
CS171 Introduction to Computer Science II

Priority Queues and Binary HeapPriority Queues and Binary Heap



Review

• Binary Search Trees (BST)

• Balanced search trees

• Hash tables







Priority Queues

• Need to process/search an item with largest 
(smallest) key, but not necessarily full sorted 
order

• Support two operations• Support two operations

– Remove maximum (or minimum)

– Insert

• Similar to

– Stacks (remove newest)

– Queues (remove oldest)



Example



Applications

• Job scheduling

– Keys corresponds to priorities of the tasks

• Sorting algorithm

– Heapsort– Heapsort

• Graph algorithms

– Shortest path

• Statistics

– Maintain largest M values in a sequence







Possible implementations

• Sorting N items

– Time: NlogN

– Space: N

• Elementary PQ - Compare each new key • Elementary PQ - Compare each new key 

against M largest seen so far

– Time: NM

– Space: M

• Using an efficient MaxPQ Implementation





Implementations

• Elementary representations

– Unordered array (lazy approach)

– ordered array (eager approach)

• Efficient implementation• Efficient implementation

– Binary heap structure

• Can we implement priority queue using Binary 

Search Trees?





Sequence-based Priority Queue

• Implementation with an 
unsorted list

• Performance:

• Implementation with a 
sorted list

• Performance:

4 5 2 3 1 1 2 3 4 5

14

• Performance:
– insert takes O(1) time since 

we can insert the item at 
the beginning or end of the 
sequence

– removeMin and min take 
O(n) time since we have to 
traverse the entire 
sequence to find the 
smallest key 

• Performance:

– insert takes O(n) time since 
we have to find the place 
where to insert the item

– removeMin and min take 
O(1) time, since the 
smallest key is at the 
beginning







Binary Heap Tree

• A heap is a binary tree storing keys 
at its nodes and satisfying two 
properties:

– Heap-Order: for every internal node v 
other than the root,
key(v) ≥ key(parent(v))

2

65

17

key(v) ≥ key(parent(v))

– Complete Binary Tree: let h be the 
height of the heap

• for i = 0, … , h − 1, there are 2i nodes 
of depth i

• at depth h − 1, the internal nodes are 
to the left of the external nodes

• The last node of a heap is the 
rightmost node of depth h-1

79

last node





Height of a Heap

• Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)

– Let h be the height of a heap storing n keys

– Since there are 2i keys at depth i = 0, … , h − 1 and at least one key at 

depth h, we have n ≥ 1 + 2 + 4 +… + 2h−1 + 1

– Thus, n ≥ 2h , i.e., h ≤ log n

19

– Thus, n ≥ 2h , i.e., h ≤ log n

1

2

2h−1

1

keys

0

1

h−1

h

depth









Insert/Remove and Maintaining Heap 

order

• When a node’s key is larger than its parent key

– Upheap (promote, swim)

• When a node’s key becomes smaller than its 

children’s keyschildren’s keys

– Downheap (demote, sink)











Demo






