CS171 Introduction to Computer
Science ||

Graphs

Graphs

e Shortest path
* Minimum spanning tree

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

j=1]

(=8
e
—
e

M o~ o AW R RO

=
H o W

=
%]

ZAANNNS

~E-0]

~o]

Bag objects

~[o]

(5 4]

563

~EHEr

[0 f+{4]

=]
> representations

of the same edge

~E-[o-[2]

~[9]

~9 {22

~1o]

Edge-weighted graph: adjacency-lists representation

Maintain vertex-indexed array of Edge lists (use Bag abstraction).

tinyEWG. txt ™ 6|0|.580]2|.26—0|4|.38—|0]|7].16 Bag

V‘""-:LB objects
E
16 % adi[] ~1113].29{1]2|.36—1|7(.19H1]|5].32
45 0.35
0 /

47 0.37 - - — —

5 7 0.28 1/ 6|2 .40 2171.34 1(2].36 0]21].26 2131].17

07 0.16 5

15 0.32 | “[3]6].521]3]|.29—~2)3).17

3

04 0.38
i 4

i?gE -_-__-____""H“64.93 014].38 417 |.37 415|.35
- 5 i

02 0.26 \ .

6 ~ . . references to the
ig 3'22 ; \ 1]5|.325]|7].28—~4]5].35 same Edae dbjort
27 0.34
6 2 0.40 \"‘64.93‘60.58*36.52*62.40
36 0.52
60 0.58 ~|2|7.3a—]1|7]|.19~{0|7|.16—|5|7|.28—{5|7].28
6 4 0.93

Weighted edge API

Edge abstraction needed for weighted edges.

public class

Edge implements Comparable<Edge>

int

int

int

double

String

Edge (int v, int w, double weight) create a weighted edge v-w

either ()

other (int v)

compareTo (Edge that)

welight ()

toString()

weight

either endpoint
the endpoint that's not v
compare this edge to that edge

the weight

O

Idiom for processing an edge e! int v =

O,

.either (), w = e.other(v);

Edge-weighted graph API

public class EdgeWeightedGraph

volid

Iterable<Edge>

Iterable<Edge>

int

int

String

EdgeWeightedGraph (int V)

EdgeWeightedGraph (In in)

addEdge (Edge e)

adj (int wv)

edges ()

V()

E()

toString()

create an empty graph with Vvertices
create a graph from input stream
add weighted edge e to this graph
edges incident to v
all edges in this graph
number of vertices
number of edges

string representation

Shortest paths in a weighted digraph

Given an edge-weighted digraph, find the shortest (directed) path from s to .

edge-weighted digraph

4->5 0.35

5->4 0.35 (D—

4->7 0.37 (5

5-57 0.28 \(D{@

7->5 0.28 ‘/@’

5->1 0.32 ‘%

0->4 0.38 =

0->2 0.26

i-?'g g 33 shortest path from 0 to 6
53 0.

2->7 0.34 §j§§ 3'§§

6->2 0.40 7-53 0.39

3->6 0.52 3-56 0.52

6->0 0.58 '

6->4 0.93

Dijkstra’s algorithm

 Maintain a queue of nodes to be examined
(open set)

e Remove the node with shortest distance to
the source to the closed set and add its
neighbors to the open set

Shortest Paths — Dijkstra’s Algorithm

* |nitialization

— Assign to every node a distance value: set it to zero for source node
and to infinity for all other nodes.

— Mark all nodes unvisited, insert source node into a queue (open set)

* Repeat until the queue is empty

— Remove a node from the queue with the smallest distance from the
source node as the "current node” and mark it as visited (closed set)

— For current node, consider all its unvisited neighbors (not in the closed
set) and calculate their tentative distance.

— |If this distance is less than the previously recorded distance, overwrite
the distance and update the parent for the neighbor, and add the
neighbor into the queue or update its distance if it is already in the
queue (edge relaxation)

Data structures

* Distance to the source: a vertex-indexed array
distTo[] such that distTo[v] is the length of the
shortest known path fromstov

* Edges on the shortest paths tree: a parent-
edge representation of a vertex-indexed array
edgeTo[] where edgeTo[v] is the parent edge
on the shortest path to v

Edge relaxation

Relax edge e = v—w.

* distTo[v] iS length of shortest known path from s to v.
* distTo[w] iS length of shortest known path from s to w.
* edgeTo[w] is last edge on shortest known path from s to w.

e If e =v—w gives shorter path to w through v, update aistTo[w] and edgeTo[w].

v—=w successfully relaxes
Os»o/q :

F2 4.4

black edges
are in edgeTol]

Dijkstra's algorithm demo

 Consider vertices in increasing order of distance from s
(non-tree vertex with the lowest aistTo[]1 value).

« Add vertex to tree and relax all edges pointing from that vertex.

(%<|5
5""'/"4

9 /

-

an edge-weighted digraph

20

\

3

/

SN

12.
15.

11.

20.

13.

O O O O O O 0O 0O 0O 0O o o0 o o o o

Dijkstra's algorithm: Java implementation

public class DijkstraSP

{
private DirectedEdge[] edgeTo;
private double[] distTo;

private IndexMinPQ<Double> pq;

public DijkstraSP (EdgeWeightedDigraph G, int s)

{
edgeTo = new DirectedEdge[G.V()]:

distTo = new double[G.V()];

pq = new IndexMinPQ<Double>(G.V()):

for (int v = 0; v < G.V(); v++)

distTo[v] = Double.POSITIVE INFINITY

distTo[s] = 0.0;

pg.insert(s, 0.0);
while ('pg.isEmpty())
{

int v = pg.delMin() ;
for (DirectedEdge e : G.adj(v))
relax(e) ;

relax vertices in order
of distance from s

Dijkstra's algorithm: Java implementation

if (pg.contains(w)) pg.decreaseKey(w, distTo[w]) ; update PQ

else pgq.insert (w, distTo[w]) ;

Priority-first search

Insight. Four of our graph-search methods are the same algorithml

* Maintain a set of explored vertices S.

» Grow S by exploring edges with exactly one endpoint leaving S.

DFS. Take edge from vertex which was discovered most recently.
BFS. Take edge from vertex which was discovered least recently.
Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to S.

From Dijkstra to A*

* Dijkstra: remove the node with shortest distance from the source
 A*:remove the node with shortest distance from the source and
likely the shortest distance to the target
* f(n) =g(n) + h(n)
— g(n) = “cost from the starting node to reach n”
— h(n) = “estimate of the cost of the cheapest path from n to the
goal node” h(n)

g(n)

Properties of A*

* A* generates an optimal solution if h(n) is an admissible
heuristic and the search space is a tree:

— h(n) is admissible if it never overestimates the cost to
reach the destination node

e A* generates an optimal solution if h(n) is a consistent heuristic and the
search space is a graph:

— h(n) is consistent if for every node n and for every successor node n’ of n:
h(n) £ c(n,n’) + h(n’)

c(nn) N = h(n’)

e |f h(n) is consistent then h(n) is admissible
e Frequently when h(n) is admissible, it is also consistent

Admissible Heuristics

* A heuristic is admissible if it is optimistic, estimating the
cost to be smaller than it actually is.

* MapQuest:

h(n) = “Euclidean distance to destination”

is admissible as normally cities are not connected by roads that make
straight lines

Shortest Paths — A* Algorithm

* |nitialization

— Assign to every node a distance value: set it to zero for source node
and to infinity for all other nodes.

— Mark all nodes unvisited, compute the cost (distance + estimate cost)
for source node, and insert it into a queue (open set)

* Repeat until the queue is empty

— Remove a node from the queue with the smallest cost as the "current
node” and mark it as visited (closed set)

— For current node, consider all its unvisited neighbors (not in the closed
set) and calculate their tentative distance.

— If this distance is less than the previously recorded distance, overwrite
the distance and update the parent for the neighbor, and compute the
cost (distance + estimated cost) for the neighbor, and add the neighbor
into the queue or update its cost if it is already in the queue (edge
relaxation)

Graphs

Simple graphs
Algorithms

— Depth-first search
— Breadth-first search

— shortest path
— Connected components

Directed graphs
Weighted graphs
Shortest path

Minimum spanning tree

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).
Def. A spanning tree of G is a subgraph T that is connected and acyclic.

Goal. Find a min weight spanning tree.

4 ”'O 24
23

18

11

14

e |
L=

graph G

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning tree of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

4) 24 %
14 \})

g
\k 10
21

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning free of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

g e m—24 7
S
e

Minimum spanning tree

Given. Undirected graph G with positive edge weights (connected).

Def. A spanning free of G is a subgraph T that is connected and acyclic.
Goal. Find a min weight spanning tree.

, o 24
6 23 g

> > E /:/ 11 " :<
16

8
7
10 14
2 \5

A

spanning tree T: cost=50=4+6+8+5+11+9+7

1

Applications

* Phone/cable network design — minimum cost

* Approximation algorithms for NP-hard
problems

Minimum spanning tree API

Q. How to represent the MST?

public class

MST

MST (EdgeWeightedGraph G)

Iterable<Edge> edges()
double weight ()
tinyEWG. txt
1{13 "
16+~
45 0.35 ﬁ’{‘g;ﬂﬂf""
ac
57 ﬂ.za/
07 0.16 o
23 0.17 & (2)
17 0.19 0)
02 0.26 o e
62 0.40 non-MST edge

/ (gray)

consiructor

edges in MST

weight of MST

% java MST tinyEWG. txt
0-7 0.16

1-7 0.19

0-2 0.26

2-3 0.17

5-7 0.28

4-5 0.35

6-2 0.40

1.81

Prim’s algorithm

« Start with vertex 0 and greedily grow tree T.

« At each step, add to T the min weight edge with exactly one endpoint in T.

an edge-weighted graph

o O o o O 0O o o o O o o o o o o

.16
.17
.19
.26
.28
.29
.32
.34
.35
.36
.37
.38
.40
.52
.58
.93

Prim's algorithm: lazy implementation
Challenge. Find the min weight edge with exactly one endpoint in T.

Lazy solution. Maintain a PQ of edges with (at least) one endpoint in T.
« Delete min to determine next edge e =v—w to add to T.
 Disregard if both endpoints vand w are in T.
 Otherwise, let v be vertex not in T':
- add to PQ any edge incident to v (assuming other endpoint not in 7)
-addvto T

1-7 is min weight edge with
exactly one endpoint in T
priority queue
\}j crossing edges
1-7 0.19
0-2 0.26
5-7 0.28
2-7 0.34
4-7 0.37
0-4 0.38
6-0 0.58

Prim’s algorithm demo: lazy implementation

Use minPQ: key = edge, prioritized by weight.

(lazy version leaves some obsolete edges on the PQ)

Prim’s algorithm: lazy implementation

public class LazyPrimMST
{

private boolean[] marked; // MST vertices
private Queue<Edge> mst; // MST edges
private MinPQ<Edge> pq: // PQ of edges

public LazyPrimMST (WeightedGraph G)
{
P9 = new MinPQ<Edge>() ;
mst = new Queue<Edge>() ;
marked = new boolean[G.V()]:

visit (G, 0); assume G is connected

A

while ('pqgq.isEmpty())

{ repeatedly delete the

Edge e = pq.delMin(); min weight edge e = v-w from PQ

int v = e.either(), w = e.other(v) ;

if (marked[v] && marked[w]) continue; ignore if both endpoints in T
mst.enqueue (&) ; add edge e to tree
if ('marked[v]) wvisit(G, Vv);

if ('marked[w]) wvisit(G, w);

3

add v or w to tree

Prim’s algorithm: lazy implementation

private void visit (WeightedGraph G, int wv)

{
addvtoT

marked|[v] = true;
for (Edge e : G.adj(v))
if (!'marked[e.other(v)])

pg.insert(e) ;

for each edge e = v-w, add to
PQ if w not already in T

public Iterable<Edge> mst()
{ return mst; }

Priority-first search

Insight. Four of our graph-search methods are the same algorithml

* Maintain a set of explored vertices S.

» Grow S by exploring edges with exactly one endpoint leaving S.

DFS. Take edge from vertex which was discovered most recently.
BFS. Take edge from vertex which was discovered least recently.
Prim. Take edge of minimum weight.

Dijkstra. Take edge to vertex that is closest to S.

