CS 171: Introduction to Computer
Science I

Binary Search Trees

Binary Search Trees

Generalized from Linked List.

Advantages:
— Fast to search
— Fast to insert and delete

Recall the search and insertion costs of

1. Ordered Array
2. Linked List

Binary tree combines the advantages of both.

Trees
e What is a tree?

— Nodes: store data and links
— Edges: links, typically directional
 The tree has a top node: root node

e The structure looks like reversed from real trees.

FreefFoto.cem

Binary Trees

Strictly speaking: trees are connected acyclic
graphs (i.e. no loops).

Some other examples of abstract tree structure:
— Think about the way computer files are organized.

There are many different kinds of trees.

Here we will focus on binary trees

— Each node has at most 2 children
— In other words, at most 2 branches at each node

I is the
left child
of B

1)

Terminology

A subtre:&
with F as

1ts root

The dashed
. % line 15 a path

-

+—— Level ()

+—— Level |

— Level 2

4—— Level 3

Terminology

e Root

— The node at the top of the tree.
— There is only one root.

 Path

— The sequence of nodes traversed by traveling from
the root to a particular node.

— Each path is unique, why?

Terminology

* Parent
— The node that points to the current node.
— Any node, except the root, has 1 and only 1 parent.

* Child
— Nodes that are pointed to by the current node.
o Leaf

— A node that has no children is called a leaf.
— There can be many leaves in a tree.

Terminology

Interior node
— An interior node has at least one child.

Subtree

— Any node can be considered the root of a subtree.
— It consists of all descendants of the current node.

Visit
— Checking the node value, display node value etc.
Traverse

— Visit all nodes in some specific order.
— For example: visit all nodes in ascending key value.

Terminology

* Levels
— The path length from root to the current node.
— Recall that each path is unique.
— Root is at level O.
* Height
— The maximum level in a tree.
— O(logN) for a reasonably balanced tree.
* Keys
— Each node stores a key value and associated data.

Terminology

* Left child / Right child

— These are specific to binary trees.
— Some nodes may have only 1 child.
— Leaf nodes have no child.

* Binary Search Tree (BST)

— For any node A, its entire left subtree must have

values less than A, and the entire right subtree must
have values larger than or equal to A.

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

* Empty.

« Two disjoint binary trees (left and right).

Symmetric order. Each node has a key,
and every node's key is:

 Larger than all keys in its left subtree.

« Smaller than all keys in its right subtree.

a left link ’/
N

a subtree

N

right child
of root

null links

Anatomy of a binary tree

parent of A and R

key
left link \ K
of E
@ g T~ value
@ m associated
with R
/ X

keys smaller than € keys larger than E

Anatomy of a binary search tree

BST representation in Java

Java definition. A BST is a reference to a root node.

A Node is comprised of four fields:
e A Key and a value.

» A reference to the left and right subtree.

/ \

smaller keys larger keys

private class Node
{
private Key key;
private Value val;
private Node left, right;
public Node (Key key, Value val)
{
this.key = key;
this.val = wval;

Key and value are generic types; Key iS Comparable

BST

Node———| key | val

\ s

left right

BST with smaller keys BST with larger keys

Binary search tree

BST implementation (skeleton)

private Node root; root of BST

BST Demo

* http://algs4.cs.princeton.edu/lectures/32DemoBinarySearchTree.mov

BST search

Get. Return value corresponding to given key, or nu11 if no such key.

successful search for R unsuccessful searchfor T

R is less than S

so look to the left T is greater than S

black nodes could so look to the right

match the search key

® A R
gray nodes cannot ' N - \

match the search ke T .
R is greater than E Y - T is less than X

so look to the right (5o look to the left

link is null
so T is not in tree
(search miss)

®\\ found R
(search hit)

so return value

BST search: Java implementation

Get. Return value corresponding to given key, or nu11 if no such key.

public Value get (Key key)
{
Node x = root;
while (x '= null)
{
int cmp = key.compareTo (x.key) ;
3 (cmp < 0) x = x.left;
else if (cmp > 0) x = x.right;
else & (cump == 0) return x.val;
}

return null;

Cost. Number of compares is equal to 1 + depth of node.

BST insert

Put. Associate value with key.

inserting L

Search for key, then two cases:

* Key in tree = reset value.

sear-:'{z for L f:ma's ol
* KEY not in tree = add new node. at this null link

create new node —» 9:_2
e
v

reset links
on the way up

Insertion into a BST

BST insert: Java implementation

Put. Associate value with key.

concise, but tricky,
recursive code;

public void put(Key key, Value val) read carefully!

{ root = put(root, key, wval); }

private Node put (Node x, Key key, Value val)
{
if (x == null) return new Node (key, wval);
int cmp = key.compareTo(x.key) ;
if (cmp < 0)
x.left = put(x.left, key, val);
else if (cmp > 0)
x.right = put(x.right, key, wval);
else if (cmp == 0)
x.val = wval;
return x;

Cost. Number of compares is equal to 1 + depth of node.

BST trace: standard indexing client

key value key wvalue

s o (8 A 8
changsd/.: 1
E 1 ;Ef‘) value
A 2 (E) black nodes V-
(AS ' are accessed =
/ in searc 4
R 3 " red nodes
i ‘,f—"‘are Hew
P 10
cC 4 _
/™ gray nodes
are untouched
H 5
L 11
E 6
changed

value \ |
12(E)y— X

E 12

Exercise

* Insert the following keys (in the order) into an
empty BST tree

* Casel
H,AERC XS
* Case 2
A CEHRS,X

Tree shape

* Many BSTs correspond to same set of keys.
* Number of compares for search/insert is equal to 1 + depth of node.

best case typical case worst case

Remark. Tree shape depends on order of insertion.

BST insertion: random order

Observation. If keys inserted in random order, tree stays relatively flat.

Correspondence between BSTs and quicksort partitioning

ololz[c|k[s]|olRITIE[X[A[M[P[L][E

E|R|a[T[E[8|L[P[U[I[M[o[c[X[O[K
E/c/a/T1 E(K)L P|U|/T/M/Q|R|X|0S

Alc(®I[E
20
®
E(D
®
LPORMQEXUT
L PO MQR
LMo P
®
®
©
®)
(Tu x
®
©)

A/IC/EIE|/I K|LMO|PIQIR|S|T|U|X

Remark. Correspondence is 1-1 if array has no duplicate keys.

BSTs: mathematical analysis

Proposition. If keys are inserted in random order, the expected number of

compares for a search/insert is ~2In N.

Pf. 1-1 correspondence with quicksort partitioning.

Proposition. [Reed, 2003] If keys are inserted in random order,
expected height of tree is ~ 4.311 In \V.

But.. Worst-case height is V.

(exponentially small chance when keys are inserted in random order)

ST implementations: summary

guarantee average case :
: : ordered operations
implementation

_ : _ ops? on keys
search insert search hit insert

sequential search N N
(unordered list)

N/2 N no equals ()

binary search

(ordered array) lg N N Ig N N/2 yes compareTo ()

BST N N 1.39IgN 1.391IgN ? compareTo ()

Traversing the Tree

Traversing — visiting all nodes in a specific order.

— This is obvious for Array and Linked List.
— For a tree, there are three different ways.

In-order traversal
Pre-order traversal
Post-order traversal

All of these use recursion.

In-Order Traversal

* At any node, follows this recursion:

1. Traverse the left subtree.
2. Visit (e.g. print out) the current node.
3. Traverse the right subtree.

e Step 2 is why it’s called in-order traversal.

In-Order Traversal

 For a BST, in-order traversal will visit all nodes in
ascending order.

* For other types of trees, in-order traversal still
works, but it won’t guarantee ascending order.

Inorder traversal

* Traverse left subtree.
* Enqueue key.
« Traverse right subtree.

public Iterable<Key> keys()

{
Queue<Key> q = new Queue<Key>() ;

inorder (root, q); BST
return q; key | val
}
private void inorder (Node x, Queue<Key> q) left right
{
if (x = null) return; BST with smaller keys BST with larger keys
inorder (x.left, q);
d.enqueue (xX.key) ; smaller keys, in order | key | larger keys, in order

inorder (x.right, q):
all keys, in order

Property. Inorder traversal of a BST yields keys in ascending order.

Inorder traversal

* Traverse left subtree.
* Enqueue key.
* Traverse right subtree.

inorder (S)
inorder (E)
inorder (A)

enqueue A A
inorder (C)

enqueue C C

enqueue E E

inorder (R)
inorder (H)

enqueue H H
inorder (M)

enqueue M M

enqueue R R

enqueue S S

inorder (X)
enqueue X X

recursive calls queue function call stack

Pre-Order Traversal

* At any node, follows this recursion:

1. Visit (e.g. print out) the current node.
2. Traverse the left subtree.
3. Traverse the right subtree.

e Step 1 is why it’s called pre-order traversal.

e What's the result of this for BST?

Post-Order Traversal

* At any node, follows this recursion:

1. Traverse the left subtree.
2. Traverse the right subtree.
3. Visit (e.g. print out) the current node.

e Step 3 is why it’s called post-order traversal.

e What's the result of this for BST?

