3.3 BALANCED SEARCH TREES

» 2-3 search trees
» red-black BSTs
» B-trees

Algorithms, 4'h Edition - Robert Sedgewick and Kevin Wayne - Copyright © 2002-2011 - October 18, 2011 6:58:42 AM

Symbol table review

guarantee average case :
, , ordered operations
implementation : :
: : _ iteration? on keys
search | insert | delete | search hit insert delete
N /2

sequential search

N N N N N/2 1
(linked list) / no equals()
binary search N N Ig N N/2 N/2 es compareTo ()
(ordered array) g g Y =
BST N N N 1.391gN 1.391IgN ? yes compareTo ()
goal log N log N log N log N log N log N yes compareTo ()

Challenge. Guarantee performance.
This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

\ introduced to the world
in COS 226, Fall 2007

» 2-3 search trees

2-3 tree

Allow 1 or 2 keys per node.
e 2-node: one key, two children.
e 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

between E and J \null ll}”lk

Search ina 2-3 tree

» Compare search key against keys in node.
* Find interval containing search key.
* Follow associated link (recursively).

successful search for H unsuccessful search for B

H is less than M so B is less than M so

look to the left ™\ m look to the left AW m

H is between E and L so B is less than E

look in the middle so look to the left
N>
CHOROSO (0 1D

?
1

found H so return value (search hit) B is between A and C so look in the middle
link is null so B is not in the tree (search miss)

Insertion ina 2-3 tree

Case 1. Insert into a 2-node at bottom.
e Search for key, as usual.
* Replace 2-node with 3-node.

inserting K
(W)

(L)
™

search for K ends here

N replace 2-node with
new 3-node containing K

Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.
* Add new key to 3-node to create temporary 4-node.
* Move middle key in 4-node into parent.

/

why middle key?))
inserting Z

(M)

search for Z ends

Q / at this 3-node

replace 3-node with
temporary 4-node
/containing VA

replace 2-node
with new 3-node

o~ containing

dle key
S @

N/

split 4-node into two 2-nodes
pass middle key to parent

Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node to create temporary 4-node.

* Move middle key in 4-node into parent.
* Repeat up the tree, as necessary.

inserting D

search for D ends

at this 3-node \

>
@

add new key D to 3-node
to make temporary 4-node

ACD

1/

add middle key C to 3-node
to make temporary 4-node

N\

Ay ()
N2

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node ~

o Q

5/

split 4-node into two 2-nodes
pass middle key to parent

Insertion ina 2-3 tree

Case 2. Insert into a 3-node at bottom.

* Add new key to 3-node to create temporary 4-node.
* Move middle key in 4-node into parent.
* Repeat up the tree, as necessary.

* If you reach the root and it's a 4-node, split it into three 2-nodes.

inserting D

search for D ends

at this 3-node \

add new key D to 3-node
to make temporary 4-node

ACD

Remark. Splitting the root increases height by 1.

add middle key C to 3-node
to make temporary 4-node

CEJ

ON0O
N2

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into

three 2-nodes .
increasing tree
height by 1

2-3 tree construction trace

Standard indexing client.

insert S @
E
(E)

A

2-3 tree construction trace

The same keys inserted in ascending order.

insert A

C

E

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

b cd
less between\ /between\ /between\ /between greater
than a aandb b and c candd d and e than e
a C e

(b) (d)

less between\ /between\ /between\ /between greater
than a aandb b and c candd d and e than e

Global properties ina 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.

root Q parentis a 3-node
— ef
ofe f (d O (b d e)
(a) (<)
parentis a 2-node
middle (&)

!

b c d (b) (d)

_’

(b d)

()
right . right fa b) (a b d)
- (b) (d) (c)

l

(e)

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.
e Worst case: IgN. [all 2-nodes]
e Best case: logs N = .6311g N. [all 3-nodes]

e Between 12 and 20 for a million nodes.
 Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

ST implementations: summary

guarantee average case :
ordered operations

implementation : :
: iteration? on keys
search insert delete @ search hit insert delete

ial h
sequ.entla éearc N N N N/2 N N/2 no equals ()
(linked list)
binary search N N Ig N N/2 N/2 5 | cemmemsTad)
(ordered array) g g y =
BST N N N 1.391gN 1.391gN ? yes compareTo ()
2-3 tree clgN «clgN clgN clgN clgN clgN yes compareTo ()

T

constants depend upon
implementation

2-3 tree: implementation?

Direct implementation is complicated, because:

Maintaining multiple node types is cumbersome.
Need multiple compares to move down tree.

Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

Need to move back up the tree to split 4-nodes.

» red-black BSTs

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.

2. Use "internal" left-leaning links as "glue" for 3-nodes.

3-node

less between greater
than a aandb than b

larger key is root
greater
less between than b
than a aandb

2-3 tree

black links connect

red links "glue 2-nodes and 3-nodes

nodes within a 3-node

corresponding red-black BST

An equivalent definition

A BST such that:

* No node has two red links connected to it.

» Every path from root to null link has the same number of black links.
 Red links lean left. AN

"perfect black balance"

20

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.

red-black tree

2-3 tree

21

