CS171 Introduction to Computer
Science ||

Graphs

Graphs

e Search

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

j=1]

(=8
e
—
e

M o~ o AW R RO

=
H o W

=
%]

ZAANNNS

~E-0]

~o]

Bag objects

~[o]

(5 4]

563

~EHEr

[0 f+{4]

=]
> representations

of the same edge

~E-[o-[2]

~[9]

~9 {22

~1o]

Traversing graphs

* Graph traversal: visit each vertex in the graph
exactly once

 There are in general two ways to traverse a graph
— Depth-first search (DFS): Uses a Stack or recursion

* Begins at a node, explores as far as possible along each
branch before backtracking

— Breath-first search (BFS): uses a Queue

* Begins at a node, explores all its neighboring nodes. Then for
each of those nodes, explores their unexplored neighbor
nodes, and so on

Maze exploration

Maze graphs.

e Vertex = intersection.

» Edge = passage.

intersection passage

Goal. Explore every intersection in the maze.

Trémaux maze exploration

Algorithm.
* Unroll a ball of string behind you.
* Mark each visited intersection and each visited passage.

» Retrace steps when no unvisited options.

Depth-first search

Goal. Systematically search through a graph.

Idea. Mimic maze exploration.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked

vertices w adjacent to v.

Typical applications. [ahead]
» Find all vertices connected to a given source vertex.

» Find a path between two vertices.

Depth-first search (warmup)

Goal. Find all vertices connected to s.

Idea. Mimic maze exploration.

Algorithm.

* Use recursion (ball of string).

* Mark each visited vertex.

» Return (retrace steps) when no

unvisited options.

Data structure.

* boolean[] marked To mark visited vertices.

dfs{0)

dfs(2)
check 0

dfs(1)
check 0
check 2
1 done

dfs(3)

dfs(5)

check 3
check 0

5 done

dfs(4)

check 3
check 2

4 done
check 2
3 done
check 4
2 done
check 1
check 5
0 done

o

C

@@{:@@

(2]

T—@

© 0
©

5) 9';-40

OX ?)
©)]

X 0-.‘..,;],

(2)
® 9-4!;

marked[]

o L R S e L Pl

(¥ I S TR N S

[V R T W SR

[V ST N R]

[V [ST N]

T

e e ==

— ==

(el R e =] LRI R e] [R ™ [R =] [Ea B R Ll i]

LE R R e ol =

adj[]

il L Ln [=]

Depth-first search (warmup)

public class DepthFirstSearch
{

marked[v] = true
if v connected to s

private boolean[] marked; <

public DepthFirstSearch (Graph G, int s)
{

marked = new boolean[G.V()]:;
dfs (G, s); B

constructor marks
vertices connected to s

private void dfs (Graph G, int wv)
{
marked[v] = true;
for (int w : G.adj(v))
if ('marked[w])
dfs (G, w);

< recursive DFS does the work

client can ask whether

public boolean marked(int wv)
vertex v is connected to s

{ return marked[v]; }

Depth-First Search (DFS) —
Nonrecursive algorithm

* Visit an unvisited neighbor of the current node
if possible, push it on the stack

* Pop a node from the stack, make it current
node, repeat the above

* Done when the stack is empty

Depth-first search application: preparing for a date

PREPARIG RRADATE]| (77— 7~V [y o]
OKAY, WHAT KINDS OF HM. WHICH SNAKES

WHAT SITUATIONS EMERGENCIES CAN HPPEN? DPNGEROUS? LET'S SEE... THE RESEARCH (OMPARING
MIGHT T PREPARE. FR7) A) SNAKERITE DAYD CoRN m? smxsmmssmm
1) MEDIGAL EMERGENCY B) LIGHTNING STRIE D) GARTER SNAKE. 7 o, (D WOONSTENT. T
2) DANCING) FALLFRM CHAR o COPFERHEAD A FREADSHEET To ORGRANIZE IT.
L, D) ROD TROBPENSVE OWF % W

; 0 : °
i\

TMHEREPKK. BY LDy, THE IND
YOUUP. YouRE TAIPAN HAS THE CEAQLIEST
NOT DRESSED? VENGM OF ANY SNAKE "

1%

xkcd

http: //xkcd.com/T61/

T REALY NEED To SToP
USING DEPTH-FIRST SEARCHES.

Pathfinding in graphs

Goal. Does there exist a path from s to r? If yes, find any such path.

public class Paths

Paths (Graph G, int s) find paths in G from source s
boolean hasPathTo (int wv) is there a path from s to v’

Iterable<Integer> pathTo(int wv) path from s to v; null if no such path

Depth-first search (pathfinding)

Goal. Find paths to all vertices connected
to a given source s.

Idea. Mimic maze exploration.

Algorithm.
» Use recursion (ball of string).
* Mark each visited vertex by keeping

track of edge taken to visit it.

Return (retrace steps) when

no unvisited options.

Data structures.

®* boolean[] marked TO mark visited vertices.

* int[] edgeTo To keep tree of paths.
* (edgeTo[w] == v) means that e.dge. v-w

was taken to visit w the first time

dfs(0)

dfs(2)
check 0

dfs(1)
check ©
check 2
1 done

dfs(3)

dfs(5)
check 3
check O
5 done

dfs(4)
check 3
check 2
4 done
check 2
3 done
check 4
2 done
check 1
check 5§
0 done

()
()

()
()

()
()

©

Z © (1:@
A

el RO

N

©

(5)3)

edgeTo[]

o

b P = [N

LAl R

e L R

[*%) (o8 N N [=1 (=N

L L B S R

[y

Depth-first search (pathfinding)

public class DepthFirstPaths

{
private boolean[] marked; parent-link representation
private int[] edgeTo; of DES tree

private final int s;

public DepthFirstPaths (Graph G, int s)
{
marked = new boolean|[G.V()]:;
edgeTo = new int[G.V()];
this.s = s;
dfs (G, s);
}
private void dfs(Graph G, int v)
{
marked|[v] = true;
for (int w : G.adj(v))
if ('marked|w])
{
edgeTo[w] = v; + set parent link
dfs (G, w);

public boolean hasPathTo(int v)
public Iterable<Integer> pathTo(int wv)

ahead

F

Depth-first search (pathfinding iterator)

edgeTo[] is a parent-link representation of a tree rooted at s.

@ e edgeTo[] @

public boolean hasPathTo(int wv)
{ return marked[v]; }

public Iterable<Integer> pathTo(int v)

{
if ('hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>()
for (int x = v; x '= s; x = edgeTo[x])

path.push (x) ;

path.push(s) ;
return path;

Graph Search

 Breadth-first search

