CS171 Introduction to Computer Science |l

Priority Queues and Binary Heap

Review

* Binary Search Trees (BST)

e Balanced search trees
e Hash tables

ST implementations: summary

guarantee average case
. . ordered operations
implementation 3 ;
iteration? on keys
search insert delete search hit insert delete
N
lg N
N

sequential search

(linked list) N N N/2 N N/2 no equals ()

binary search

(arderSd aiven N N Ig N N/2 N/2 yes compareTo ()

BST N N 1.38I1gN 1.38IgN ? yes compareTo ()

red-black tree 2lgN 2lgN 2lgN 1.00IgN 1.00IgN 1.00lgN yes compareTo ()
separate chaining IgN~* IgN* IlgN* 3-5* 3-5* 3-5* no equals ()

linear probing igN*

* under uniform hashing assumption

Hashing vs. balanced search trees

Hashing.

» Simpler to code.

* No effective alternative for unordered keys.

* Faster for simple keys (a few arithmetic ops versus log N compares).

» Better system support in Java for strings (e.g., cached hash code).

Balanced search trees.
» Stronger performance guarantee.
» Support for ordered ST operations.

 Easier to implement compareTo () correctly than equals () and hashcode ().

Java system includes both.
» Red-black trees: java.util.TreeMap, java.util.TreeSet.

- Hashing: java.util.HashMap, java.util.IdentityHashMap.

Priority Queues

* Need to process/search an item with largest
(smallest) key, but not necessarily full sorted

order

e Support two operations
— Remove maximum (or minimum)

— Insert

e Similar to
— Stacks (remove newest)
— Queues (remove oldest)

Example

operation argument rf;?;?
insert P
insert Q
insert E

remove max Q
insert X
insert A
insert M

remove max X
insert P
insert L
insert E

remove max p

Applications

Job scheduling
— Keys corresponds to priorities of the tasks
Sorting algorithm

— Heapsort

Graph algorithms
— Shortest path

Statistics

— Maintain largest M values in a sequence

Priority queue API

Requirement. Generic items are comparable.

public class MaxPQ<Key extends Comparable<Key>>

MaxPQ() create a priority queue
MaxPQ(maxN) create a priority queue of initial capacity maxN
void 1insert(Key v) insert a key into the priority queue
Key max() return the largest key
Key delMax() return and remove the largest key
boolean isEmpty() is the priority queue empty?
int size() number of entries in the priority queue

API for a generic priority queue

Priority queue client example

Challenge. Find the largest M items in a stream of N items (N huge, M large).

e Fraud detection: isolate $$ transactions.

* File maintenance: find biggest files or directories.

Constraint. Not enough memory to store N items.

% more tinyBatch.txt % jJava TopM 5 < tinyBatch.txt

Turing 6/17/1990 644 .08 Thompson 2/27/2000 4747.08
vonNeumann 3/26/2002 4121.85 vonNeumann 2/12/1994 4732.35
Dijkstra 8/22/2007 2678.40 vonNeumann 1/11/1999 4409.74
vonNeumann 1/11/1999 4409.74 Hoare 8/18/19%92 4381.21
Dijkstra 11/18/1995 837.42 vonNeumann 3/26/2002 4121.85
Hoare 5/10/1993 3229.27
vonNeumann 2/12/1994 4732.35
Hoare 8/18/1992 4381.21
Turing 1/11/2002 66.10 i
Thompson 2/27/2000 4747.08
Turing 2/11/1991 2156.86
Hoare 8/12/2003 1025.70
vonNeumann 10/13/1993 2520.97
Dijkstra 9/10/2000 708.95
Turing 10/12/1993 3532.36
Hoare 2/10/2005 4050.20

Possible implementations

* Sorting N items
— Time: NlogN
— Space: N

* Elementary PQ - Compare each new key
against M largest seen so far

— Time: NM
— Space: M
* Using an efficient MaxPQ Implementation

Priority queue client example

Challenge. Find the largest M items in a stream of N items (N huge, M large).

MinPQ<Transaction> pqg = new MinPQ<Transaction>() ;

////J;hile (StdIn.hasNextLine())

use a min-oriented pq {

Transaction data

type is Comparable
String line = StdIn.readLine() ;

Transaction item = new Transaction(line) ;
Pg.insert (item) ;
if (pg.size() > M)

: pq contains
pg.delMin(); <——

largest M items

order of growth of finding the largest M in a stream of N items

implementation

sort N log N N
elementary PQ M N M
binary heap N log M M

best in theory N M

Implementations

* Elementary representations

— Unordered array (lazy approach)
— ordered array (eager approach)

* Efficient implementation
— Binary heap structure

* Can we implement priority queue using Binary
Search Trees?

Priority queue: unordered and ordered array implementation

. fturn . contents contents
operation argument 5, Size (unordered) (ordered)
insert P 1 P P
insert Q 2 P Q P Q
insert E 3 P Q E E P Q
remove max Q 2 P E E P
insert X 3 P E X E P X
insert A 4 P E X A A E P X
insert M 5 P E X A M A E M P X
remove max X 4 P E M A A E M P
insert P 5 P EM A P A E M P P
insert L 6 P EM A P L A E L M P P
insert E / P EM A P L E A°E E L M P P
remove max P 6 E M A P L E A E E L M P

A sequence of operations on a priority queue

Sequence-based Priority Queue

* Implementation with an * |Implementation with a
unsorted list sorted list

G000 O—0—0G—0—0

* Performance:

— insert takes O(1) time since
we can insert the item at

* Performance:
— insert takes O(n) time since

the beginning or end of the
sequence

removeMin and min take
O(n) time since we have to
traverse the entire
sequence to find the
smallest key

we have to find the place
where to insert the item

removeMin and min take
O(1) time, since the
smallest key is at the
beginning

14

Priority queue: unordered array implementation

public class UnorderedMaxPQ<Key extends Comparable<Key>>

{

private Key[] pqg: // pq[i]l] = ith element on pqg
private int N; // number of elements on pq

public UnorderedMaxPQ(int capacity)

-«

{ pPg = (Key[]) new Comparable[capacity]; }
public boolean isEmpty ()
{ return N == 0; }
public void insert (Key x)
{ pqlN++] = x; }
public Key delMax ()
{

int max = 0;

for (int 2 = 1; 1< N; itt) <

if (less(max, i)) max = i;
exch (max, N-1);

return pg[--N];

no generic
array creation

less () and exch()
as for sorting

Priority queue elementary implementations

Challenge. Implement all operations efficiently.

order-of-growth of running time for priority queue with N items

implementation insert del max

unordered array] N N
ordered array N]]

goal

Binary Heap Tree

A heap is a binary tree storing keys
at its nodes and satisfying two
properties:

— Heap-Order: for every internal node v

other than the root,
key(v) > key(parent(v))

— Complete Binary Tree: let h be the
height of the heap

e fori=0, ..., h—1,there are 2 nodes
of depth i
e atdepth i — 1, the internal nodes are last node

to the left of the external nodes

* The last node of a heap is the
rightmost node of depth h-1

17

Binary tree
Binary tree. Empty or node with links to left and right binary trees.

Complete tree. Perfectly balanced, except for bottom level.

complete tree with N = 16 nodes (height = 4)

Property. Height of complete tree with N nodes is |Ig N|.

Pf. Height only increases when N is a power of 2.

Height of a Heap

* Theorem: A heap storing n keys has height O(log n)
Proof: (we apply the complete binary tree property)

— Let h be the height of a heap storing n keys
— Since there are 2/ keys at depthi=0, ..., h — 1 and at least one key at
depth h, we haven>1+2+4+ ... +21 +1

— Thus,n>2",i.e., h<logn

depth keys

19

A complete binary tree in nature

Binary heap representations

Binary heap. Array representation of a heap-ordered complete binary tree.

Heap-ordered binary tree.
» Keys in nodes.
* No smaller than children's keys.

Array representation.
» Take nodes in level order.

» No explicit links needed!

Heap representations

Binary heap properties

Proposition. Largest key is ar11, which is root of binary tree.

indices start at 1

Y
Proposition. Can use array indices to move through tree.

e Parent of node at x is at x/2.

¢ Children of node at x are at 2x and 2x+1.

Heap representations

Insert/Remove and Maintaining Heap
order

* When a node’s key is larger than its parent key

— Upheap (promote, swim)

* When a node’s key becomes smaller than its
children’s keys

— Downheap (demote, sink)

Promotion in a heap
Scenario. Node's key becomes larger key than its parent’s key.

To eliminate the violation:
» Exchange key in node with key in parent.

* Repeat until heap order restored.

private void swim(int k)

{

while (k > 1 && less(k/2, k))

G o @ 5‘“‘" violates heap order
{ (larger key than parent)

exch(k, k/2);

: k = k/2;‘H5&

parent of node at k is at k/2

Insertion in a heap

Insert. Add node at end, then swim it up.
Cost. At most 1 +1g N compares.

public void insert (Key x)

{
pgl++N] = x;

swim (N) ;

_ add key to heap
violates heap order

Demotion in a heap

Scenario. Node's key becomes smaller than one (or both) of its children's keys.

To eliminate the violation:
» Exchange key in node with key in larger child.

* Repeat until heap order restored.

. - - - violates heap order
PeratE void 51nk{1nt k) {(smaller than a child)

{ children of node
while (2*k <= N) at k are 2k and 2k+1

{
int j = 2*k; g/' f/

if (J < N && less(j, j+1)) Jj++;
if ('less(k, Jj)) break;
exch(k, Jj);

k = 3;

Top-down reheapify (sink)

Power struggle. Better subordinate promoted.

Delete the maximum in a heap

Delete max. Exchange root with node at end, then sink it down.
Cost. At most 21g N compares.

remove the maximum
< key to remove

-
(N P @O W
® © © @V

violates

- —

® heap order
:
OSERO
® @ @ r—magk

public Key delMax()
{
Key max = pq[l];
exch(l, N--);
sink (1) ;
pg[N+1l] = null; prevent loitering

return max;

sink down

Demo

Binary heap: Java implementation

public class MaxPQ<Key extends Comparable<Key>>

{
private Key[] pg;

private int N;

public MaxPQ (int capacity)
{ pg = (Key[]) new Comparable[capacity+l1l]; }

public boolean isEmpty ()

{ return N == 0; }

public void insert (Key key) PQ ops
{ /* see previous code */ }

public Key delMax()

{ /* see previous code */ }

private wvoid swim(int k)
{ /* see previous code */ '} heap helper functions
private wvoid sink(int k)

{ /* see previous code */ }

private boolean less(int i, int j)

{ return pql[i] .compareTo (pg[j] < 0; } array helper
functions

private void exch(int i, int jJj)

{ Key t = pql[i]:; pqli]l = pqljl:; pqali]l = t; }

Priority queues implementation cost summary

order-of-growth of running time for priority queue with N items

implementation insert del max

unordered array | N N

ordered array N |]
binary heap log N log N]
d-ary heap loga N d logd N]
Fibonacci 1 log N 1]

impossible

+ amortized

