
CS 171: Introduction to Computer 
Science II

Binary Search Trees



Binary Search Trees

• Generalized from Linked List.

• Advantages:

– Fast to search

– Fast to insert and delete– Fast to insert and delete

• Recall the search and insertion costs of

1. Ordered Array

2. Linked List

• Binary tree combines the advantages of both.



Trees
• What is a tree?

– Nodes: store data and links

– Edges: links, typically directional

• The tree has a top node: root node

• The structure looks like reversed from real trees.• The structure looks like reversed from real trees.



Binary Trees

• Strictly speaking: trees are connected acyclic
graphs (i.e. no loops).

• Some other examples of abstract tree structure:

– Think about the way computer files are organized.– Think about the way computer files are organized.

• There are many different kinds of trees.

• Here we will focus on binary trees

– Each node has at most 2 children

– In other words, at most 2 branches at each node



Terminology



Terminology

• Root

– The node at the top of the tree.

– There is only one root.

• Path• Path

– The sequence of nodes traversed by traveling from
the root to a particular node.

– Each path is unique, why?



Terminology

• Parent

– The node that points to the current node.

– Any node, except the root, has 1 and only 1 parent.

• Child• Child

– Nodes that are pointed to by the current node.

• Leaf

– A node that has no children is called a leaf.

– There can be many leaves in a tree.



Terminology

• Interior node

– An interior node has at least one child.

• Subtree

– Any node can be considered the root of a subtree.

– It consists of all descendants of the current node.– It consists of all descendants of the current node.

• Visit

– Checking the node value, display node value etc.

• Traverse

– Visit all nodes in some specific order.

– For example: visit all nodes in ascending key value.



Terminology

• Levels

– The path length from root to the current node.

– Recall that each path is unique.

– Root is at level 0.

• Height

– The maximum level in a tree.

– O(logN) for a reasonably balanced tree.

• Keys

– Each node stores a key value and associated data.



Terminology

• Left child / Right child

– These are specific to binary trees.

– Some nodes may have only 1 child.

– Leaf nodes have no child.

• Binary Search Tree (BST)

– For any node A, its entire left subtree must have

values less than A, and the entire right subtree must
have values larger than or equal to A.









BST Demo

• http://algs4.cs.princeton.edu/lectures/32DemoBinarySearchTree.mov













Exercise

• Insert the following keys (in the order) into an 

empty BST tree

• Case 1

H, A, E, R, C, X, S

• Case 2 • Case 2 

A, C, E, H, R, S, X













Traversing the Tree

• Traversing – visiting all nodes in a specific order.

– This is obvious for Array and Linked List.

– For a tree, there are three different ways.

• In-order traversal• In-order traversal

• Pre-order traversal

• Post-order traversal

• All of these use recursion.



In-Order Traversal

• At any node, follows this recursion:

1. Traverse the left subtree.

2. Visit (e.g. print out) the current node.

3. Traverse the right subtree.

• Step 2 is why it’s called in-order traversal.



In-Order Traversal

• For a BST, in-order traversal will visit all nodes in
ascending order.

• For other types of trees, in-order traversal still• For other types of trees, in-order traversal still

works, but it won’t guarantee ascending order.







Pre-Order Traversal

• At any node, follows this recursion:

1. Visit (e.g. print out) the current node.

2. Traverse the left subtree.

3. Traverse the right subtree.

• Step 1 is why it’s called pre-order traversal.

• What’s the result of this for BST?



Post-Order Traversal

• At any node, follows this recursion:

1. Traverse the left subtree.

2. Traverse the right subtree.

3. Visit (e.g. print out) the current node.

• Step 3 is why it’s called post-order traversal.

• What’s the result of this for BST?


