CS 171: Introduction to Computer Science II

Binary Search Trees

Binary Search Trees

- Generalized from Linked List.
- Advantages:
 - Fast to search
 - Fast to insert and delete
- Recall the search and insertion costs of
 - 1. Ordered Array
 - 2. Linked List
- Binary tree combines the advantages of both.

Trees

- What is a tree?
 - Nodes: store data and links
 - Edges: links, typically directional
- The tree has a top node: root node
- The structure looks like reversed from real trees.

Binary Trees

- Strictly speaking: trees are connected acyclic graphs (i.e. no loops).
- Some other examples of abstract tree structure: — Think about the way computer files are organized.
- There are many different kinds of trees.
- Here we will focus on **binary trees**
 - Each node has at most 2 children
 - In other words, at most 2 branches at each node

• Root

– The node at the top of the tree.

– There is only one root.

• Path

 The sequence of nodes traversed by traveling from the root to a particular node.

– Each path is unique, why?

Parent

The node that points to the current node.

Any node, except the root, has 1 and only 1 parent.

Child

Nodes that are pointed to by the current node.

• Leaf

- A node that has no children is called a leaf.
- There can be many leaves in a tree.

Interior node

– An interior node has at least one child.

Subtree

Any node can be considered the root of a subtree.

It consists of all descendants of the current node.

• Visit

- Checking the node value, display node value etc.

Traverse

– Visit all nodes in some specific order.

- For example: visit all nodes in ascending key value.

Levels

- The path length from root to the current node.
- Recall that each path is unique.
- Root is at level 0.

Height

- The maximum level in a tree.
- O(logN) for a reasonably balanced tree.

• Keys

Each node stores a key value and associated data.

• Left child / Right child

- These are specific to binary trees.
- Some nodes may have only 1 child.
- Leaf nodes have no child.

• <u>Binary Search Tree</u> (BST)

 For any node A, its entire left subtree must have values less than A, and the entire right subtree must have values larger than or equal to A.

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

- Empty.
- Two disjoint binary trees (left and right).

Symmetric order. Each node has a key, and every node's key is:

- Larger than all keys in its left subtree.
- Smaller than all keys in its right subtree.

Java definition. A BST is a reference to a root Node.

A Node is comprised of four fields:

- A key and a value.
- A reference to the left and right subtree.

Key and Value are generic types; Key is Comparable

BST Demo

<u>http://algs4.cs.princeton.edu/lectures/32DemoBinarySearchTree.mov</u>

BST search

Get. Return value corresponding to given key, or null if no such key.

BST search: Java implementation

Get. Return value corresponding to given key, or null if no such key.

```
public Value get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < 0) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Cost. Number of compares is equal to 1 + depth of node.

BST insert

Put. Associate value with key.

Search for key, then two cases:

- Key in tree \Rightarrow reset value.
- Key not in tree \Rightarrow add new node.

Put. Associate value with key.

```
concise, but tricky,
                                             recursive code;
public void put(Key key, Value val)
                                             read carefully!
   root = put(root, key, val); }
{
private Node put (Node x, Key key, Value val)
{
   if (x == null) return new Node(key, val);
   int cmp = key.compareTo(x.key);
            (cmp < 0)
   if
      x.left = put(x.left, key, val);
   else if (cmp > 0)
      x.right = put(x.right, key, val);
   else if (cmp == 0)
      x.val = val;
   return x;
```

Cost. Number of compares is equal to 1 + depth of node.

BST trace: standard indexing client

Exercise

- Insert the following keys (in the order) into an empty BST tree
- Case 1

H, A, E, R, C, X, S

Case 2

A, C, E, H, R, S, X

Tree shape

- Many BSTs correspond to same set of keys.
- Number of compares for search/insert is equal to 1 + depth of node.

Remark. Tree shape depends on order of insertion.

BST insertion: random order

Observation. If keys inserted in random order, tree stays relatively flat.

Correspondence between BSTs and quicksort partitioning

Remark. Correspondence is 1-1 if array has no duplicate keys.

BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of compares for a search/insert is $\sim 2 \ln N$.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order, expected height of tree is ~ $4.311 \ln N$.

But... Worst-case height is N.

(exponentially small chance when keys are inserted in random order)

ST implementations: summary

implementation	guarantee		average case		ordered	operations
	search	insert	search hit	insert	ops?	on keys
sequential search (unordered list)	Ν	Ν	N/2	Ν	no	equals()
binary search (ordered array)	lg N	N	lg N	N/2	yes	compareTo()
BST	Ν	Ν	1.39 lg N	1.39 lg N	?	compareTo()

Traversing the Tree

- Traversing visiting all nodes in a specific order.
 - This is obvious for Array and Linked List.
 - For a tree, there are three different ways.
- In-order traversal
- Pre-order traversal
- Post-order traversal
- All of these use recursion.

In-Order Traversal

- At any node, follows this recursion:
 - 1. Traverse the **left** subtree.
 - 2. Visit (e.g. print out) the **current** node.
 - 3. Traverse the **right** subtree.
- Step 2 is why it's called in-order traversal.

In-Order Traversal

- For a BST, in-order traversal will visit all nodes in **ascending order**.
- For other types of trees, in-order traversal still works, but it won't guarantee ascending order.

Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

Property. Inorder traversal of a BST yields keys in ascending order.

Inorder traversal

- Traverse left subtree.
- Enqueue key.
- Traverse right subtree.

Pre-Order Traversal

- At any node, follows this recursion:
 - 1. Visit (e.g. print out) the **current** node.
 - 2. Traverse the **left** subtree.
 - 3. Traverse the **right** subtree.
- Step 1 is why it's called pre-order traversal.

• What's the result of this for BST?

Post-Order Traversal

- At any node, follows this recursion:
 - 1. Traverse the **left** subtree.
 - 2. Traverse the **right** subtree.
 - 3. Visit (e.g. print out) the **current** node.
- Step 3 is why it's called post-order traversal.

• What's the result of this for BST?