
CS 171: Introduction to Computer
Science II

Quicksort

Outline

• MergeSort

–Recursive Algorithm (top-down)

–Analysis

–Improvements

–Non-recursive algorithm (bottom-up)–Non-recursive algorithm (bottom-up)

• QuickSort

–Algorithm

–Analysis

–Practical improvements

MergeSort

• Merging two sorted array is a key step in merge sort.

• Merge sort uses a divide and conquer approach.

• It repeatedly splits an input array to two sub-arrays,

sort each sub-array, and merge the two.

• It requires O(N*logN) time.• It requires O(N*logN) time.

• On the downside, it requires additional memory
space (the workspace array).

Divide and

Conquer

1.

2.

Every element itself is trivially sorted;

Start by merging every two adjacent elements;

Bottom-up MergeSort

2.

3.

4.

5.

6.

Start by merging every two adjacent elements;

Then merge every four;

Then merge every eight;

…

Done.

Summary of mergesort

• Divide and conquer: split an input array to two

halves, sort each half recursively, and merge.

• Can be converted to a non-recursive version.• Can be converted to a non-recursive version.

• O(N*logN) cost

• Requires additional memory space.

Quick Sort

•

•

•

•

The most popular sorting algorithm.

Divide and conquer.

Uses recursion.

Fast, and sort ‘in-place’ (i.e. does not require• Fast, and sort ‘in-place’ (i.e. does not require

additional memory space)

Partition (Split)

• A key step in quicksort

• Given an input array, and a pivot value

• Partition the array to two groups: all elements

smaller than the pivot are on the left, and thosesmaller than the pivot are on the left, and those
larger than the pivot are on the right

• Example: K R A T E L E P U I M Q C X O S

pivot: K

Partition (Split)

• How to write code to accomplish partitioning?

• Think about it for a while.

1. Assume you are allowed additional memory
space.space.

2. Assume you must perform in-place partition
(i.e. no additional memory space allowed).

Quicksort uses in-place partitioning

Partition (Split)

• If additional memory space is allowed (using a

workspace array)

Loop over the input array, copy elements smaller Loop over the input array, copy elements smaller

than the pivot value to the left side of the

workspace array, copy elements larger than the

pivot value to the right hand side of the array,

and put the pivot value in the “middle”

Partition (Split)

Some observations:

• The array is not necessarily partitioned in half.

– This depends on the pivot value.

• The array is by no means sorted.

– But we are getting closer to that goal.

• What’s the cost of partition?

Quick Sort

• Partition is the key step in quicksort.

• Once we have it, quicksort is pretty simple:

– Partition (this splits the array into two: left and
right)right)

– Sort the left part, and sort the right part (how?

What’s the base case?)

–What about the element at the partition boundary?

Quicksort Cost Analysis

• Depends on the partitioning

–What’s the best case?

–What’s the worst case?

–What’s the average case?What’s the average case?

Quicksort Cost Analysis – Best case

• The best case is when each partition splits the
array into two equal halves

• Overall cost for sorting N items

–Partitioning cost for N items: N+1 comparisons

–Cost for recursively sorting two half-size arrays–Cost for recursively sorting two half-size arrays

• Recurrence relations

–C(N) = 2 C(N/2) + N + 1

–C(1) = 0

Quicksort Cost Analysis – Best case

• Simplified recurrence relations

–C(N) = 2 C(N/2) + N

–C(1) = 0

• Solving the recurrence relations

–N = 2k

–C(N) = 2 C(2k-1) + 2k–C(N) = 2 C(2k-1) + 2k

= 2 (2 C(2k-2) + 2k-1) + 2k

= 22 C(2k-2) + 2k + 2k

= …

= 2k C(2k-k) + 2k + … 2k + 2k

= 2k + … 2k + 2k

= k * 2k

= O(NlogN)

Quicksort Cost Analysis – Worst case

• The worst case is when the partition does not
split the array (one set has no elements)

• Ironically, this happens when the array is sorted!

• Overall cost for sorting N items

–Partitioning cost for N items: N+1 comparisons–Partitioning cost for N items: N+1 comparisons

–Cost for recursively sorting the remaining (N-1) items

• Recurrence relations

–C(N) = C(N-1) + N + 1

–C (1) = 0

Quicksort Cost Analysis – Worst case

• Simplified Recurrence relations

C(N) = C(N-1) + N

C (1) = 0

• Solving the recurrence relations

C(N) = C(N-1) + NC(N) = C(N-1) + N

= C(N-2) + N -1 + N

= C(N-3) + N-2 + N-1 + N

= …

= C(1) + 2 + … + N-2 + N-1 + N

= O(N2)

Quicksort Cost Analysis – Average case

• Suppose the partition split the array into 2 sets

containing k and N-k-1 items respectively (0<=k<=N-1)

• Recurrence relations

–C(N) = C(k) + C(N-k-1) + N + 1

• On average, • On average,

–C(k) = C(0) + C(1) + … + C(N-1) /N

–C(N-k-1) = C(N-1) + C(N-2) + … + C(0) /N

• Solving the recurrence relations (not required for the

course)

–Approximately, C(N) = 2NlogN

QuickSort: practical improvement

• The basic QuickSort uses the first (or the last

element) as the pivot value

• What’s the best choice of the pivot value?

• Ideally the pivot should partition the array

into two equal halvesinto two equal halves

Median-of-Three Partitioning
• We don’t know the median, but let’s

approximate it by the median of three elements

in the array: the first, last, and the center.

• This is fast, and has a good chance of giving us
something close to the real median.something close to the real median.

Summary

• Quicksort partition the input array to two sub-arrays,
then sort each subarray recursively.

• It sorts in-place.

• O(N*logN) cost, but faster than mergesort in practice • O(N*logN) cost, but faster than mergesort in practice

• These features make it the most popular sorting
algorithm.

Java Arrays.sort() Methods

• In Java, Arrays.sort() methods use mergesort or a

tuned quicksort depending on the data types

–Mergesort for objects

–Quicksort for primitive data types

• switch to insertion sort when fewer than seven array • switch to insertion sort when fewer than seven array

elements are being sorted

Reminders

• Hw3 with 1 late credit is due today

• Hw4 is due Friday

• Enjoy your Spring break!

