
CS 171: Introduction to Computer
Science II

Quicksort

Welcome back from Spring break!

• Quiz 1 distributed

• Hw3 with 2 late credit is due 3/20 (today)

• Hw4 with 1 late credit is due 3/21, with 2 late credits is

due 3/24

Outline

• Quicksort algorithm (review)

• Quicksort Analysis (cont.)

–Best case

–Worst case

–Average case–Average case

• Quicksort improvements

• Sorting summary

• Java sorting methods

Quicksort Cost Analysis

• Depends on the partitioning

–What’s the best case?

–What’s the worst case?

–What’s the average case?What’s the average case?

Quicksort Cost Analysis – Best case

• The best case is when each partition splits the
array into two equal halves

• Overall cost for sorting N items

–Partitioning cost for N items: N+1 comparisons

–Cost for recursively sorting two half-size arrays–Cost for recursively sorting two half-size arrays

• Recurrence relations

–C(N) = 2 C(N/2) + N + 1

–C(1) = 0

Quicksort Cost Analysis – Best case

• Simplified recurrence relations

–C(N) = 2 C(N/2) + N

–C(1) = 0

• Solving the recurrence relations

–N = 2k

–C(N) = 2 C(2k-1) + 2k–C(N) = 2 C(2k-1) + 2k

= 2 (2 C(2k-2) + 2k-1) + 2k

= 22 C(2k-2) + 2k + 2k

= …

= 2k C(2k-k) + 2k + … 2k + 2k

= 2k + … 2k + 2k

= k * 2k

= O(NlogN)

Quicksort Cost Analysis – Worst case

• The worst case is when the partition does not
split the array (one set has no elements)

• Ironically, this happens when the array is sorted!

• Overall cost for sorting N items

–Partitioning cost for N items: N+1 comparisons–Partitioning cost for N items: N+1 comparisons

–Cost for recursively sorting the remaining (N-1) items

• Recurrence relations

–C(N) = C(N-1) + N + 1

–C (1) = 0

Quicksort Cost Analysis – Worst case

• Simplified Recurrence relations

C(N) = C(N-1) + N

C (1) = 0

• Solving the recurrence relations

C(N) = C(N-1) + NC(N) = C(N-1) + N

= C(N-2) + N -1 + N

= C(N-3) + N-2 + N-1 + N

= …

= C(1) + 2 + … + N-2 + N-1 + N

= O(N2)

Quicksort Cost Analysis – Average case

• Suppose the partition split the array into 2 sets

containing k and N-k-1 items respectively (0<=k<=N-1)

• Recurrence relations

–C(N) = C(k) + C(N-k-1) + N + 1

• On average, • On average,

–C(k) = C(0) + C(1) + … + C(N-1) /N

–C(N-k-1) = C(N-1) + C(N-2) + … + C(0) /N

• Solving the recurrence relations (not required for the

course)

–Approximately, C(N) = 2NlogN

QuickSort: practical improvement

• The basic QuickSort uses the first (or the last

element) as the pivot value

• What’s the best choice of the pivot value?

• Ideally the pivot should partition the array

into two equal halvesinto two equal halves

Median-of-Three Partitioning
• We don’t know the median, but let’s

approximate it by the median of three elements

in the array: the first, last, and the center.

• This is fast, and has a good chance of giving us
something close to the real median.something close to the real median.

Quicksort Summary

• Quicksort partition the input array to two sub-arrays,
then sort each subarray recursively.

• It sorts in-place.

• O(N*logN) cost, but faster than mergesort in practice • O(N*logN) cost, but faster than mergesort in practice

• These features make it the most popular sorting
algorithm.

Outline

• Quicksort algorithm (review)

• Quicksort Analysis (cont.)

–Best case

–Worst case

–Average case–Average case

• Quicksort improvements

• Sorting summary

• Java sorting methods

Sorting Summary

• Elementary sorting algorithms

–Bubble sort

–Selection sort

–Insertion sort

• Advanced sorting algorithms• Advanced sorting algorithms

–Merge sort

–Quicksort

• Performance characteristics

–Runtime

–Space requirement

–Stability

Stability

• A sorting algorithm is stable if it preserves the relative order

of equal keys in the array

• Stable: insertion sort and mergesort

• Unstable:: selection sort, quicksort

Java system sort method

• Arrays.sort() in the java.util library represents a

collection of overloaded methods:

–Methods for each primitive type

• e.g. sort(int[] a)

–Methods for data types that implement Comparable.

• sort(Object[] a)

–Method that use a Comparator

• sort(T[] a, Comparator<? super T> c)

• Implementation

–quicksort (with 3-way partitioning) to implement the

primitive-type methods (speed and memory usage)

–mergesort for reference-type methods (stability)

Example

• Sorting transactions

–Who, when, transaction amount

• Use Arrays.sort() methods

• Implement Comparable interface for a transaction

• Define multiple comparators to allow sorting by multiple

keyskeys

• Transaction.java

http://algs4.cs.princeton.edu/25applications/Transaction.java.html

