CS171 Introduction to Computer Science II

Priority Queues and Binary Heap

Review

- Binary Search Trees (BST)
- Balanced search trees
- Hash tables

ST implementations: summary

implementation		guarantee		#1	average case	ordered	operations	
	search	insert	insert delete		search hit insert		iteration?	on keys
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.38 lg N	1.38 lg N	7	yes	compareTo()
red-black tree	2 lg N	2 lg N	2 lg N	1.00 lg N	1.00 lg N	1.00 lg N	yes	compareTo()
separate chaining	lg N *	lg N *	<mark>l</mark> g N *	3-5 *	3-5 *	<mark>3-5</mark> *	no	equals()
linear probing	lg N *	lg N *	lg N *	3-5 *	3-5 *	3-5 *	no	equals()

* under uniform hashing assumption

Hashing vs. balanced search trees

Hashing.

- Simpler to code.
- No effective alternative for unordered keys.
- Faster for simple keys (a few arithmetic ops versus log N compares).
- Better system support in Java for strings (e.g., cached hash code).

Balanced search trees.

- Stronger performance guarantee.
- Support for ordered ST operations.
- Easier to implement compareTo() correctly than equals() and hashcode().

Java system includes both.

- Red-black trees: java.util.TreeMap, java.util.TreeSet.
- Hashing: java.util.HashMap, java.util.IdentityHashMap.

Priority Queues

- Need to process/search an item with largest (smallest) key, but not necessarily full sorted order
- Support two operations
 - Remove maximum (or minimum)
 - Insert
- Similar to
 - Stacks (remove newest)
 - Queues (remove oldest)

Example

operation	argument	return value
insert	Р	
insert	Q	
insert	E	
remove max	;	Q
insert	Х	-
insert	А	
insert	М	
remove max	;	Х
insert	Р	
insert	L	
insert	Е	
remove max		Р

Applications

• Job scheduling

Keys corresponds to priorities of the tasks

- Sorting algorithm
 - Heapsort
- Graph algorithms
 - Shortest path
- Statistics

– Maintain largest M values in a sequence

Requirement. Generic items are comparable.

public cla	oublic class MaxPQ <key comparable<key="" extends="">></key>								
	MaxPQ() create a priority queue								
	MaxPQ(maxN)	create a priority queue of initial capacity maxN							
void	insert(Key v)	insert a key into the priority queue							
Кеу	max()	return the largest key							
Кеу	delMax()	return and remove the largest key							
boolean	isEmpty()	is the priority queue empty?							
int	size()	number of entries in the priority queue							
	AF	Pl for a generic priority queue							

Priority queue client example

Challenge. Find the largest M items in a stream of N items (N huge, M large).

- Fraud detection: isolate \$\$ transactions.
- File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N items.

% more tiny	Batch.txt	
Turing	6/17/1990	644.08
vonNeumann	3/26/2002	4121.85
Dijkstra	8/22/2007	2678.40
vonNeumann	1/11/1999	4409.74
Dijkstra	11/18/1995	837.42
Hoare	5/10/1993	3229.27
vonNeumann	2/12/1994	4732.35
Hoare	8/18/1992	4381.21
Turing	1/11/2002	66.10
Thompson	2/27/2000	4747.08
Turing	2/11/1991	2156.86
Hoare	8/12/2003	1025.70
vonNeumann	10/13/1993	2520.97
Dijkstra	9/10/2000	708.95
Turing	10/12/1993	3532.36
Hoare	2/10/2005	4050.20

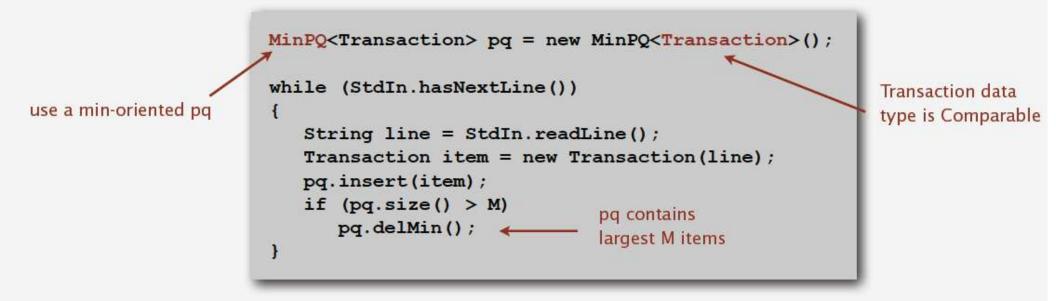
Thompson	2/27/2000	4747.08
onNeumann	2/12/1994	4732.35
onNeumann	1/11/1999	4409.74
loare	8/18/1992	4381.21
vonNeumann	3/26/2002	4121.85
		1

Possible implementations

- Sorting N items
 - Time: NlogN
 - Space: N
- Elementary PQ Compare each new key against M largest seen so far
 - Time: NM
 - Space: M
- Using an efficient MaxPQ Implementation

Priority queue client example

Challenge. Find the largest M items in a stream of N items (N huge, M large).



order of growth of finding the largest M in a stream of N items

implementation	time	space
sort	<mark>N lo</mark> g N	N
elementary PQ	MN	М
binary heap	N log M	М
best in theory	N	М

Implementations

- Elementary representations
 - Unordered array (lazy approach)
 - ordered array (eager approach)
- Efficient implementation
 - Binary heap structure
- Can we implement priority queue using Binary Search Trees?

Priority queue: unordered and ordered array implementation

operation	argument	return value	size	()		tents derei							tents ered				
insert	Р		1	Р							Р						
insert	Q		2	Р	Q						Р	Q					
insert	E		3	Р	Q	Е					Е	Р	Q				
remove max		Q	2	Р	Е						Е	Ρ	-				
insert	Х		3	Р	Е	Х					Е	Ρ	Х				
insert	А		4	Р	Е	Х	Α				А	Е	Ρ	Х			
insert	М		5	Р	Е	Х	А	Μ			А	Е	Μ	Ρ	Х		
remove max		Х	4	Р	Е	М	А				А	Е	Μ	Ρ			
insert	Р		5	Р	Е	М	А	Ρ			А	Е	Μ	Ρ	Ρ		
insert	L		6	Р	Е	М	А	Р	L		А	Е	L	М	Р	Ρ	
insert	Е		7	Р	Е	М	Α	Ρ	L	Е	А	Е	Е	L	Μ	Ρ	Ρ
remove max		Р	6	Е	М	А	Ρ	L	Е		А	Е	Е	L	Μ	Ρ	

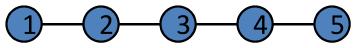
A sequence of operations on a priority queue

Sequence-based Priority Queue

 Implementation with an unsorted list

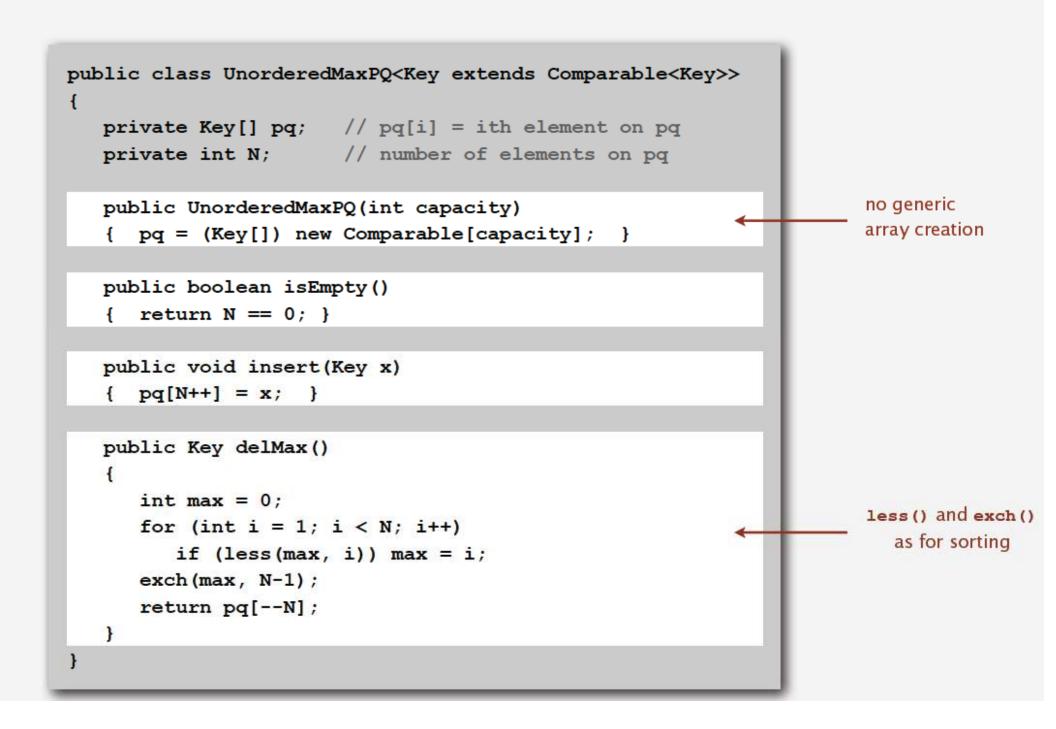
- Performance:
 - insert takes O(1) time since we can insert the item at the beginning or end of the sequence
 - removeMin and min take
 O(n) time since we have to traverse the entire sequence to find the smallest key

 Implementation with a sorted list



- Performance:
 - insert takes O(n) time since we have to find the place where to insert the item
 - removeMin and min take
 O(1) time, since the
 smallest key is at the
 beginning

Priority queue: unordered array implementation



Priority queue elementary implementations

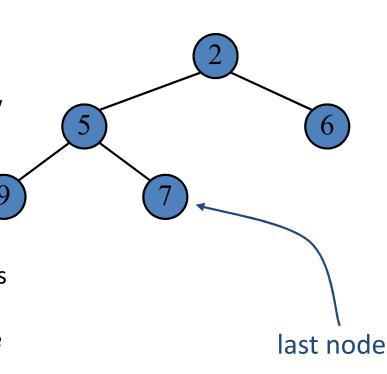
Challenge. Implement all operations efficiently.

order-of-growth of running time for priority queue with N items

implementation	insert	del max	max
unordered array	1	Ν	Ν
ordered array	Ν	1	1
goal	log N	log N	log N

Binary Heap Tree

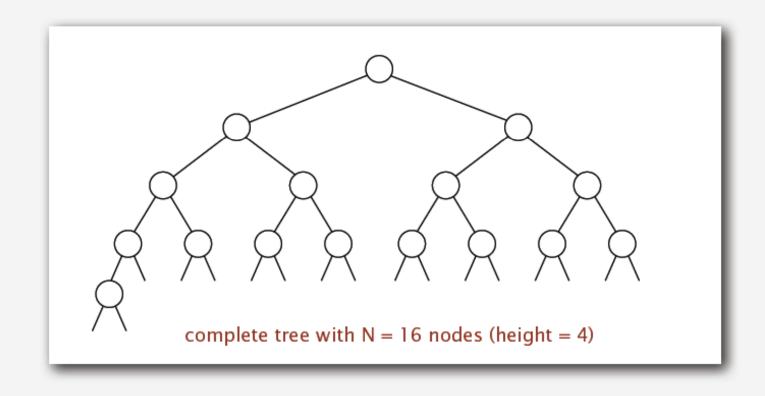
- A heap is a binary tree storing keys at its nodes and satisfying two properties:
 - Heap-Order: for every internal node v other than the root, $key(v) \ge key(parent(v))$
 - Complete Binary Tree: let *h* be the height of the heap
 - for i = 0, ..., h 1, there are 2^i nodes of depth i
 - at depth h 1, the internal nodes are to the left of the external nodes
 - The last node of a heap is the rightmost node of depth *h-1*



Binary tree

Binary tree. Empty or node with links to left and right binary trees.

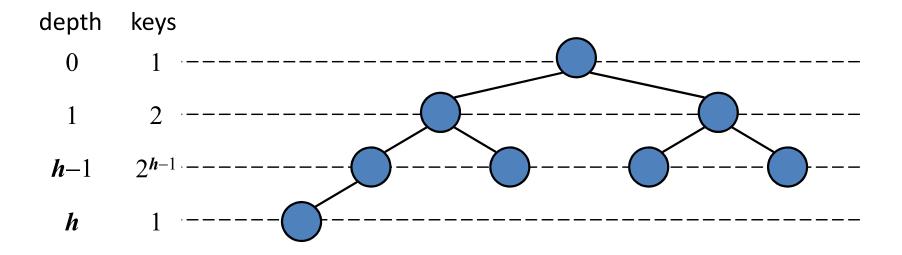
Complete tree. Perfectly balanced, except for bottom level.



Property. Height of complete tree with N nodes is $\lfloor \lg N \rfloor$. Pf. Height only increases when N is a power of 2.

Height of a Heap

- Theorem: A heap storing *n* keys has height *O*(log *n*)
 Proof: (we apply the complete binary tree property)
 - Let *h* be the height of a heap storing *n* keys
 - Since there are 2^i keys at depth i = 0, ..., h 1 and at least one key at depth h, we have $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
 - Thus, $n \ge 2^h$, i.e., $h \le \log n$



A complete binary tree in nature

Binary heap representations

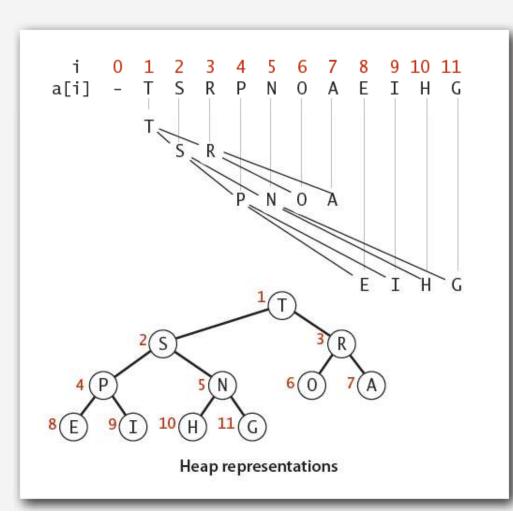
Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.

- Keys in nodes.
- No smaller than children's keys.

Array representation.

- Take nodes in level order.
- No explicit links needed!



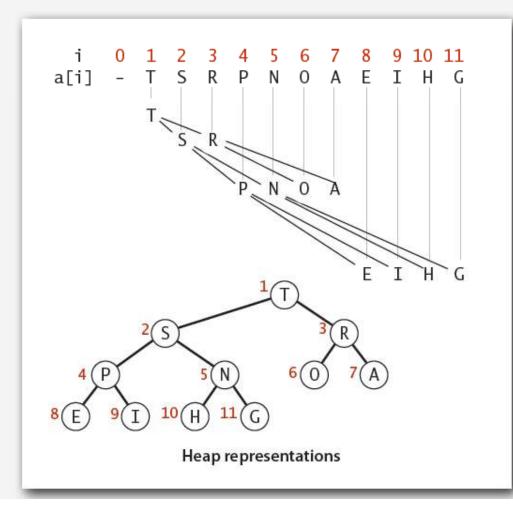
Binary heap properties

Proposition. Largest key is a[1], which is root of binary tree.

indices start at 1

Proposition. Can use array indices to move through tree.

- Parent of node at k is at k/2.
- Children of node at k are at 2k and 2k+1.



Insert/Remove and Maintaining Heap order

- When a node's key is larger than its parent key — Upheap (promote, swim)
- When a node's key becomes smaller than its children's keys

– Downheap (demote, sink)

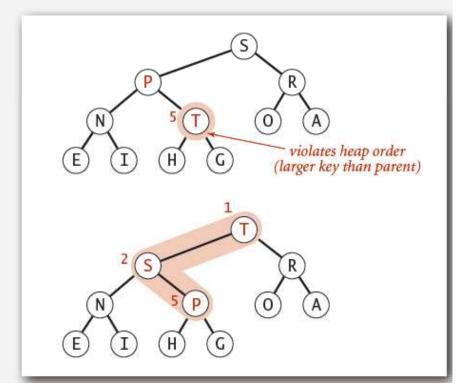
Promotion in a heap

Scenario. Node's key becomes larger key than its parent's key.

To eliminate the violation:

- Exchange key in node with key in parent.
- Repeat until heap order restored.

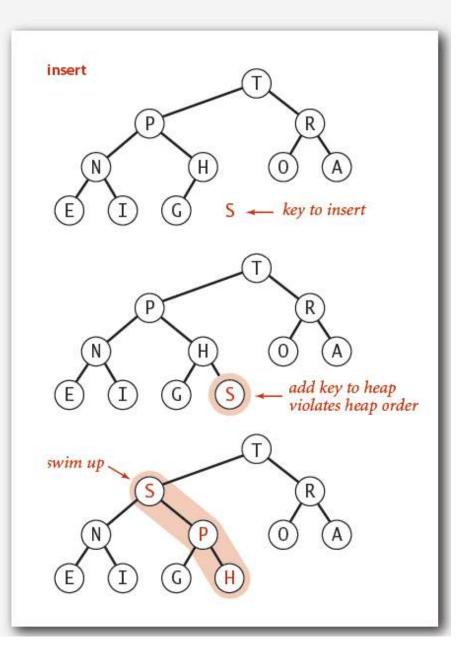
```
private void swim(int k)
{
    while (k > 1 && less(k/2, k))
    {
        exch(k, k/2);
        k = k/2;
    }
    parent of node at k is at k/2
}
```



Insertion in a heap

Insert. Add node at end, then swim it up. Cost. At most $1 + \lg N$ compares.

```
public void insert(Key x)
{
    pq[++N] = x;
    swim(N);
}
```

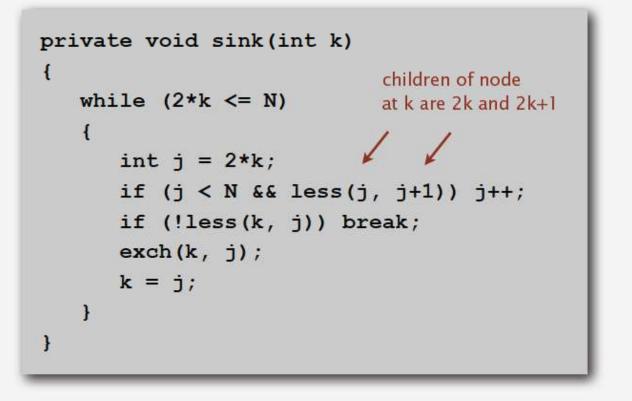


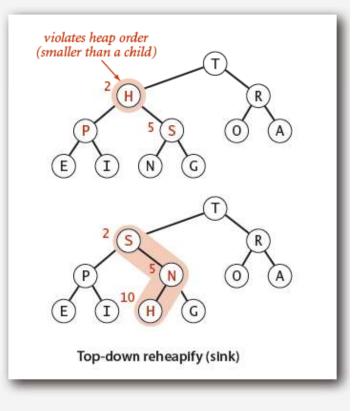
Demotion in a heap

Scenario. Node's key becomes smaller than one (or both) of its children's keys.

To eliminate the violation:

- Exchange key in node with key in larger child.
- Repeat until heap order restored.

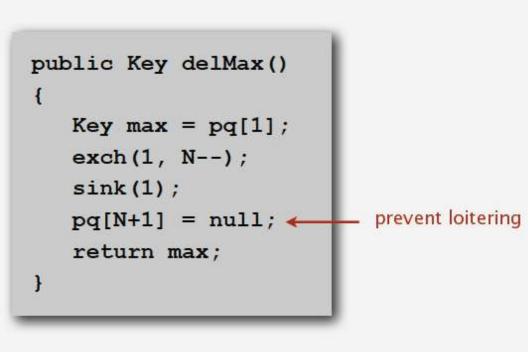


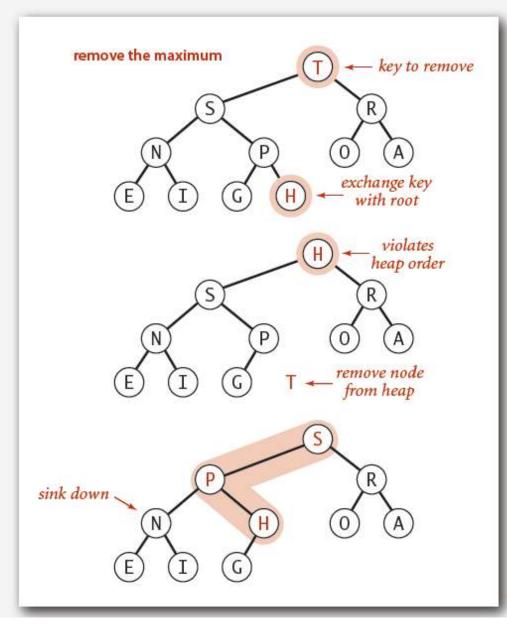


Power struggle. Better subordinate promoted.

Delete the maximum in a heap

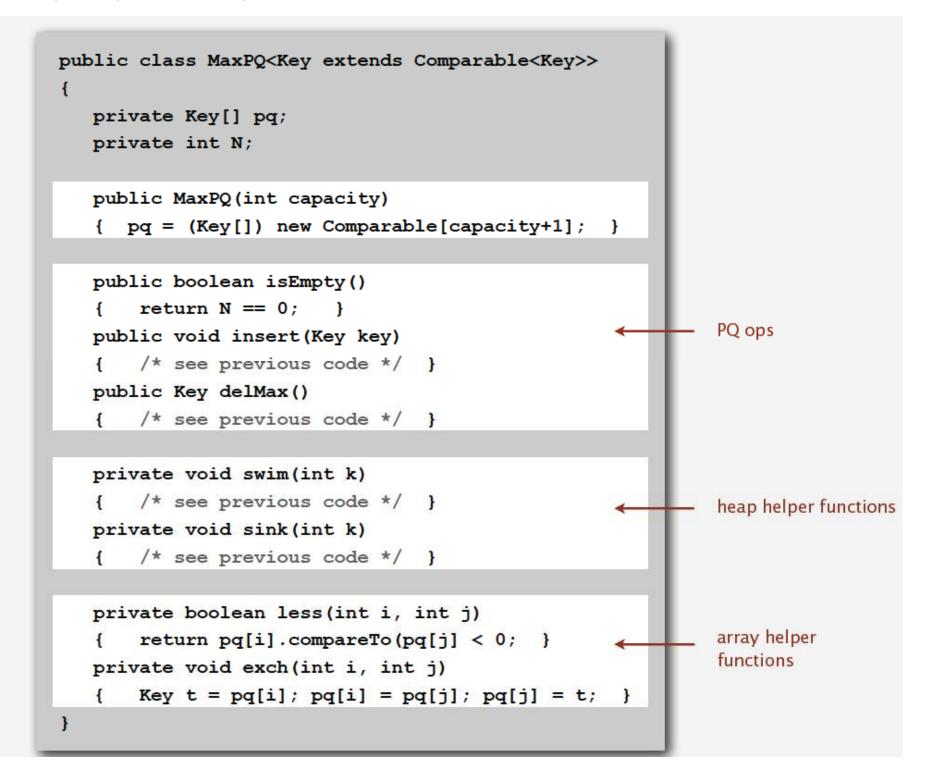
Delete max. Exchange root with node at end, then sink it down. Cost. At most $2 \lg N$ compares.





Demo

Binary heap: Java implementation



Priority queues implementation cost summary

order-of-growth of running time for priority queue with N items

implementation	insert	insert del max		
unordered array	1	Ν	Ν	
ordered array	Ν		1	
binary heap	log N	log N	1	
d-ary heap	log _d N	d log _d N	1	
Fibonacci	1	log N †	1	
impossible	1	1	1	

† amortized