CS 171: Introduction to Computer
Science I

Project Workshop and Review

Li Xiong



Today

* Project workshop
 Final review
e Course evaluation



Project Workshop

* FaceSpace

—Alex Fields and Andres Celis

* MapQuest
—Kenty Wang
—Jennifer Lin
—Xiaobo Sun



Project Workshop

* Project design — class design, algorithm design, data
structures, GUI design

* Project development — development, debugging,
Integration

* Project experience —interesting and challenging
aspects, lessons learned

* Application Demo — program features, desired
features/remaining work



Review

 Data structures
* Algorithms
* When to use what



Summary of Data Structures

* General purpose data structures
—Arrays
—Linked lists
—Trees
—Hash tables

* Specialized data structures
—Stacks

—Queues, priority queues
—Graphs



Summary of Algorithms

* Associated with each data structure
— Insert
— Delete
— Search

— Traversal
— Graph algorithms
e Sorting
— Bubble, insertion, selection
— Merge sort
— Quick sort



Algorithm Analysis

* Big-O notation
e Common functions

—constant, logarithm, linear, quadratic, polynomial,
exponential, factorial in increasing order of growth

* Cost analysis
—Direct methods

—Recursive relations (specially useful for recursive
algorithms)



Programming/Problem Solving Techniques

* Recursion

* Divide and conquer

* Backtracking

* Dynamic programming — memoization



When to Use What?

* General-purpose data structures

—Arrays (unordered)
—Ordered arrays

—Linked list (unordered)
—Ordered Linked list

—Binary search tree (unbalanced)
—Self-balancing binary tree

—Hash tables



When to Use What?

 Comparison of General Purpose Structures:

Data Structure Search Insertion Deletion Traversal
Array O(N) O(1) O(N) —
Ordered array O(logN) O(N) O(N) Q(N)
Linked list O(N) O(1) O(N) —
Ordered linked list O(N) O(N) O(N) O(N)
Binary tree (average) O(logN) O(logN) O(logN) O(N)
Binary tree (worst case) O(N) O(N) O(N) O(N)
Balanced tree (average O(logN) O(logN) O(logN) O(N)
and worst case)

Hash table O(1) O(1) O(1) —




When to Use What

* Speed

—Array and Linked Lists < Trees < Hash Table for large
amount of data

e Catch

—Trees
* Binary search tree may be imbalanced
* Balanced trees are complex

—Hash tables
* A good hash function may be difficult to achieve
* Hard to expand (dynamic resizing of the array)
* Performance degrade when table is too full
* Can’t store data in sorted order



Hash
Table

Binary
Search
Tree

Yes

Searching
and insertion
must be very
fast
7

Key
distribution
guaranteed

random
7

Balanced
Tree

Amount

of data

predictable
9

Search
speed more
important than
insertion

™ speed
M, 7

_Nu-

Unordered

array

'-__Yf:s

Linked
list

Ordered
Array




Hash
Table

Binary
Search
Tree

Yes

Searching
and insertion
must be very

. fast .

Key
distribution
guaranteed

random
7

Balanced
Tree

Amount
of data

/ Search
speed more

insertion
speed

No

predictable
q ¥y

important than

Unordered
alr ﬂ}f

Yes

Linked
list

Ordered
Array




Amount

of data Linked
predictable list
a y
A / Search
carching speed more
Hash and insertion .im];ortant - YE Ordered
Table must be very iiscition Array
fast
y sp-??ed
No
i _ Unordered
S Key ™\ array
Binary Yf: - distribution
Search . guaranteed
Tree random
7

Balanced
Tree




Specialized data structures

e Stacks
— Push, pop
* Queues
—|nsert, remove
* Priority queues
—Insert, removeMin/removeMax
—Binary heaps
* Graphs
— List of edges, adjacency matrix, adjacency list
—BFS and DFS traversal algorithms
—Shortest paths for unweighted graphs (BFS)
—Shortest path for weighted graphs (Dijkstra, A*)



Final Exam

e May 7, 4:30—-7pm, W303

 Exam format and difficulty level are similar to
mid-term, quizzes, practice exam

e |tis accumulative: 1/3 before midterm, 2/3
after midterm

* Brief review guide and practice exam are posted



Parting thoughts

* You have learned a great deal!
* Beginning at the end

* Thank you for a great semester and would love to hear
from you or see you in a future class!



