

Merge Sort

• This is a divide and conquer approach:

– Partition the original problem into two sub-
problems;

– Use recursion to solve each sub-problem;

– Sub-problem eventually reduces to base case;

– The results are then combined to solve the original

problem.

Merge Two Sorted Arrays

• A key step in mergesort

• Assume arrays A (left half) and B (right half) are already sorted.

• Merge them to array C (the original array), such as C contains all

elements from A and B, and remains sortedelements from A and B, and remains sorted

• Use an auxiliary array aux[]

• Example on board and demo

Merging Two Sorted Arrays

1. Start from the first elements of A and B;

2. Compare and copy the smaller element to C;

3. Increment indices, and continue;3. Increment indices, and continue;

4. If reaching the end of either A or B, quit loop;

5. If either A (or B) contains remaining

elements, append them to C.

Merging Two Sorted Arrays: Analysis

• How many comparisons is required?

• How many copies?

Merging Two Sorted Arrays (Sol.)

• How many comparisons is required?

at most (A.length + B.length)

• How many copies?

A.length + B.length

Divide

Divide

Divide

Conquer

Conquer

Conquer

First base case

encountered

Return, and

continue

Merge

Merge

Merge

Merge Sort Analysis

Cost Analysis

• What’s the cost of mergesort?

• Recurrence relation: T(N) = 2*T(N/2) + N

O(N*logN)

This is called log-linear cost.

Merge Sort

Is this a lot better than simple sorting?

of elements

10

100

N^2

100

10,000

N logN

10

200100

1,000

10,000

…

10,000

1,000,000

100,000,000

…

200

3,000

40,000

…

Divide and

Conquer

1.

2.

Every element itself is trivially sorted;

Start by merging every two adjacent elements;

Bottom-up MergeSort

2.

3.

4.

5.

6.

Start by merging every two adjacent elements;

Then merge every four;

Then merge every eight;

…

Done.

Summary

• Merging two sorted array is a key step in merge sort.

• Merge sort uses a divide and conquer approach.

• It repeatedly splits an input array to two sub-arrays,

sort each sub-array, and merge the two.

• It requires O(N*logN) time.• It requires O(N*logN) time.

• On the downside, it requires additional memory
space (the workspace array).

