CS 171: Introduction to Computer
Science I

Quicksort



Welcome back from Spring break!

* Quiz 1 distributed
 Hw3 with 2 late credit is due 3/20 (today)

 Hw4 with 1 late credit is due 3/21, with 2 late credits is
due 3/24




Outline

* Quicksort algorithm (review)

* Quicksort Analysis (cont.)
—Best case
—Worst case
—Average case

* Quicksort improvements
* Sorting summary
* Java sorting methods



Quicksort

Basic plan.
» Shuffle the array.
e Partition so that, for some j

- entry a[3] is in place

- no larger entry to the left of ;

=18 Sma"er EHTI"Y to fhe I"Ighf Of J Sir Charles Antony Richard Hoare

» Sort each piece recursively. 1980 Turing Award

mput Q U I C K S O R T E X A M P L
shuffle K AT E L E P U I M Q C

partitioning element

partiton. E C A I E K L P U T M Q R X 0 5

not greater not less

sortleft A C E E 1

sort right L M O P Q R
resut A C E E I K L M O P Q R S T U X




Quicksort partitioning

Basic plan.

» Scan i from left for an item that belongs on the right.
» Scan j from right for an item that belongs on the left.
* Exchange a[i] and arj].

* Repeat until pointers cross.

v ali]
L j\0123456?891(11112131415

initial values 0 16 K R AT EL E P UIMOQOCX 0 S
scan left, scan right 1 12 _fi cC X 0 S
exchange 1 12 C R

scan left, scan right 3 9 u I M Q
exchange 3 9 I T
scan left, scan right 5 6 E L E P U
exchange 5 6 E L
scan left, scan right 6 5 E_l_
final exchange 5 E EL_
result s E CA I E KL P UTMOQR X 0 S

Partitioning trace (array contents before and after each exchange)




Quicksort:

Java code for partitioning

while (less(a[++i], allol))
if (i == hi) break;

(less (a[lo], al--31))
(j == lo) break;

find item on left to swap

find item on right to swap




Quicksort: Java implementation

| shuffle needed for
StdRandom.shuffle(a) ; performance guarantee

sort(a, 0, a.length - 1); | (stay tuned)

if (hi <= lo) return;

int j = partition(a, lo, hi);
sort{a; lo;, J-1);
sort(a, j+1, hi);




Quicksort Cost Analysis

* Depends on the partitioning
—What’s the best case?
—What’s the worst case?

—What’s the average case?



Quicksort:

best-case analysis

lo j hi 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
initial values H A CWBF E GDIUL I K J N MDO
randomshuffle H A C B F E G D L | K J N M O
0 7 14 D A CBF EGHL I K J NMDO
0 3 6 B A CD F E G
0 1 2 A B C
A
C
4 5 6 E F G
E
G
8 11 14 J I K L NMO
9 10 I J K
|
K
12 13 14 M N O
M
0]
A B CDUEFGH I J KL MNDO




Quicksort Cost Analysis — Best case

* The best case is when each partition splits the
array into two equal halves

* Overall cost for sorting N items
—Partitioning cost for N items: N+1 comparisons
—Cost for recursively sorting two half-size arrays
* Recurrence relations
—C(N)=2C(N/2) +N+1
—C(1)=0



Quicksort Cost Analysis — Best case

* Simplified recurrence relations
—C(N) =2 C(N/2) + N
—-C(1)=0
* Solving the recurrence relations
—N = 2k
—C(N) =2 C(2K1) + 2K
=2 (2 C(2k2) + 2k1) + 2k
=22 C(2%2) + 2k + 2k
= 2k C(2KK) + 2k+ ... 2k + 2k
=2k + .. 2K+ 2k
=k * 2k
= O(NlogN)



case analysis

Quicksort: worst

al ]

3 4 5 6 7 8 9 1011 12 13 14

1 2
A B C D E
A B C D E

14 A B C D E

14
14
14
14
14
14
14
14
14

10 10 14
11 11

i hi o0

initial values

lo

K L M N O

J
J
J
J
J
J
J
J
J
J
J
J

F G H

L M N O
K L M N O

K

F G H

random shuffle

F G H

0

0

F G H K L M N O
K L M N O

B C D E

F G H

C D E

F G H K L M N O
K L M N O

D E

F G H

E

K L M N O
K L M NO

G H

F

H

K L M N O

K L M N O

K L M N O

L M N O
L M N O

K

14

o © O

Z Z

12 12 14
13 13 14

L M N O

K

B CDETFGH I |

A




Quicksort Cost Analysis — Worst case

* The worst case is when the partition does not
split the array (one set has no elements)

* [ronically, this happens when the array is sorted!

* Overall cost for sorting N items
—Partitioning cost for N items: N+1 comparisons
—Cost for recursively sorting the remaining (N-1) items
* Recurrence relations
—C(N)=C(N-1) +N+1
—C(1)=0



Quicksort Cost Analysis — Worst case

* Simplified Recurrence relations
C(N) =C(N-1) + N
C(1)=0
* Solving the recurrence relations
C(N) =C(N-1)+N
=C(N-2)+N-1+N
=C(N-3) + N-2+ N-1+N
=C(1)+2+..+N-2+N-1+N
= O(N?)



Quicksort Cost Analysis — Average case

e Suppose the partition split the array into 2 sets
containing k and N-k-1 items respectively (0<=k<=N-1)

e Recurrence relations
—C(N) =C(k) + C(N-k-1) + N+ 1

* On average,
—C(k) = C(0) + C(1) +... + C(N-1) /N
—C(N-k-1) = C(N-1) + C(N-2) + ... + C(0) /N

 Solving the recurrence relations (not required for the
course)
—Approximately, C(N) = 2NlogN



Quicksort: summary of performance characteristics

Worst case. Number of compares is quadratic.
e N+(N-D+(N=-2) +...+1 ~ % N2
* More likely that your computer is struck by lightning bolt.

Average case. Number of compares is ~1.39 Nlg N.
» 39% more compares than mergesort.

» But faster than mergesort in practice because of less data movement.

Random shuffle.

* Probabilistic guarantee against worst case.

* Basis for math model that can be validated with experiments.

Caveat emptor. Many textbook implementations go quadratic if array
» Is sorted or reverse sorted.

 Has many duplicates (even if randomized!)



Quicksort: practical improvements

Insertion sort small subarrays.

* Even quicksort has too much overhead for tiny subarrays.
e Cutoff to insertion sort for ~ 10 items.

* Note: could delay insertion sort until one pass at end.

private static void sort (Comparable|[]

{

if (hi <= lo + CUTOFF - 1)

{
Insertion.sort(a, lo, hi);
return;

}

int j = partition(a, lo, hi);

sort(a, lo, j-1);

sort(a, j+1, hi);

a,

int lo,

int hi)




QuickSort: practical improvement

* The basic QuickSort uses the first (or the last
element) as the pivot value

* What’s the best choice of the pivot value?

* |deally the pivot should partition the array
into two equal halves



Median-of-Three Partitioning

e We don’t know the median, but let’s
approximate it by the median of three elements
in the array: the first, last, and the center.

* This is fast, and has a good chance of giving us
something close to the real median.

Left Center Right

l l- l

44 86 29




Quicksort: practical improvements

Median of sample.

* Best choice of pivot item = median.

» Estimate true median by taking median of sample.
* Median-of-3 (random) items.

N

~ 12/7 N In N compares (slightly fewer)
~ 12/35 N In N exchanges (slightly more)

private static void sort(Comparable[] a, int lo, int hi)
{

if (hi <= lo) return;

int m medianOf3(a, lo, lo + (hi - lo)/2, hi);

swap(a, lo, m);

int j = partition(a, lo, hi);
sort(a, lo, j-1);
sort(a, j+1, hi);




Quicksort with median-of-3 and cutoff to insertion sort: visualization

input |I|“IIIII|I|I-IIIlI-I|IlI.|II|||III|III|IIIIIIII-I_||"II|III|I.|||.I||III|I|II-IIl-IIu.I.lI.II“I

partitioning element

result of 4’
first partition III-I-I-IIII.IlllIll-lIlll-l-lllll-lll_llllll

ertilysorid 0L
ittt
e

partially sorted

result _-.-..-ullllllllIII|||“““““I""“IIII"“I““I“IIIIIIIIIIIIIII"IIII"III"II“I""II“"




Quicksort Summary

Quicksort partition the input array to two sub-arrays,
then sort each subarray recursively.

It sorts in-place.
O(N*logN) cost, but faster than mergesort in practice

These features make it the most popular sorting
algorithm.



Outline

* Sorting summary
* Java sorting methods



Sorting Summary

* Elementary sorting algorithms
—Bubble sort
—Selection sort
—Insertion sort

* Advanced sorting algorithms
—Merge sort
—Quicksort

* Performance characteristics
—Runtime
—Space requirement
—Stability



Stability

* A sorting algorithm is stable if it preserves the relative order
of equal keys in the array

e Stable: insertion sort and mergesort
e Unstable:: selection sort, quicksort

sorted by time soried by locstion {not stable) sorted by location [stable)
Chicago 09:00:00 Chicago 09:25:52 Chicago 09:00:00
Phoenix 09:00:03 Chicago 09:03:13 Chicago 09:00:59
Houston ©9:00:13 Chicago 09:21:05 Chicago 09:03:13
Chicago 09:00:59 Chicago 09:19:46/, Chicago 09:19:32 |,
Houston ©9:01:14 Chicago 09:19:321(\ Chicago 09:19:46 |
Chicagoe 09:03:13 Chicago 09:00:00] | Chicago 09:21:05
Seattle 09:10:11 Chicago 09:35:21] | Chicago 09:25:52
Seattle 09:10:25 Chicago 09:00:59' | Chicago 09:35:21
Phoenix 09:14:25 Houston 09:01:10), \ o Houston 09:00:13, |
Chicage 09:19:32 Houston 09:00:131 “llesger  Houston 09:01:10 'w:“ﬂhﬁ
Chicage 09:19:46 Phoenix 09:37:44) i Phoenix 09:00:03 Thy time
Chicago 09:21:05 Phoenix 09:00:03) /" Phoenix 09:14:25 |
Seattle 09:22:43 Phoenix 09:14:25 ; Phoenix 09:37:44
Seattle 09:22:54 Seattle 09:10:25 Seattle 09:10:11,
Chicago 09:25:52 Seattle 09:36:14|) Seattle 09:10:25 ||
Chicage 09:35:21 Seattle 09:22:43 Seattle 09:22:43
Seattle 09:36:14 Seattle 09:10:11 Seattle 09:22:54
Phoenix 09;37:44 Seattle 09:22:54 Seattle 09:36:14

Stability when sorting on a second key



Sorting summary

_ ETEmEcT
N2/2 N2/2 N2/2 N exchanges

N2/2 N2/4 use for small N or partially ordered
: / tight code, subquadratic

N log N guarantee, stable
N Nlog N proba_blllstlc guarantee
fastest in practice
) : improves quicksort in presence of
AU LS N duplicate keys

holy sorting grail




Java system sort method

e Arrays.sort() in the java.util library represents a
collection of overloaded methods:

—Methods for each primitive type
e e.g. sort(int[] a)
—Methods for data types that implement Comparable.
* sort(Object[] a)
—Method that use a Comparator
* sort(T[] a, Comparator<? super T> c)
* Implementation

—quicksort (with 3-way partitioning) to implement the
primitive-type methods (speed and memory usage)

—mergesort for reference-type methods (stability)



Example

* Sorting transactions

—Who, when, transaction amount
e Use Arrays.sort() methods
* Implement Comparable interface for a transaction

* Define multiple comparators to allow sorting by multiple
keys

* Transaction.java
http://algs4.cs.princeton.edu/25applications/Transaction.java.html



