CS 171: Introduction to Computer
Science I

Binary Search Trees (cont.)

Binary Search Trees

* Definitions and terminologies
e Search and insert

* Traversal

* Ordered operations

* Delete

Binary search trees

Definition. A BST is a binary tree in symmetric order.

A binary tree is either:

* Empty.

« Two disjoint binary trees (left and right).

Symmetric order. Each node has a key,
and every node's key is:

 Larger than all keys in its left subtree.

« Smaller than all keys in its right subtree.

a left link ’/
N

a subtree

N

right child
of root

null links

Anatomy of a binary tree

parent of A and R

key
left link \ K
of E
@ g T~ value
@ m associated
with R
/ X

keys smaller than € keys larger than E

Anatomy of a binary search tree

BST representation in Java

Java definition. A BST is a reference to a root node.

A Node is comprised of four fields:
e A Key and a value.

» A reference to the left and right subtree.

/ \

smaller keys larger keys

private class Node
{
private Key key;
private Value val;
private Node left, right;
public Node (Key key, Value val)
{
this.key = key;
this.val = wval;

Key and value are generic types; Key iS Comparable

BST

Node———| key | val

\ s

left right

BST with smaller keys BST with larger keys

Binary search tree

ST implementations: summary

guarantee average case :
: : ordered operations
implementation

_ : _ ops? on keys
search insert search hit insert

sequential search N N
(unordered list)

N/2 N no equals ()

binary search

(ordered array) lg N N Ig N N/2 yes compareTo ()

BST N N 1.39IgN 1.391IgN ? compareTo ()

Traversal

* In-order
—Left subtree, current node, right subtree

* Pre-order
—Current node, left subtree, right subtree

e Post-order

—Left subtree, right subtree, current node

Inorder traversal

* Traverse left subtree.
* Enqueue key.
« Traverse right subtree.

public Iterable<Key> keys()

{
Queue<Key> q = new Queue<Key>() ;

inorder (root, q); BST
return q; key | val
}
private void inorder (Node x, Queue<Key> q) left right
{
if (x = null) return; BST with smaller keys BST with larger keys
inorder (x.left, q);
d.enqueue (xX.key) ; smaller keys, in order | key | larger keys, in order

inorder (x.right, q):
all keys, in order

Property. Inorder traversal of a BST yields keys in ascending order.

Inorder traversal

* Traverse left subtree.
* Enqueue key.
* Traverse right subtree.

inorder (S)
inorder (E)
inorder (A)

enqueue A A
inorder (C)

enqueue C C

enqueue E E

inorder (R)
inorder (H)

enqueue H H
inorder (M)

enqueue M M

enqueue R R

enqueue S S

inorder (X)
enqueue X X

recursive calls queue function call stack

Traversal

* I[n-order

ACEHMRSX
e Pre-order?

order?

* Post-

Traversal

e In-order
ACEHMRSX

* Pre-order
SEACRHMX

e Post-order
CAMHREXS

e How to visit the nodes in
descending order?

 What’s the use of pre-order and
post-order traversal?

Expression Tree

* Post-order traversal results in postfix notation
* Pre-order traversal results in prefix notation

Atree thal represents },5,------"' dNSWET
the expression '
3*(THWA) + (7T - 5)
~he upward pointing
arrows show how the
vElue of the cxprocssion
can be complted.

Binary Search Trees

* Ordered operations
—Minimum and maximum
—Rank: how many keys < k?
—Select: key of given rank

e Delete

Minimum and maximum

Minimum. Smallest key in table.

Maximum. Largest key in table.

Q. How to find the min / max?

Subtree counts

In each node, we store the number of nodes in the subtree rooted at that node.

To implement size(), return the count at the root.

Remark. This facilitates efficient implementation of rank() and select().

BST implementation: subtree counts

private class Node public int size()

{ { return size(root); }
private Key key;
private Value val; private int size (Node Xx)
private Node left; {
private Node right; if (x == null) return O;
private int N; return x.N;

%
number of nodes
in subtree

private Node put (Node x, Key key, Value val)
{

if (x == null) return new Node(key, val);

int cmp = key.compareTo (xX.key) ;

5 i o (cmp < 0) x.left = put(x.left, key, wval);
else if (cmp > 0) x.right = put(x.right, key, wval);
else ' f (cump == 0) x.val = val;

X.N =1 + size(x.left) + size(x.right);

return x;

Rank

Rank. How many keys < & ?

Easy recursive algorithm (4 casesl)

if (x == null) return O0;

int cmp = key.compareTo (x.key) ;

if (cmp < 0) return rank(key, x.left);

else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
else if (cmp == 0) return size(x.left);

Selection
Select. Key of given rank.

public Key select(int k)

{
if (k < 0) return null;
if (k >= size()) return null;
Node x = select(root, k),
return x.key;

}

private Node select(Node x, int k)
{

if (x == null) return null;

int £t = size(x.left);
if (t > k)

return select(x.left, k);
else if (t < k)

return select(x.right, k-t-1);
else if (t == k)

return x;

finding select(3)
the key of rank 3

count N e 5/0

8 keys in left subtree

so search for key of
rank 3 on the left

&P~

2 keys in left subtree so
search for key of rank
3-2-1 = 0 on theright

2
O‘{iyq in left subtree

so search for Reyeﬁf
1

rank 0 on the

o

0 keys in left subtree
and searching for
key of rank 0

so return H

Binary Search Trees

e Delete
—Delete minimum and maximum
—Delete a given key

Delete minimum

Deleting the minimum

To delete the minimum key:
* Go left until finding a node with a null left link.

go left until

. . . caching null
* Replace that node by its right link. et Tk
» Update subtree counts. \
return that
node’s right link
public void deleteMin() T J
{ root = deleteMin(root); 1} available for

garbage collection

private Node deleteMin (Node x) update links and node counts
after recursive calls
{

____,____‘_7
\\
if (x.left == null) return x.right; \ 5
X.left = deleteMin(x.left) ;

X.N =1 + size(x.left) + size(x.right);

return x;

Hibbard deletion
To delete a node with key &: search for node ¢ containing key k.

Case 0. [0 children]

deleting C

node to delete

Hibbard deletion
To delete a node with key k: search for node 7 containing key .

Case 0. [O children] Delete by setting parent link to null.

deleting C update counts after

recursive calls

®

replace with
null link

node to delete
available for

/ garbage

collection

Hibbard deletion
To delete a node with key k: search for node 7 containing key k.

Case 1. [1 child]

deleting R

&

node to delete

G

Hibbard deletion
To delete a node with key k: search for node 7 containing key k.

Case 1. [1 child] Delete 7 by replacing parent link.

deleting R
update counts after

recursw?aﬂs,,’» 7
CS)/O

replace with

chilil ik available for
/ garbage

collection

node to delete

Hibbard deletion
To delete a node with key k. search for node ¢ containing key .

Case 2. [2 children]

node to delete
\®/f

search for key E

Hibbard deletion

To delete a node with key k. search for node ¢ containing key .

Case 2. [2 children]

e Find successor x of . «—— xhas no left child
* Delete the minimum in 7's right subtree. «<—— but don't garbage collect x
e Put x in t's spot. «—— stillaBST

node to delete

N

X

X . .
search v ikoy £ t.]left deleteMin(t.right)

7

M
successor \

min(t.right)

go right, then / update links and

go ng_} mm'if : node counts after
reaching nu

HE recursive calls
left link

Hibbard deletion: Java implementation

public void delete (Key key)
{ root = delete(root, key);, 1}

private Node delete (Node x, Key key) {
if (x == null) return null;
int cmp = key.compareTo (x.key) ;
1F (cmp < 0) x.left = delete(x.left, key) ;
else if (cmp > 0) x.right = delete(x.right, key);

search for key

else {
if (x.right == null) return x.left; - no right child

Node t = x;
X = Bin k. e ight)ic replace with
x.right = deleteMin(t.right); successor

X.left = t.left;

S

}

X.N = size(x.left) + size(x.right) + 1; update subtree

counts

A

return x;

Hibbard deletion: analysis

Unsatisfactory solution. Not symmetric.

N=150

max = 16
avg =9.3
opt = 6.4

Surprising consequence. Trees not random (!) = sqrt (V) per op.

Longstanding open problem. Simple and efficient delete for BSTs.

ST implementations: summary

guarantee average case _
ordered operations

implementation : :
: _ : iteration? on keys
search insert delete | search hit insert delete
N /

sequential search

(linked list) N N

N/2 N N/2 no equals ()

binary search
(ordered array)

BST N N N 139I1gN 1.39IgN TN oipareTo ()

lg N N N lg N N/2 N/2 yes compareTo ()

other operations also become /N
if deletions allowed

Binary Search Trees

* Balanced search trees (Amy Shannon)

