1.5 UNION FIND

- dynamic connectivity
- quick find
- quick union
- improvements
- applications

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.

Dynamic connectivity

Given a set of objects

- Union: connect two objects.
- Connected: is there a path connecting the two objects?

```
union(3, 4)
union(8, 0)
union(2, 3)
union(5, 6)
connected(0, 2) no
connected(2, 4) yes
union(5, 1)
union(7, 3)
union(1, 6)
union(4, 8)
connected(0, 2) yes
connected(2, 4) yes
```


Q. Is there a path from p to q ?

A. Yes.

Modeling the objects

Dynamic connectivity applications involve manipulating objects of all types.

- Pixels in a digital photo.
- Computers in a network.
- Variable names in Fortran.
- Friends in a social network.
- Transistors in a computer chip.
- Elements in a mathematical set.
- Metallic sites in a composite system.

When programming, convenient to name sites 0 to $\mathrm{N}-1$.

- Use integers as array index.
- Suppress details not relevant to union-find.
can use symbol table to translate from site names to integers: stay tuned (Chapter 3)

Modeling the connections

We assume "is connected to" is an equivalence relation:

- Reflexive: p is connected to p.
- Symmetric: if p is connected to q, then q is connected to p.
- Transitive: if p is connected to q and q is connected to r, then p is connected to r.

Connected components. Maximal set of objects that are mutually connected.

Implementing the operations

Find query. Check if two objects are in the same component.

Union command. Replace components containing two objects with their union.

```
union(2, 5)
```


Union-find data type (API)

Goal. Design efficient data structure for union-find.

- Number of objects N can be huge.
- Number of operations M can be huge.
- Find queries and union commands may be intermixed.

```
public class UF
```

UF (int N)

```
    void union(int p, int q)
```

boolean connected(int p, int q)
int find(int p)
int count()

Dynamic-connectivity client

- Read in number of objects N from standard input.
- Repeat:
- read in pair of integers from standard input
- write out pair if they are not already connected

```
public static void main(String[] args)
{
    int N = StdIn.readInt();
    UF uf = new UF(N);
    while (!StdIn.isEmpty())
    {
        int p = StdIn.readInt();
        int q = StdIn.readInt();
        if (uf.connected(p, q)) continue;
        uf.union(p, q);
        StdOut.println(p + " " + q);
    }
}
```

```
% more tiny.txt
10
4 3
3
6
94
2 1
8
50
7
6 1
1 0
6
```

Quick-find [eager approach]

Data structure.

- Integer array id[] of size n.
- Interpretation: p and q are connected iff they have the same id.

```
cllllllllll
    5 and 6 are connected
\(2,3,4\), and 9 are connected
```

(0)
(1)
(5) 6
(7)
(8)

Quick-find [eager approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: p and q are connected iff they have the same id.

```
ccllllllllll
```

Find. Check if p and q have the same id.
id[3] = 9; id[6] = 6
3 and 6 are not connected

Quick-find [eager approach]

Data structure.

- Integer array id[] of size n .
- Interpretation: p and q are connected iff they have the same id.

$$
\begin{array}{ccccccccccc|}
\hline \text { i } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text { id[i] } & 0 & 1 & 9 & 9 & 9 & 6 & 6 & 7 & 8 & 9 \\
\hline
\end{array}
$$

Find. Check if p and q have the same id.

$$
\begin{gathered}
\text { id[3] }=9 ; \text { id }[6]=6 \\
3 \text { and } 6 \text { are not connected }
\end{gathered}
$$

Union. To merge components containing p and q, change all entries whose id[] equals id[p] to id[q].

Quick-find example

```
            id[]
p q
    0 1 2 3 3 5 6 7 8 9
3 8 0 1 2 3 3 5 6 7 8 9
    0 1 2 8 8 5 6 7 8 9
6 5 0 1 2 8 8 5 6 7 8 9
    0 1 2 8 8 5 5 7 8 9
94 0 1 2 8 8 5 5 7 8 9
    0 1 2 8 8 5 5 7 8 8
2 1 0 1 2 8 8 5 5 7 8 8
    0 1 1 8 8 5 5 7 8 8
8 9 0 1 1 8 8 5 5 7 8 8
5 0 0 0 1 1 8 8 5 5 5 7 8 8
    0 1 1 8 8 0 0 7 8 8
7 2 0 1 1 8 8 0 0 7 8 8
    0 1 1 8 8 0 0 1 8 8
6 1 0 1, 1 8 8 0 0 1 8 8
    111888111 8 8 union() changes entries equal
1 0 1 1 1 1 8 8 1 1 1 8 8
```



```
match, so no change
```


Quick-find: Java implementation

```
public class QuickFindUF
{
    private int[] id;
    public QuickFindUF(int N)
    {
        id = new int[N];
        for (int i = 0; i < N; i++)
            id[i] = i;
    }
    public boolean connected(int p, int q)
    { return id[p] == id[q]; }
    public void union(int p, int q)
    {
        int pid = id[p];
        int qid = id[q];
        for (int i = 0; i < id.length; i++)
        if (id[i] == pid) id[i] = qid;
    }
}
```

set id of each object to itself
(N array accesses)
check whether p and q are in the same component
(2 array accesses)
change all entries with id[p] to id [q] (linear number of array accesses)

Quick-find is too slow

Cost model. Number of array accesses (for read or write).

algorithm	init	union	connected
quick-find	N	N	1

order of growth of number of array accesses

Quick-find defect.

- Union too expensive.
- Trees are flat, but too expensive to keep them flat.
- Ex. Takes N^{2} array accesses to process sequence of N union commands on N objects.

Quadratic algorithms do not scale

Rough standard (for now).

- 10^{9} operations per second.
- 10^{9} words of main memory.
- Touch all words in approximately 1 second.

Ex. Huge problem for quick-find.

- 10^{9} union commands on 10^{9} objects.
- Quick-find takes more than 10^{18} operations.

- 30+ years of computer time!

Paradoxically, quadratic algorithms get worse with newer equipment.

- New computer may be $10 x$ as fast.
- But, has $10 x$ as much memory so problem may be $10 x$ bigger.
- With quadratic algorithm, takes $10 x$ as long!

dynamic connectivity
 > quick union

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: id [i] is parent of i.

- Root of i is id[id[id[...id[i]....]].

$$
\begin{array}{ccccccccccc}
\text { i } & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text { id [i] } & 0 & 1 & 9 & 4 & 9 & 6 & 6 & 7 & 8 & 9
\end{array}
$$

3 's root is 9; 5's root is 6

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: id [i] is parent of i.

- Root of i is id[id[id[...id[i]...]]].

$$
\begin{array}{ccccccccccc}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
i d[i] & 0 & 1 & 9 & 4 & 9 & 6 & 6 & 7 & 8 & 9
\end{array}
$$

Find. Check if p and q have the same root.

3's root is 9; 5's root is 6
3 and 5 are not connected

Quick-union [lazy approach]

Data structure.

- Integer array id[] of size N .
- Interpretation: id[i] is parent of i.

- Root of i is id[id[id[...id[i]...]]].

$$
\begin{array}{ccccccccccc}
\mathrm{i} & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\text { id[i] } & 0 & 1 & 9 & 4 & 9 & 6 & 6 & 7 & 8 & 9
\end{array}
$$

3 's root is 9 ; 5 's root is 6 3 and 5 are not connected
Union. To merge components containing p and q , set the id of p 's root to the id of q 's root.

Quick-union demo

Quick-union example
id[]
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)

(0) (1) (2)
$\begin{array}{ll}\text { (5) } & 7 \\ 6 & \end{array}$
$\begin{array}{ll}8 & 9 \\ 3 & \\ 4 & \\ 4 & \end{array}$
(0)
$\begin{array}{lll}\text { (1) (2) } & \text { (5) } \\ & \text { (6) }\end{array}$

210128355788
0118355788
(0)

1
(2)

$\begin{array}{r}5 \\ 5 \\ \hline 6\end{array}$
(7)

Quick-union example

$$
\begin{aligned}
& \text { id[] } \\
& \text { pq } 0123456789 \\
& \text { (0) } \\
& \text { (7) } \\
& \begin{array}{r}
0 \\
5 \\
6 \\
6
\end{array} \\
& \text { (7) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (4) }
\end{aligned}
$$

Quick-union: Java implementation

```
public class QuickUnionUF
{
    private int[] id;
    public QuickUnionUF(int N)
    {
        id = new int[N];
        for (int i = 0; i < N; i++) id[i] = i
    }
    private int root(int i)
    {
        while (i != id[i]) i = id[i];
        return i;
    }
    public boolean connected(int p, int q)
    {
        return root(p) == root(q);
    }
    public void union(int p, int q)
    {
        int i = root(p)
        int j = root(q);
        id[i] = j;
    }
}
```

Quick-union is also too slow

Cost model. Number of array accesses (for read or write).

algorithm	init	union	connected
quick-find	N	N	1
quick-union	N	$\mathrm{N}+$	N

Quick-find defect.

- Union too expensive (N array accesses).
- Trees are flat, but too expensive to keep them flat.

Quick-union defect.

- Trees can get tall.
- Find too expensive (could be N array accesses).

, dynamic connectivity

, quick find

- improvements

Improvement 1: weighting

Weighted quick-union.

- Modify quick-union to avoid tall trees.
- Keep track of size of each tree (number of objects).
- Balance by linking small tree below large one.

Weighted quick-union examples
reference input
(0) (1) (2) (3) (4) (5) (6) (7) (8) (9)
(0) (1) (2) (4) (5) (6) (7) (8) (9)

38
(0)
(1) (2)

(5) (6) (7) (9)

65
(0)
(1) (2)

(7) 9

94
(0) (1) (2)

(5) ${ }^{(3)}$

21
(0) (2)

(5) ${ }^{(7)}$

89
50

72

61
10
67

worst-case input
$\frac{p q}{01}$
(0) (1) (2) (3) (4) (5) (6) (7)
(1) ${ }^{(2)}$
(3)
(4) (5)
(6) 7

23

(3)
(1)

(7)

45
$\begin{array}{lll}\text { (0) } & (2) & 4 \\ 1 & (3) & 5\end{array}$
(7)

67
$\begin{array}{ll}(0) & (2) \\ \text { (1) } \\ \end{array}$
$\begin{array}{ll}\text { (4) } & (6) \\ 5 & 7\end{array}$

02

$\begin{array}{ll}\text { (4) } & 6 \\ (5) & 7\end{array}$

46

04

Quick-union and weighted quick-union example
quick-union

average distance to root: 5.11
weighted

average distance to root: 1.52

Quick-union and weighted quick-union (100 sites, 88 union() operations)

Weighted quick-union: Java implementation

Data structure. Same as quick-union, but maintain extra array sz[i] to count number of objects in the tree rooted at i.

Find. Identical to quick-union.

```
return root(p) == root(q);
```

Union. Modify quick-union to:

- Merge smaller tree into larger tree.
- Update the sz[] array.

```
int i = root(p);
int j = root(q);
if (sz[i] < sz[j]) { id[i] = j; sz[j] += sz[i]; }
else { id[j] = i; sz[i] += sz[j]; }
```

Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.
Pf. When does depth of x increase?
Increases by 1 when tree T_{1} containing x is merged into another tree T_{2}.

- The size of the tree containing x at least doubles since $\left|T_{2}\right| \geq\left|T_{1}\right|$.
- Size of tree containing x can double at most $\lg N$ times. Why?

Weighted quick-union analysis

Running time.

- Find: takes time proportional to depth of p and q.
- Union: takes constant time, given roots.

Proposition. Depth of any node x is at most $\lg N$.

algorithm	init	union	connected
quick-find	N	N	1
quick-union	N	N^{\dagger}	N
weighted QU	N	$\lg N^{\dagger}$	$\lg N$

\dagger includes cost of finding roots
Q. Stop at guaranteed acceptable performance?
A. No, easy to improve further.

Improvement 2: path compression

Quick union with path compression. Just after computing the root of p, set the id of each examined node to point to that root.

Path compression: Java implementation

Two-pass implementation: add second loop to find() to set the id[] of each examined node to the root.

Simpler one-pass variant: Make every other node in path point to its grandparent (thereby halving path length).

```
private int root(int i)
{
    while (i != id[i])
    {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
```

In practice. No reason not to! Keeps tree almost completely flat.

Weighted quick-union with path compression example

1 linked to 6 because of path compression

7 linked to 6 because of path compression

Weighted quick-union with path compression: amortized analysis

Proposition. Starting from an empty data structure, any sequence of M union-find operations on N objects makes at most proportional to $N+M$ lg* N array accesses.

- Proof is very difficult.
- But the algorithm is still simple!
- Analysis can be improved to $N+M \alpha(M, N)$.

Linear-time algorithm for M union-find ops on N objects?

- Cost within constant factor of reading in the data.
- In theory, WQUPC is not quite linear.
- In practice, WQUPC is linear.

Amazing fact. No linear-time algorithm exists.

N	$\lg * \mathrm{~N}$
1	0
2	1
4	2
16	3
65536	4
265536	5

lg* function
in "cell-probe" model of computation

Summary

Bottom line. WQUPC makes it possible to solve problems that could not otherwise be addressed.

algorithm	worst-case time
quick-find	$M N$
quick-union	$M N$
weighted QU	$N+M \log N$
QU + path compression	$N+M \log N$
weighted QU + path compression	$N+M \lg * N$

M union-find operations on a set of \mathbf{N} objects

Ex. [109 unions and finds with 10^{9} objects]

- WQUPC reduces time from 30 years to 6 seconds.
- Supercomputer won't help much; good algorithm enables solution.

dynamic connectivity > olvick find

 > applications- Percolation.
- Games (Go, Hex).
\checkmark Dynamic connectivity.
- Least common ancestor.
- Equivalence of finite state automata.
- Hoshen-Kopelman algorithm in physics.
- Hinley-Milner polymorphic type inference.
- Kruskal's minimum spanning tree algorithm.
- Compiling equivalence statements in Fortran.
- Morphological attribute openings and closings.
- Matlab's bwlabel () function in image processing.

Percolation

A model for many physical systems:

- N-by- N grid of sites.
- Each site is open with probability p (or blocked with probability $1-p$).
- System percolates iff top and bottom are connected by open sites.

no open site connected to top

Percolation

A model for many physical systems:

- N-by- N grid of sites.
- Each site is open with probability p (or blocked with probability $1-p$).
- System percolates iff top and bottom are connected by open sites.

model	system	vacant site	occupied site	percolates
electricity	material	conductor	insulated	conducts
fluid flow	material	empty	blocked	porous
social interaction	population	person	empty	communicates

Likelihood of percolation

Depends on site vacancy probability p.

p low (0.4)
does not percolate

p medium (0.6)
percolates?

phigh (0.8) percolates

Percolation phase transition

When N is large, theory guarantees a sharp threshold p^{*}.

- $p>p^{*}$: almost certainly percolates.
- $p<p^{*}$: almost certainly does not percolate.
Q. What is the value of p^{*} ?

Monte Carlo simulation

- Initialize N-by- N whole grid to be blocked.
- Declare random sites open until top connected to bottom.
- Vacancy percentage estimates p^{*}.

full open site
(connected to top)
empty open site
(not connected to top)
blocked site

Dynamic connectivity solution to estimate percolation threshold
Q. How to check whether an N-by- N system percolates?

\square open site
blocked site

Dynamic connectivity solution to estimate percolation threshold
Q. How to check whether an N-by- N system percolates?

- Create an object for each site and name them 0 to $N^{2}-1$.

\square

Dynamic connectivity solution to estimate percolation threshold
Q. How to check whether an N-by- N system percolates?

- Create an object for each site and name them 0 to $N^{2}-1$.
- Sites are in same component if connected by open sites.

Dynamic connectivity solution to estimate percolation threshold
Q. How to check whether an N-by- N system percolates?

- Create an object for each site and name them 0 to $N^{2}-1$.
- Sites are in same component if connected by open sites.
- Percolates iff any site on bottom row is connected to site on top row.
brute-force algorithm: N^{2} calls to connected()

Dynamic connectivity solution to estimate percolation threshold

Clever trick. Introduce two virtual sites (and connections to top and bottom).

- Percolates iff virtual top site is connected to virtual bottom site.
efficient algorithm: only 1 call to connected()

Dynamic connectivity solution to estimate percolation threshold
Q. How to model as dynamic connectivity problem when opening a new site?

\square

Dynamic connectivity solution to estimate percolation threshold
Q. How to model as dynamic connectivity problem when opening a new site?
A. Connect newly opened site to all of its adjacent open sites.
up to 4 calls to union()

Percolation threshold

Q. What is percolation threshold p^{*} ?
A. About 0.592746 for large square lattices.
constant know only via simulation

Fast algorithm enables accurate answer to scientific question.

Subtext of today's lecture (and this course)

Steps to developing a usable algorithm.

- Model the problem.
- Find an algorithm to solve it.
- Fast enough? Fits in memory?
- If not, figure out why.
- Find a way to address the problem.
- Iterate until satisfied.

The scientific method.

Mathematical analysis.

