## CS 171: Introduction to Computer Science II

Quicksort

### Welcome back from Spring break!

- Quiz 1 distributed
- Hw3 with 2 late credit is due 3/20 (today)
- Hw4 with 1 late credit is due 3/21, with 2 late credits is due 3/24

# Outline

- Quicksort algorithm (review)
- Quicksort Analysis (cont.)
  - -Best case
  - -Worst case
  - -Average case
- Quicksort improvements
- Sorting summary
- Java sorting methods

#### Quicksort

Basic plan.

- Shuffle the array.
- Partition so that, for some j
  - entry a[j] is in place
  - no larger entry to the left of j
  - no smaller entry to the right of j
- Sort each piece recursively.



Sir Charles Antony Richard Hoare 1980 Turing Award



#### Quicksort partitioning

Basic plan.

- Scan i from left for an item that belongs on the right.
- Scan j from right for an item that belongs on the left.
- Exchange a[i] and a[j].
- Repeat until pointers cross.

|                                                                    | v |    |            |   |   | a[i] |   |   |   |   |   |   |                   |    |    |    |    |    |
|--------------------------------------------------------------------|---|----|------------|---|---|------|---|---|---|---|---|---|-------------------|----|----|----|----|----|
|                                                                    | i | j  | $\sqrt{0}$ | 1 | 2 | 3    | 4 | 5 | 6 | 7 | 8 | 9 | 10                | 11 | 12 | 13 | 14 | 15 |
| initial values                                                     | 0 | 16 | `к         | R | А | Т    | Е | L | Е | Ρ | U | I | М                 | Q  | С  | Х  | 0  | S  |
| scan left, scan right                                              | 1 | 12 | К          | R | A | Т    | Е | L | E | Ρ | U | Ι | М                 | Q  | C  | Х  | 0  | S  |
| exchange                                                           | 1 | 12 | К          | С | A | Т    | E | L | Е | Ρ | U | Ι | М                 | Q  | R  | Х  | 0  | S  |
| scan left, scan right                                              | 3 | 9  | К          | С | А | Т    | E | L | E | Р |   | I | М                 | Q  | R  | Х  | 0  | S  |
| exchange                                                           | 3 | 9  | К          | С | А | I    | E | L | Е | Ρ | U | T | [V]               | Q  | R  | Х  | 0  | S  |
| scan left, scan right                                              | 5 | 6  | К          | С | А | Ι    | Е | L | E | Ρ | U | Т | [V]               | Q  | R  | Х  | 0  | S  |
| exchange                                                           | 5 | 6  | К          | С | А | Ι    | Е | E | L | Ρ | U | Т | $\left[ V\right]$ | Q  | R  | Х  | 0  | S  |
| scan left, scan right                                              | 6 | 5  | К-         | C | А | I    | E | E | L | Ρ | U | Т | M                 | Q  | R  | Х  | 0  | S  |
| final exchange                                                     | 6 | 5  | E≁         | C | А | Ι    | E | K | L | Ρ | U | Т | M                 | Q  | R  | Х  | 0  | S  |
| result                                                             | 6 | 5  | Е          | С | А | Ι    | Е | К | L | Ρ | U | Т | М                 | Q  | R  | Х  | 0  | S  |
| Partitioning trace (array contents before and after each exchange) |   |    |            |   |   |      |   |   |   |   |   |   |                   |    |    |    |    |    |

#### Quicksort: Java code for partitioning

```
private static int partition(Comparable[] a, int lo, int hi)
   int i = lo, j = hi+1;
   while (true)
      while (less(a[++i], a[lo]))
                                            find item on left to swap
          if (i == hi) break;
      while (less(a[lo], a[--j]))
                                           find item on right to swap
          if (j == lo) break;
                                              check if pointers cross
       if (i >= j) break;
       exch(a, i, j);
                                                             swap
    }
                                          swap with partitioning item
   exch(a, lo, j);
   return j;
                          return index of item now known to be in place
```



#### Quicksort: Java implementation



## **Quicksort Cost Analysis**

- Depends on the partitioning
  - -What's the best case?
  - –What's the worst case?
  - -What's the average case?

#### Quicksort: best-case analysis

|        |         |        |   |   |   |   |   |   |   | a | [] |   |    |    |    |              |    |
|--------|---------|--------|---|---|---|---|---|---|---|---|----|---|----|----|----|--------------|----|
| lo     | j       | hi     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9 | 10 | 11 | 12 | 13           | 14 |
| initia | al valı | les    | н | Α | С | В | F | Е | G | D | L  | Ι | К  | J  | Ν  | М            | 0  |
| rand   | lom sl  | nuffle | н | Α | С | В | F | Е | G | D | L  | Ι | К  | J  | Ν  | М            | 0  |
| 0      | 7       | 14     | D | А | С | В | F | Е | G | н | L  | Ι | К  | J  | Ν  | М            | 0  |
| 0      | 3       | 6      | В | А | С | D | F | Е | G | Н | L  |   | К  | J  | Ν  | $\mathbb{M}$ | 0  |
| 0      | 1       | 2      | А | В | С | D | F | Е | G | Н | L  | I | К  | J  | Ν  | Μ            | 0  |
| 0      |         | 0      | Α | В | С | D | F | Ε | G | Н | L  |   | К  | J  | Ν  | Μ            | 0  |
| 2      |         | 2      | А | В | С | D | F | Е | G | Н | L  | I | К  | J  | Ν  | Μ            | 0  |
| 4      | 5       | 6      | А | В | С | D | Ε | F | G | Н | L  |   | К  | J  | Ν  | Μ            | 0  |
| 4      |         | 4      | А | В | С | D | Ε | F | G | Н | L  |   | К  | J  | Ν  | М            | 0  |
| 6      |         | 6      | А | В | С | D | Ε | F | G | Н | L  |   | К  | J  | Ν  | Μ            | 0  |
| 8      | 11      | 14     | А | В | С | D | Е | F | G | Н | J  | Ι | К  | L  | Ν  | М            | 0  |
| 8      | 9       | 10     | А | В | С | D | Е | F | G | Н | Ι  | J | К  | L  | Ν  | Μ            | 0  |
| 8      |         | 8      | А | В | С | D | Е | F | G | Н | Т  | J | К  | L  | Ν  | Μ            | 0  |
| 10     |         | 10     | А | В | С | D | Е | F | G | Н |    | J | К  | L  | Ν  | М            | 0  |
| 12     | 13      | 14     | А | В | С | D | Е | F | G | Н |    | J | К  | L  | М  | Ν            | 0  |
| 12     |         | 12     | А | В | С | D | Ε | F | G | Н |    | J | К  | L  | М  | Ν            | 0  |
| 14     |         | 14     | А | В | С | D | Е | F | G | Н |    | J | К  | L  | М  | Ν            | 0  |
|        |         |        | А | В | С | D | Ε | F | G | н | Ι  | J | К  | L  | М  | Ν            | 0  |

## Quicksort Cost Analysis – Best case

- The best case is when each partition splits the array into two equal halves
- Overall cost for sorting N items

   Partitioning cost for N items: N+1 comparisons
   Cost for recursively sorting two half-size arrays
- Recurrence relations

$$-C(N) = 2 C(N/2) + N + 1$$
  
 $-C(1) = 0$ 

## Quicksort Cost Analysis – Best case

Simplified recurrence relations
 -C(N) = 2 C(N/2) + N

-C(1) = 0

Solving the recurrence relations
 -N = 2<sup>k</sup>

$$-C(N) = 2 C(2^{k-1}) + 2^{k}$$
  
= 2 (2 C(2^{k-2}) + 2^{k-1}) + 2^{k}  
= 2^{2} C(2^{k-2}) + 2^{k} + 2^{k}  
= ...  
= 2^{k} C(2^{k-k}) + 2^{k} + ... 2^{k} + 2^{k}  
= 2^{k} + ... 2^{k} + 2^{k}  
= k \* 2^{k}  
= 0(NlogN)

#### Quicksort: worst-case analysis

|       |         |        |   |   |   |   |   |   |   | a | [] |   |    |    |    |    |    |
|-------|---------|--------|---|---|---|---|---|---|---|---|----|---|----|----|----|----|----|
| lo    | j       | hi     | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8  | 9 | 10 | 11 | 12 | 13 | 14 |
| initi | al valı | les    | А | В | С | D | Ε | F | G | Н | Ι  | J | к  | L  | М  | Ν  | 0  |
| rand  | lom sl  | nuffle | Α | В | С | D | Ε | F | G | н | Ι  | J | К  | L  | М  | Ν  | 0  |
| 0     | 0       | 14     | Α | В | С | D | Е | F | G | н | Ι  | J | К  | L  | М  | Ν  | 0  |
| 1     | 1       | 14     | А | В | С | D | Е | F | G | н | Ι  | J | К  | L  | М  | Ν  | 0  |
| 2     | 2       | 14     | А | В | С | D | Е | F | G | Н | Ι  | J | К  | L  | М  | Ν  | 0  |
| 3     | 3       | 14     | А | В | С | D | Е | F | G | Н | Ι  | J | К  | L  | М  | Ν  | 0  |
| 4     | 4       | 14     | А | В | С | D | Е | F | G | н | Ι  | J | К  | L  | М  | Ν  | 0  |
| 5     | 5       | 14     | А | В | С | D | Е | F | G | н | Ι  | J | К  | L  | М  | Ν  | 0  |
| 6     | 6       | 14     | А | В | С | D | Е | F | G | н | Ι  | J | К  | L  | М  | Ν  | 0  |
| 7     | 7       | 14     | А | В | С | D | Е | F | G | н | Ι  | J | К  | L  | М  | Ν  | 0  |
| 8     | 8       | 14     | А | В | С | D | Е | F | G | Н | Т  | J | К  | L  | М  | Ν  | 0  |
| 9     | 9       | 14     | А | В | С | D | Е | F | G | Н |    | J | К  | L  | М  | Ν  | 0  |
| 10    | 10      | 14     | А | В | С | D | Е | F | G | Н |    | J | К  | L  | М  | Ν  | 0  |
| 11    | 11      | 14     | А | В | С | D | Е | F | G | Н |    | J | К  | L  | М  | Ν  | 0  |
| 12    | 12      | 14     | А | В | С | D | Е | F | G | Н |    | J | К  | L  | М  | Ν  | 0  |
| 13    | 13      | 14     | А | В | С | D | Е | F | G | Н |    | J | К  | L  | М  | Ν  | 0  |
| 14    |         | 14     | А | В | С | D | Е | F | G | Η |    | J | К  | L  | Μ  | Ν  | 0  |
|       |         |        | Α | В | С | D | Ε | F | G | Н | Ι  | J | К  | L  | М  | Ν  | 0  |
|       |         |        |   |   |   |   |   |   |   |   |    |   |    |    |    |    |    |

## Quicksort Cost Analysis – Worst case

- The worst case is when the partition does not split the array (one set has no elements)
- Ironically, this happens when the array is sorted!
- Overall cost for sorting N items

   Partitioning cost for N items: N+1 comparisons
   Cost for recursively sorting the remaining (N-1) items
- Recurrence relations

-C(N) = C(N-1) + N + 1-C(1) = 0

## Quicksort Cost Analysis – Worst case

- Simplified Recurrence relations
   C(N) = C(N-1) + N
   C(1) = 0
- Solving the recurrence relations

$$C(N) = C(N-1) + N$$
  
= C(N-2) + N -1 + N  
= C(N-3) + N-2 + N-1 + N  
= ...  
= C(1) + 2 + ... + N-2 + N-1 + N  
= O(N<sup>2</sup>)

## Quicksort Cost Analysis – Average case

- Suppose the partition split the array into 2 sets containing k and N-k-1 items respectively (0<=k<=N-1)
- Recurrence relations
   -C(N) = C(k) + C(N-k-1) + N + 1
- On average,
  - -C(k) = C(0) + C(1) + ... + C(N-1) / N
  - -C(N-k-1) = C(N-1) + C(N-2) + ... + C(0) / N
- Solving the recurrence relations (not required for the course)

-Approximately, C(N) = 2NlogN

#### Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.

- $N + (N 1) + (N 2) + ... + 1 \sim \frac{1}{2} N^2$ .
- More likely that your computer is struck by lightning bolt.

Average case. Number of compares is  $\sim 1.39 N \lg N$ .

- 39% more compares than mergesort.
- But faster than mergesort in practice because of less data movement.

#### Random shuffle.

- Probabilistic guarantee against worst case.
- Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array

- Is sorted or reverse sorted.
- Has many duplicates (even if randomized!)

#### Quicksort: practical improvements

#### Insertion sort small subarrays.

- Even quicksort has too much overhead for tiny subarrays.
- Cutoff to insertion sort for  $\approx 10$  items.
- Note: could delay insertion sort until one pass at end.

```
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= lo + CUTOFF - 1)
    {
        Insertion.sort(a, lo, hi);
        return;
    }
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}</pre>
```

QuickSort: practical improvement

- The basic QuickSort uses the first (or the last element) as the pivot value
- What's the best choice of the pivot value?
- Ideally the pivot should partition the array into two equal halves

## Median-of-Three Partitioning

- We don't know the median, but let's approximate it by the median of three elements in the array: the first, last, and the center.
- This is **fast**, and has a good chance of giving us something **close to** the real median.



#### Quicksort: practical improvements

#### Median of sample.

- Best choice of pivot item = median.
- Estimate true median by taking median of sample.
- Median-of-3 (random) items.

```
~ 12/7 N In N compares (slightly fewer)
```

~ 12/35 N In N exchanges (slightly more)

```
private static void sort(Comparable[] a, int lo, int hi)
{
    if (hi <= lo) return;
    int m = medianOf3(a, lo, lo + (hi - lo)/2, hi);
    swap(a, lo, m);
    int j = partition(a, lo, hi);
    sort(a, lo, j-1);
    sort(a, j+1, hi);
}</pre>
```

#### Quicksort with median-of-3 and cutoff to insertion sort: visualization

| input                              | June Hall, 1.1. Jule Hall Hall Hall, 1. Marked Hall, 1.1. J. H. J. Hall, 1.1. Jule Partitioning element |
|------------------------------------|---------------------------------------------------------------------------------------------------------|
| result of<br>first partition       |                                                                                                         |
|                                    |                                                                                                         |
|                                    |                                                                                                         |
|                                    |                                                                                                         |
|                                    |                                                                                                         |
|                                    |                                                                                                         |
| left subarray<br>partially sorted  |                                                                                                         |
|                                    |                                                                                                         |
|                                    |                                                                                                         |
|                                    |                                                                                                         |
|                                    |                                                                                                         |
| both subarrays<br>partially sorted |                                                                                                         |
| result                             |                                                                                                         |

# **Quicksort Summary**

- Quicksort partition the input array to two sub-arrays, then sort each subarray recursively.
- It sorts in-place.
- O(N\*logN) cost, but faster than mergesort in practice
- These features make it the most popular sorting algorithm.

# Outline

- Quicksort algorithm (review)
- Quicksort Analysis (cont.)
  - -Best case
  - -Worst case
  - -Average case
- Quicksort improvements
- Sorting summary
- Java sorting methods

### Sorting Summary

- Elementary sorting algorithms
  - -Bubble sort
  - -Selection sort
  - -Insertion sort
- Advanced sorting algorithms
  - -Merge sort
  - -Quicksort
- Performance characteristics
  - -Runtime
  - -Space requirement
  - -Stability

## Stability

- A sorting algorithm is stable if it preserves the relative order of equal keys in the array
- Stable: insertion sort and mergesort
- Unstable:: selection sort, quicksort

| sorted                                                                                                                                                                                 | by time                                                                                                                                                                         | sorted by location (not stable)                                                                                                                                                                                                                                                 | sorted by location (stable)                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sorted<br>Chicago<br>Phoenix<br>Houston<br>Chicago<br>Chicago<br>Chicago<br>Chicago<br>Chicago<br>Chicago<br>Seattle<br>Seattle<br>Seattle<br>Seattle<br>Seattle<br>Seattle<br>Seattle | by time<br>09:00:00<br>09:00:03<br>09:00:59<br>09:01:10<br>09:03:13<br>09:10:25<br>09:14:25<br>09:19:32<br>09:19:32<br>09:19:46<br>09:21:05<br>09:22:43<br>09:22:54<br>09:25:52 | Sorted by location (not stable)<br>Chicago 09:25:52<br>Chicago 09:03:13<br>Chicago 09:21:05<br>Chicago 09:19:32<br>Chicago 09:00:00<br>Chicago 09:00:59<br>Houston 09:00:13<br>Phoenix 09:37:44<br>Phoenix 09:00:03<br>Phoenix 09:14:25<br>Seattle 09:10:25<br>Seattle 09:36:14 | sorted by location (stable)<br>Chicago 09:00:00<br>Chicago 09:00:59<br>Chicago 09:03:13<br>Chicago 09:19:32<br>Chicago 09:19:46<br>Chicago 09:21:05<br>Chicago 09:25:52<br>Chicago 09:00:13<br>Houston 09:00:13<br>Houston 09:00:03<br>Phoenix 09:00:03<br>Phoenix 09:14:25<br>Phoenix 09:37:44<br>Seattle 09:10:11<br>Seattle 09:10:25 |
| Chicago<br>Seattle<br>Phoenix                                                                                                                                                          | 09:35:21<br>09:36:14<br>09:37:44                                                                                                                                                | Seattle 09:22:43<br>Seattle 09:10:11<br>Seattle 09:22:54                                                                                                                                                                                                                        | Seattle 09:22:43<br>Seattle 09:22:54<br>Seattle 09:36:14                                                                                                                                                                                                                                                                                |

Stability when sorting on a second key

#### Sorting summary

|             | inplace? | stable? | worst   | average            | best    | remarks                                                |
|-------------|----------|---------|---------|--------------------|---------|--------------------------------------------------------|
| selection   | x        |         | N ² / 2 | N ² / 2            | N ² / 2 | N exchanges                                            |
| insertion   | x        | x       | N ² / 2 | N <sup>2</sup> / 4 | Ν       | use for small N or partially ordered                   |
| shell       | x        |         | ?       | ?                  | Ν       | tight code, subquadratic                               |
| merge       |          | x       | N lg N  | N lg N             | N lg N  | N log N guarantee, stable                              |
| quick       | x        |         | N ² / 2 | 2 N In N           | N lg N  | N log N probabilistic guarantee<br>fastest in practice |
| 3-way quick | x        |         | N ² / 2 | 2 N In N           | Ν       | improves quicksort in presence of<br>duplicate keys    |
| ???         | x        | x       | N lg N  | N lg N             | N lg N  | holy sorting grail                                     |

## Java system sort method

- Arrays.sort() in the java.util library represents a collection of overloaded methods:
  - -Methods for each primitive type
    - e.g. sort(int[] a)
  - -Methods for data types that implement Comparable.
    - sort(Object[] a)
  - -Method that use a Comparator
    - sort(T[] a, Comparator<? super T> c)
- Implementation
  - –quicksort (with 3-way partitioning) to implement the primitive-type methods (speed and memory usage)
  - –mergesort for reference-type methods (stability)

### Example

- Sorting transactions
  - Who, when, transaction amount
- Use Arrays.sort() methods
- Implement Comparable interface for a transaction
- Define multiple comparators to allow sorting by multiple keys
- Transaction.java

http://algs4.cs.princeton.edu/25applications/Transaction.java.html