
CS171 Introduction to Computer 

Science IIScience II

Graphs



Graphs

• Simple graphs

• Algorithms
– Depth-first search

– Breadth-first search

– shortest path– shortest path

– Connected components

• Directed graphs

• Weighted graphs

• Shortest path

• Minimum spanning tree













Dijkstra’s algorithm

• Maintain a queue of nodes to be examined 

(open set)

• Remove the node with shortest distance to 

the source to the closed set and add its the source to the closed set and add its 

neighbors to the open set



Shortest Paths – Dijkstra’s Algorithm 

• Initialization
– Assign to every node a distance value: set it to zero for source node 

and to infinity for all other nodes.

– Mark all nodes unvisited, insert source node into a queue (open set)

• Repeat until the queue is empty
Remove a node from the queue with the smallest distance from the 

Repeat until the queue is empty
– Remove a node from the queue with the smallest distance from the 

source node as the "current node“ and mark it as visited (closed set)

– For current node, consider all its unvisited neighbors (not in the closed 
set) and calculate their tentative distance. 

– If this distance is less than the previously recorded distance, overwrite
the distance and update the parent for the neighbor, and add the 
neighbor into the queue or update its distance if it is already in the 
queue (edge relaxation)



Data structures

• Distance to the source: a vertex-indexed array 

distTo[] such that distTo[v] is the length of the 

shortest known path from s to v

• Edges on the shortest paths tree: a parent-• Edges on the shortest paths tree: a parent-

edge representation of a vertex-indexed array 

edgeTo[] where edgeTo[v] is the parent edge 

on the shortest path to v



Dijkstra’s algorithm











From Dijkstra to A*
• Dijkstra: remove the node with shortest distance from the source

• A*: remove the node with shortest distance from the source and 

likely the shortest distance to the target

• f(n) = g(n) + h(n)

– g(n) = “cost from the starting node to reach n”

– h(n) = “estimate of the cost of the cheapest path from n to the 

goal node” h(n)goal node”

10

15

20

20

15

5

18

25

33

n
g(n)

h(n)



Properties of A*

• A* generates an optimal solution if h(n) is an admissible 

heuristic and the search space is a tree:

– h(n) is admissible if it never overestimates the cost to 

reach the destination node

• A* generates an optimal solution if h(n) is a consistent heuristic and the 

search space is a graph:search space is a graph:

– h(n) is consistent if for every node n and for every successor node n’ of n:

h(n) ≤ c(n,n’) + h(n’)

n

n’

d

h(n)

c(n,n’) h(n’)

• If h(n) is consistent then h(n) is admissible

• Frequently when h(n) is admissible, it is also consistent



Admissible Heuristics

• A heuristic is admissible if it is optimistic, estimating the 

cost to be smaller than it actually is.

• MapQuest:

h(n) = “Euclidean distance to destination” 

is admissible as normally cities are not connected by roads that make 

straight lines



Shortest Paths – A* Algorithm 

• Initialization
– Assign to every node a distance value: set it to zero for source node 

and to infinity for all other nodes.

– Mark all nodes unvisited, compute the cost (distance + estimate cost) 
for source node, and insert it into a queue (open set)

• Repeat until the queue is empty• Repeat until the queue is empty
– Remove a node from the queue with the smallest cost as the "current 

node“ and mark it as visited (closed set)

– For current node, consider all its unvisited neighbors (not in the closed 
set) and calculate their tentative distance. 

– If this distance is less than the previously recorded distance, overwrite 
the distance and update the parent for the neighbor, and compute the 
cost (distance + estimated cost) for the neighbor, and add the neighbor 
into the queue or update its cost if it is already in the queue (edge 
relaxation)



Graphs

• Simple graphs

• Algorithms
– Depth-first search

– Breadth-first search

– shortest path– shortest path

– Connected components

• Directed graphs

• Weighted graphs

• Shortest path

• Minimum spanning tree











Applications

• Phone/cable network design – minimum cost

• Approximation algorithms for NP-hard 

problems
















