
Algorithms, 4th Edition · Robert Sedgewick and Kevin Wayne · Copyright © 2002–2011 · October 18, 2011 6:58:42 AM

Algorithms
F O U R T H E D I T I O N

R O B E R T S E D G E W I C K K E V I N W A Y N E

3.3 BALANCED SEARCH TREES

‣ 2-3 search trees
‣ red-black BSTs
‣ B-trees

2

Symbol table review

Challenge. Guarantee performance.
This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

introduced to the world
in COS 226, Fall 2007

implementation

guaranteeguaranteeguarantee average caseaverage caseaverage case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

goal log N log N log N log N log N log N yes compareTo()

3

‣ 2-3 search trees
‣ red-black BSTs
‣ B-trees

Allow 1 or 2 keys per node.

• 2-node: one key, two children.

• 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order.
Perfect balance. Every path from root to null link has same length.

E J

H L

2-node3-node

null link

M

R

P S XA C

Anatomy of a 2-3 search tree

2-3 tree

4

between E and J

larger than Jsmaller than E

• Compare search key against keys in node.

• Find interval containing search key.

• Follow associated link (recursively).

5

Search in a 2-3 tree

found H so return value (search hit)

H is less than M so
look to the left

H is between E and L so
look in the middle

B is between A and C so look in the middle

B is less than M so
look to the left

B is less than E
so look to the left

link is null so B is not in the tree (search miss)

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

E J

H L

M

R

P S XA C

successful search for H unsuccessful search for B

Successful (left) and unsuccessful (right) search in a 2-3 tree

6

Insertion in a 2-3 tree

Case 1. Insert into a 2-node at bottom.

• Search for key, as usual.

• Replace 2-node with 3-node.

search for K ends here

replace 2-node with
new 3-node containing K

E J

H L

M

R

P S XA C

E J

H

M

R

P S XK LA C

inserting K

Insert into a 2-node

7

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

why middle key?

split 4-node into two 2-nodes
pass middle key to parent

replace 3-node with
temporary 4-node

containing Z

replace 2-node
with new 3-node

containing
middle key

S X Z

S Z

E J

H L

L

M

R

PA C

search for Z ends
at this 3-nodeE J

H L

M

R

P S XA C

E J

H

M

P

R X

A C

inserting Z

Insert into a 3-node whose parent is a 2-node

8

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary.

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node

add middle key C to 3-node
to make temporary 4-node

add new key D to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H L

M

R

P S XA C

E J

H L

M

R

P S X

C E J

H L

M

R

P S X

A D H L

C J R

P S X

E M

inserting D

Insert into a 3-node whose parent is a 3-node

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into two 2-nodes
pass middle key to parent

add middle key E to 2-node
to make new 3-node

add middle key C to 3-node
to make temporary 4-node

add new key D to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H L

M

R

P S XA C

E J

H L

M

R

P S X

C E J

H L

M

R

P S X

A D H L

C J R

P S X

E M

inserting D

Insert into a 3-node whose parent is a 3-node

Case 2. Insert into a 3-node at bottom.

• Add new key to 3-node to create temporary 4-node.

• Move middle key in 4-node into parent.

• Repeat up the tree, as necessary.

• If you reach the root and it's a 4-node, split it into three 2-nodes.

Remark. Splitting the root increases height by 1.
9

Insertion in a 2-3 tree

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

inserting D

Splitting the root

split 4-node into two 2-nodes
pass middle key to parent

split 4-node into
three 2-nodes
increasing tree

height by 1

add middle key C to 3-node
to make temporary 4-node

A C D

A D

search for D ends
at this 3-node E J

H LA C

E J

H L

C E J

H L

A D H L

C J

E

add new key D to 3-node
to make temporary 4-node

inserting D

Splitting the root

Standard indexing client.

10

2-3 tree construction trace

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

 standard indexing client same keys in increasing order

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

insert S insert A

2-3 construction traces

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

 standard indexing client same keys in increasing order

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

insert S insert A

2-3 construction traces

The same keys inserted in ascending order.

11

2-3 tree construction trace

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

 standard indexing client same keys in increasing order

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

insert S insert A

2-3 construction traces

S

S

S

PA

E

A

E S

R S

E

A S

C

A E

M

E R

H P

H

E

R S

S X

A C

E R

A C

H

E R

A C

A

L

C

A

A C

E H

S X

E R

A C H M

S XA C

H

C M

E L

A

H

C M

E L

M

E R

P S XA C H L

A E L M

P R

P S X

C H

A E

C H

M R

H

C

LA E

P

M R

H

C

LA E

 standard indexing client same keys in increasing order

E

A

R

C

H

X

M

P

L

C

E

H

L

M

P

R

S

X

insert S insert A

2-3 construction traces

12

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

b c d

a e

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

between
a and b

less
than a

between
b and c

between
d and e

greater
than e

between
c and d

b d

a c e

Splitting a 4-node is a local transformation that preserves balance

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.

13

Global properties in a 2-3 tree

b

right

middle

left

right

left

b db c d

a ca

a b c

d

ca

b d

a b c
ca

root

parent is a 2-node

parent is a 3-node

Splitting a temporary 4-node in a 2-3 tree (summary)

c e

b d

c d e

a b

b c d

a e

a b d

a c e

a b c

d e

ca

b d e

15

2-3 tree: performance

Perfect balance. Every path from root to null link has same length.

Tree height.

• Worst case: lg N. [all 2-nodes]

• Best case: log3 N ≈ .631 lg N. [all 3-nodes]

• Between 12 and 20 for a million nodes.

• Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

Typical 2-3 tree built from random keys

ST implementations: summary

16

constants depend upon
implementation

implementation

guaranteeguaranteeguarantee average caseaverage caseaverage case
ordered operations

implementation

search insert delete search hit insert delete
iteration? on keys

sequential search
(linked list)

N N N N/2 N N/2 no equals()

binary search
(ordered array)

lg N N N lg N N/2 N/2 yes compareTo()

BST N N N 1.39 lg N 1.39 lg N ? yes compareTo()

2-3 tree c lg N c lg N c lg N c lg N c lg N c lg N yes compareTo()

17

2-3 tree: implementation?

Direct implementation is complicated, because:

• Maintaining multiple node types is cumbersome.

• Need multiple compares to move down tree.

• Need to move back up the tree to split 4-nodes.

• Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

18

‣ 2-3 search trees
‣ red-black BSTs
‣ B-trees

1. Represent 2–3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3–nodes.

19

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

larger key is root

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

Encoding a 3-node with two 2-nodes
 connected by a left-leaning red link

a b3-node

between
a and b

less
than a

greater
than b

a

b

between
a and b

less
than a

greater
than b

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

black links connect
2-nodes and 3-nodesred links "glue"

nodes within a 3-node

2-3 tree corresponding red-black BST

A BST such that:

• No node has two red links connected to it.

• Every path from root to null link has the same number of black links.

• Red links lean left.

20

An equivalent definition

"perfect black balance"

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

Key property. 1–1 correspondence between 2–3 and LLRB.

21

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

1−1 correspondence between red-black and 2-3 trees

X
SH

P

J R

E

A

M

C
L

XSH P

J RE
A

M

C L

red−black tree

horizontal red links

2-3 tree

E J

H L

M

R

P S XA C

