CS171 Introduction to Computer
Science ||

Graphs



Graphs

Directed graphs
Weighted graphs
Minimum spanning tree
Shortest path



Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.
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Road network

Vertex = intersection; edge = one-way street.
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Digraph applications

transportation
web
food web
WordNet
scheduling
financial
cell phone
infectious disease
game
citation
object graph
inheritance hierarchy

control flow

street intersection

web page
species
synset
task
bank
person
person
board position
journal article
object
class

code block

directed edge
one-way street
hyperlink
predator-prey relationship
hypernym
precedence constraint
transaction
placed call
infection
legal move
citation
pointer
inherits from

jump




Adjacency-list graph representation

Maintain vertex-indexed array of lists.
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Adjacency-lists digraph representation

Maintain vertex-indexed array of lists (use Bag abstraction).
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Digraph APT

public class Digraph

Digraph (int V) create an empty digraph with V vertices
Digraph (In in) create a digraph from input stream
void addEdge(int v, int w) add a directed edge v—w
Iterable<Integer> adj(int wv) vertices pointing from v
int V() number of vertices
int E() number of edges
Digraph reverse() reverse of this digraph

String toString() siring representation



Adjacency-lists digraph representation: Java implementation

public class Digraph
{

private final int V;

private final Bag<Integer>[] adj;

public Digraph (int V)
{
this.V = V;
adj = (Bag<Integer>[]) new Bag[V];
for (int v = 0; v < V; v++)
adj[v] = new Bag<Integer>() ;

public void addEdge(int v, int w)
{
adj[v] .add (w) ;

public Iterable<Integer> adj(int wv)

{ return adj[v]; }

adjacency lists

create empty digraph
with V vertices

add edge v—w

iterator for vertices
pointing from v



Digraph API

e = . . :

0o % Java TestDigraph tinyDG. txt

3 2 5 0->1

6 0 Q 2->0

0 1 (6 AD=(8) oo

2 0 @ X2 >

11 12 3->5

13 13 0 © 3->2

9 11 @ @ 4->3

8 9 4->2

10 12 _

11 4 >—>4

4 3 -

2 5 11->4

- 11->12

E 4 12-9

0 5

6 4

6 9

7 6
In in = new In(args[0]); = read digraph from
Digraph G = new Digraph(in) ; input stream

for (int v = 0; v < G.V(); v++) print out each

edge (once)

for (int w : G.adj(v)) <
StdOut.println(v + "->" + w);




Depth-first search in digraphs
Same method as for undirected graphs.

» Every undirected graph is a digraph (with edges in both directions).
» DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked

vertices w pointing from v.




Breadth-first search in digraphs

Same method as for undirected graphs.

» Every undirected graph is a digraph (with edges in both directions).
» BFS is a digraph algorithm.

BFS (from source vertex s) %_‘I_'I‘_I*_I._I‘—I_'I

Put s onto a FIFO queue, and mark s as visited.
Repeat until the queue is empty: _;

BR!
sass
- remove the least recently added vertex v %_‘ <—$«—L—I—»t~—t—r
- for each unmarked vertex pointing from v: I l‘_I_. I

add to queue and mark as visited. I } ;‘I I_>

FL.I&L.H

Proposition. BFS computes shortest paths (fewest number of edges).



Edge-weighted graphs

* Each connection has an associated weight




Adjacency-list graph representation

Maintain vertex-indexed array of lists.
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Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists (use Bag abstraction).

tinyEWG. txt ™ 6|0|.580]2|.26—0|4|.38—|0]|7].16 Bag

V‘""-:LB objects
E
16 % adi[] ~1113].29{1]2|.36—1|7(.19H1]|5].32
45 0.35
0 /

47 0.37 - - — —

5 7 0.28 1/ 6|2 .40 2171.34 1(2].36 0]21].26 2131].17

07 0.16 5

15 0.32 | “[3]6].521]3]|.29—~2)3).17

3

04 0.38
i 4

i?gE -_-__-____""H“64.93 014].38 417 |.37 415|.35
- 5 i

02 0.26 \ .

6 ~ . . references to the
ig 3'22 ; \ 1]5|.325]|7].28—~4]5].35 same Edae dbjort
27 0.34
6 2 0.40 \"‘64.93‘60.58*36.52*62.40
36 0.52
60 0.58 ~|2|7.3a—]1|7]|.19~{0|7|.16—|5|7|.28—{5|7].28
6 4 0.93




Weighted edge API

Edge abstraction needed for weighted edges.

public class

Edge implements Comparable<Edge>

int

int

int

double

String

Edge (int v, int w, double weight) create a weighted edge v-w

either ()

other (int v)

compareTo (Edge that)

welight ()

toString()

weight

either endpoint
the endpoint that's not v
compare this edge to that edge

the weight

O

Idiom for processing an edge e! int v =

O,

.either (), w = e.other(v);



Weighted edge: Java implementation

public class Edge implements Comparable<Edge>
{

private final int v, w;
private final double weight;

public Edge(int v, int w, double weight)
{

this.v = v;

this.w = w;

this.weight = weight;

public int either()

{ return v; }

public int other (int wvertex)

{
if (vertex == wv) return w;
else return v;

public int compareTo (Edge that)
{

i (this.weight < that.weight) return -1;
else if (this.weight > that.weight) return +1;

else return 0;

constructor

either endpoint

other endpoint

compare edges by weight



Edge-weighted graph API

public class EdgeWeightedGraph

volid

Iterable<Edge>

Iterable<Edge>

int

int

String

EdgeWeightedGraph (int V)

EdgeWeightedGraph (In in)

addEdge (Edge e)

adj (int wv)

edges ()

V()

E()

toString()

create an empty graph with Vvertices
create a graph from input stream
add weighted edge e to this graph
edges incident to v
all edges in this graph
number of vertices
number of edges

string representation



Edge-weighted graph: adjacency-lists implementation

public class EdgeWeightedGraph
{

private final int V;

same as Graph, but adjacency
private final Bag<Edge>[] adj;

lists of Edges instead of integers

public EdgeWeightedGraph (int V)

; this.V = V; constructor
adj = (Bag<Edge>[]) new Bag[V]:
for (int v = 0; v < V; vt}
adj[v] = new Bag<Edge>() ;
}

public void addEdge (Edge e)

{
int v = e.either(), w = e.other(v);
adj[v].add(e) ; add edge to both
adj[w] .add(e) ; adjacency lists

}

public Iterable<Edge> adj(int wv)
{ return adj[v]:; }



Graphs

Directed graphs
Weighted graphs
Minimum spanning tree
Shortest path



Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.
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Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.
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Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning free of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

g e m—24 7
S
e




Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning free of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

, o 24
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A

spanning tree T: cost=50=4+6+8+5+11+9+7

1




Applications

* Phone/cable network design — minimum cost

* Approximation algorithms for NP-hard
problems



Minimum spanning tree API

Q. How to represent the MST?

public class

MST

MST (EdgeWeightedGraph G)

Iterable<Edge> edges()
double weight ()
tinyEWG. txt
1{13 "
16+~
45 0.35 ﬁ’{‘g;ﬂﬂf""
ac
57 ﬂ.za/
07 0.16 o
23 0.17 & (2)
17 0.19 0)
02 0.26 o e
62 0.40 non-MST edge

/ (gray)

consiructor

edges in MST

weight of MST

% java MST tinyEWG. txt
0-7 0.16

1-7 0.19

0-2 0.26

2-3 0.17

5-7 0.28

4-5 0.35

6-2 0.40

1.81



Prim’s algorithm

« Start with vertex 0 and greedily grow tree T.

« At each step, add to T the min weight edge with exactly one endpoint in T.

an edge-weighted graph

o O o o O 0O o o o O o o o o o o

.16
.17
.19
.26
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93



Prim's algorithm: implementation challenge
Challenge. Find the min weight edge with exactly one endpoint in T.

How difficult?

O (E) time. «—— tryall edges

O (V) time.

O(log E) time.  «—— use a priority queue !
O (log™ E) time.

Constant time.

1-7 is min weight edge with
exactly one endpoint in T

priority queue
\}f cmss‘g;rg edges
0.19

1-7

0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58



Prim's algorithm: lazy implementation
Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
« Delete min to determine next edge e =v—w to add to T.
 Disregard if both endpoints vand w are in T.
 Otherwise, let v be vertex not in T':
- add to PQ any edge incident to v (assuming other endpoint not in 7)
-addvto T

1-7 is min weight edge with
exactly one endpoint in T
priority queue
\}j crossing edges
1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58



Prim’s algorithm demo: lazy implementation

Use minPQ: key = edge, prioritized by weight.

(lazy version leaves some obsolete edges on the PQ)



Prim’s algorithm: lazy implementation

public class LazyPrimMST
{

private boolean[] marked; // MST vertices
private Queue<Edge> mst; // MST edges
private MinPQ<Edge> pq: // PQ of edges

public LazyPrimMST (WeightedGraph G)
{
P9 = new MinPQ<Edge>() ;
mst = new Queue<Edge>() ;
marked = new boolean[G.V()]:

visit (G, 0); assume G is connected

A

while ('pqgq.isEmpty())

{ repeatedly delete the

Edge e = pq.delMin(); min weight edge e = v-w from PQ

int v = e.either(), w = e.other(v) ;

if (marked[v] && marked[w]) continue; ignore if both endpoints in T
mst.enqueue (&) ; add edge e to tree
if ('marked[v]) wvisit(G, Vv);

if ('marked[w]) wvisit(G, w);

3

add v or w to tree




Prim’s algorithm: lazy implementation

private void visit (WeightedGraph G, int wv)

{
addvtoT

marked|[v] = true;
for (Edge e : G.adj(v))
if (!'marked[e.other(v)])

pg.insert(e) ;

for each edge e = v-w, add to
PQ if w not already in T

public Iterable<Edge> mst()
{ return mst; }




Lazy Prim’'s algorithm: running time

Proposition. Lazy Prim's algorithm computes the MST in time proportional

to E log E and extra space proportional to E (in the worst case).

7t

delete min E log E

insert E



Graphs

Directed graphs
Weighted graphs
Minimum spanning tree
Shortest path



Shortest paths in a weighted digraph

Given an edge-weighted digraph, find the shortest (directed) path from s to .

edge-weighted digraph

4->5 0.35

5->4  0.35 (D—

4->7 0.37 (5

5-57 0.28 \(D{@

7->5 0.28 ‘/@’

5->1 0.32 ‘%

0->4 0.38 =

0->2 0.26

i-?'g g 33 shortest path from 0 to 6
53 0.

2->7 0.34 §j§§ 3'§§

6->2 0.40 7-53 0.39

3->6  0.52 3-56 0.52

6->0 0.58 '

6->4 0.93
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LN Wﬁ S UL s e[ sawite_[[Hybria

Medmal Gentar u e == W &
B AhF'nnc&ton f‘sr&f"*‘ \
\\igr ._hﬁ?a NS

| e | Piingsln |

3
\G

i 3\

> | 2 1 F‘Hm'lﬂl' Slndiumprlnoam |
N 8\ | Universy )

=

-

- &
q:‘% ; \

- Map data 12008 NAVTEQ™ - Terms of Lise



Continental U.S. routes (August 2010)
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Dijkstra’s Algorithm

* Finds all shortest paths given a source =g |

* Solves single-source, single-
destination, single-pair shortest path
problem

* |ntuition: grows the paths from the
source node using a greedy approach



Shortest Paths — Dijkstra’s Algorithm

* Assign to every node a distance value: set it to zero for
source node and to infinity for all other nodes.

e Mark all nodes as unvisited. Set source node as current.

* For current node, consider all its unvisited neighbors and
calculate their tentative distance. If this distance is less than
the previously recorded distance, overwrite the distance
(edge relaxation). Mark it as visited.

* Set the unvisited node with the smallest distance from the
source node as the next "current node" and repeat the
above

* Done when all nodes are visited.



Data structures

* Distance to the source: a vertex-indexed array
distTo[] such that distTo[v] is the length of the
shortest known path fromstov

* Edges on the shortest paths tree: a parent-
edge representation of a vertex-indexed array
edgeTo[] where edgeTo[v] is the parent edge
on the shortest path to v




Edge relaxation

Relax edge e = v—w.

* distTo[v] iS length of shortest known path from s to v.
* distTo[w] iS length of shortest known path from s to w.
* edgeTo[w] is last edge on shortest known path from s to w.

e If e =v—w gives shorter path to w through v, update aistTo[w] and edgeTo[w].

v—=w successfully relaxes
Os»o/q :

F2 4.4

black edges
are in edgeTol]



Dijkstra's algorithm demo

 Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest aistTo[]1 value).

« Add vertex to tree and relax all edges pointing from that vertex.

(%<|5
5""'/"4

9 /

-

an edge-weighted digraph

20

\

3

/

SN

12.
15.

11.

20.

13.

O O O O O O 0O 0O 0O 0O o o0 o o o o



Dijkstra's algorithm: Java implementation

public class DijkstraSP

{
private DirectedEdge[] edgeTo;
private double[] distTo;

private IndexMinPQ<Double> pq;

public DijkstraSP (EdgeWeightedDigraph G, int s)

{
edgeTo = new DirectedEdge[G.V()]:

distTo = new double[G.V()];

pq = new IndexMinPQ<Double>(G.V()):

for (int v = 0; v < G.V(); v++)

distTo[v] = Double.POSITIVE INFINITY

distTo[s] = 0.0;

pg.insert(s, 0.0);
while ('pg.isEmpty())
{

int v = pg.delMin() ;
for (DirectedEdge e : G.adj(v))
relax(e) ;

relax vertices in order
of distance from s



Dijkstra's algorithm: Java implementation

if (pg.contains(w)) pg.decreaseKey(w, distTo[w]) ; update PQ

else pgq.insert (w, distTo[w]) ;




Priority-first search

Insight. Four of our graph-search methods are the same algorithml

* Maintain a set of explored vertices S.

» Grow S by exploring edges with exactly one endpoint leaving S.

DFS. Take edge from vertex which was discovered most recently.
BFS. Take edge from vertex which was discovered least recently.
Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to S.




MapQuest

* Shortest path for a single source-target pair
* Dijkstra algorithm can be used
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Better Solution: Make a ‘hunch”!

* Use heuristics to guide the search

— Heuristic: estimation or “hunch” of how to search for a
solution

e We define a heuristic function:

h(n) = “estimate of the cost of the cheapest path from the
starting node to the goal node”



The A* Search

 A*isan algorithm that:
— Uses heuristic to guide search

— While ensuring that it will compute a path with
minimum cost

“estimated cost”

e
™\

“actual cost”

e A* computes the function f(n) = g(n) + h(n)



A*

* f(n)=g(n) + h(n)
— g(n) = “cost from the starting node to reach n”

— h(n) = “estimate of the cost of the cheapest path from
n to the goal node”

h(n)




Properties of A*

* A* generates an optimal solution if h(n) is an admissible
heuristic and the search space is a tree:

— h(n) is admissible if it never overestimates the cost to
reach the destination node

e A* generates an optimal solution if h(n) is a consistent heuristic and the
search space is a graph:

— h(n) is consistent if for every node n and for every successor node n’ of n:
h(n) £ c(n,n’) + h(n’)

c(nn) N = h(n’)

e |f h(n) is consistent then h(n) is admissible
e Frequently when h(n) is admissible, it is also consistent



Admissible Heuristics

* A heuristic is admissible if it is optimistic, estimating the
cost to be smaller than it actually is.

* MapQuest:

h(n) = “Euclidean distance to destination”

is admissible as normally cities are not connected by roads that make
straight lines



