3.3 Balanced Search Trees

- 2-3 search trees
- red-black BSTs
- B-trees

implementation	guarantee			average case			ordered iteration?	operations on keys
	search	insert	delete	search hit	insert	delete		
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	$\lg N$	N	N	$\lg N$	N/2	N/2	yes	compareTo()
BST	N	N	N	$1.39 \lg N$	$1.39 \lg N$?	yes	compareTo()
goal	$\log N$	yes	compareTo()					

Challenge. Guarantee performance.
This lecture. 2-3 trees, left-leaning red-black BSTs, B-trees.

- 2-3 search trees

2-3 tree

Allow 1 or 2 keys per node.

- 2-node: one key, two children.
- 3-node: two keys, three children.

Symmetric order. Inorder traversal yields keys in ascending order. Perfect balance. Every path from root to null link has same length.

- Compare search key against keys in node.
- Find interval containing search key.
- Follow associated link (recursively).
successful search for H

unsuccessful search for B

B is less than E so look to the left

B is between A and C so look in the middle link is null so B is not in the tree (search miss)

Insertion in a 2-3 tree

Case 1. Insert into a 2-node at bottom.

- Search for key, as usual.
- Replace 2-node with 3-node.

Case 2. Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
why middle key?

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
inserting D

add new key D to 3-node to make temporary 4-node

add middle key C to 3-node to make temporary 4-node

split 4-node into two 2-nodes pass middle key to parent
add middle key E to 2-node

split 4-node into two 2-nodes
pass middle key to parent

Insertion in a 2-3 tree

Case 2. Insert into a 3-node at bottom.

- Add new key to 3-node to create temporary 4-node.
- Move middle key in 4-node into parent.
- Repeat up the tree, as necessary.
- If you reach the root and it's a 4-node, split it into three 2-nodes.

Remark. Splitting the root increases height by 1.

2-3 tree construction trace

Standard indexing client.

2-3 tree construction trace

The same keys inserted in ascending order.

Local transformations in a 2-3 tree

Splitting a 4-node is a local transformation: constant number of operations.

Global properties in a 2-3 tree

Invariants. Maintains symmetric order and perfect balance.

Pf. Each transformation maintains symmetric order and perfect balance.
parent is a 3-node
parent is a 2-node

right

Perfect balance. Every path from root to null link has same length.

Tree height.

- Worst case: $\lg N$. [all 2-nodes]
- Best case: $\log _{3} N \approx .631 \lg N$. [all 3-nodes]
- Between 12 and 20 for a million nodes.
- Between 18 and 30 for a billion nodes.

Guaranteed logarithmic performance for search and insert.

ST implementations: summary

implementation	guarantee			average case			ordered iteration?	operations on keys
	search	insert	delete	search hit	insert	delete		
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	$\lg N$	N	N	$\lg N$	N/2	N/2	yes	compareTo ()
BST	N	N	N	$1.39 \lg N$	$1.39 \lg \mathrm{~N}$?	yes	compareTo ()
2-3 tree	$c \lg N$	yes	compareTo ()					

2-3 tree: implementation?

Direct implementation is complicated, because:

- Maintaining multiple node types is cumbersome.
- Need multiple compares to move down tree.
- Need to move back up the tree to split 4-nodes.
- Large number of cases for splitting.

Bottom line. Could do it, but there's a better way.

> red-black BSTs

Left-leaning red-black BSTs (Guibas-Sedgewick 1979 and Sedgewick 2007)

1. Represent 2-3 tree as a BST.
2. Use "internal" left-leaning links as "glue" for 3-nodes.

red links "glue"
black links connect
2-nodes and 3-nodes

An equivalent definition

A BST such that:

- No node has two red links connected to it.
- Every path from root to null link has the same number of black links.
- Red links lean left.

Left-leaning red-black BSTs: 1-1 correspondence with 2-3 trees

Key property. 1-1 correspondence between 2-3 and LLRB.
red-black tree

horizontal red links

2-3 tree

Search implementation for red-black BSTs

Observation. Search is the same as for elementary BST (ignore color).
but runs faster because of better balance

```
public Val get(Key key)
{
    Node x = root;
    while (x != null)
    {
        int cmp = key.compareTo(x.key);
        if (cmp < O) x = x.left;
        else if (cmp > 0) x = x.right;
        else if (cmp == 0) return x.val;
    }
    return null;
}
```

Remark. Most other ops (e.g., ceiling, selection, iteration) are also identical.

Red-black BST representation

Each node is pointed to by precisely one link (from its parent) \Rightarrow can encode color of links in nodes.

```
private static final boolean RED = true;
private static final boolean BLACK = false;
private class Node
{
    Key key;
    Value val;
    Node left, right;
    boolean color; // color of parent link
}
private boolean isRed(Node x)
{
    if (x == null) return false;
    return x.color == RED;
}
null links are black
```


Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.


```
private Node rotateLeft(Node h)
{
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Left rotation. Orient a (temporarily) right-leaning red link to lean left.


```
private Node rotateLeft(Node h)
{
    assert isRed(h.right);
    Node x = h.right;
    h.right = x.left;
    x.left = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.


```
private Node rotateRight(Node h)
{
    assert isRed(h.left);
    Node x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Right rotation. Orient a left-leaning red link to (temporarily) lean right.


```
private Node rotateRight(Node h)
{
    assert isRed(h.left);
    Node x = h.left;
    h.left = x.right;
    x.right = h;
    x.color = h.color;
    h.color = RED;
    return x;
}
```

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.


```
private void flipColors(Node h)
{
    assert !isRed(h);
    assert isRed(h.left);
    asset isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Invariants. Maintains symmetric order and perfect black balance.

Elementary red-black BST operations

Color flip. Recolor to split a (temporary) 4-node.


```
private void flipColors(Node h)
{
    assert !isRed(h);
    assert isRed(h.left);
    asset isRed(h.right);
    h.color = RED;
    h.left.color = BLACK;
    h.right.color = BLACK;
}
```

Invariants. Maintains symmetric order and perfect black balance.

Insertion in a LLRB tree: overview

Basic strategy. Maintain 1-1 correspondence with 2-3 trees by applying elementary red-black BST operations.

Insertion in a LLRB tree

Warmup 1. Insert into a tree with exactly 1 node.

Insertion in a LLRB tree

Case 1. Insert into a 2-node at the bottom.

- Do standard BST insert; color new link red.
- If new red link is a right link, rotate left.

Insertion in a LLRB tree

Warmup 2. Insert into a tree with exactly 2 nodes.
search ends

Insertion in a LLRB tree

Case 2. Insert into a 3-node at the bottom.

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).

Insertion in a LLRB tree: passing red links up the tree

Case 2. Insert into a 3-node at the bottom.

- Do standard BST insert; color new link red.
- Rotate to balance the 4-node (if needed).
- Flip colors to pass red link up one level.
- Rotate to make lean left (if needed).
- Repeat case 1 or case 2 up the tree (if needed).
inserting P

both children red
so flip colors
both children red
so flip colors

LLRB tree insertion demo

Standard indexing client.

Standard indexing client (continued).

Insertion in a LLRB tree: Java implementation

Same code for both cases.

- Right child red, left child black: rotate left.
- Left child, left-left grandchild red: rotate right.
- Both children red: flip colors.

private Node put(Node h, Key key, Value val)
\{
if (h == null) return new Node (key, val, RED);
int cmp $=$ key.compareTo(h.key);
if $(\mathrm{cmp}<0) \mathrm{h} . \operatorname{left}=\mathrm{put}(\mathrm{h} . \operatorname{left}, \mathrm{key}$, val);
else if (cmp >0) h.right = put(h.right, key, val);
else if (cmp $==0$) h.val = val;
if (isRed (h.right) \&\& !isRed(h.left))
if (isRed(h.left) \&\& isRed(h.left.left))
if (isRed(h.left) \&\& isRed(h.right))
$h=$ rotateRight(h);
flipColors(h);

insert at bottom (and color red)
$h=$ rotateLeft(h);
lean left
 balance 4-node split 4-node
return h;
\}
only a few extra lines of code
\}
to provide near-perfect balance

Insertion in a LLRB tree: visualization

255 insertions in ascending order

Insertion in a LLRB tree: visualization

255 insertions in descending order

Insertion in a LLRB tree: visualization

255 random insertions

Balance in LLRB trees

Proposition. Height of tree is $\leq 2 \lg N$ in the worst case.
Pf.

- Every path from root to null link has same number of black links.
- Never two red links in-a-row.

Property. Height of tree is $\sim 1.00 \lg N$ in typical applications.

ST implementations: summary

implementation	guarantee			average case			ordered iteration?	operations on keys
	search	insert	delete	search hit	insert	delete		
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	$\lg N$	N	N	$\lg N$	N/2	N/2	yes	compareTo ()
BST	N	N	N	$1.39 \lg \mathrm{~N}$	1.39 lg N	?	yes	compareTo()
2-3 tree	$c \lg N$	yes	compareTo()					
red-black BST	$2 \lg N$	$2 \lg N$	$2 \lg N$	$1.00 \lg \mathrm{~N}^{*}$	$1.00 \lg \mathrm{~N}$ *	$1.00 \lg \mathrm{~N}^{*}$	yes	compareTo ()

* exact value of coefficient unknown but extremely close to 1

War story: why red-black?

Xerox PARC innovations. [1970s]

- Alto.

- GUI.
- Ethernet.
- Smalltalk.
- InterPress.
- Laser printing.
- Bitmapped display.
- WYSIWYG text editor.

Xerox Alto

A Dichromatic Framework For Balanced Trees

Leo J. Guibas

Xerox Palo Alto Research Center, Palo Alto, California, and Carnegie-Mellon University

ABSTRACT

Robert Sedgewick
Program in Computer Science Brown University Providence, R. I.
the way down towards a leaf. As we will see, this has a number of significant advantages over the older methods. We shall examine a number of variations on a common theme and exhibit full implementations which are notable for their brevity. One implementation is examined carefully, and some properties about its

2-3 search trees

- B-trees

File system model

Page. Contiguous block of data (e.g., a file or 4,096-byte chunk). Probe. First access to a page (e.g., from disk to memory).

slow

Property. Time required for a probe is much larger than time to access data within a page.

Cost model. Number of probes.

Goal. Access data using minimum number of probes.

B-trees (Bayer-McCreight, 1972)

B-tree. Generalize 2-3 trees by allowing up to $M-1$ key-link pairs per node.

- At least 2 key-link pairs at root.
- At least M/2 key-link pairs in other nodes. that M links fit in a page, e.g., $M=1024$
- External nodes contain client keys.
- Internal nodes contain copies of keys to guide search.

$$
\text { Anatomy of a B-tree set }(M=6)
$$

Searching in a B-tree

- Start at root.
- Find interval for search key and take corresponding link.
- Search terminates in external node.

[^0]Insertion in a B-tree

- Search for new key.
- Insert at bottom.
- Split nodes with M key-link pairs on the way up the tree.

Balance in B -tree

Proposition. A search or an insertion in a B-tree of order M with N keys requires between $\log _{M-1} N$ and $\log _{M / 2} N$ probes.

Pf. All internal nodes (besides root) have between $M / 2$ and $M-1$ links.

In practice. Number of probes is at most 4. $\longleftarrow^{M=1024 ; N=62 \text { billion }} \begin{gathered}M / 2 N \leq 4\end{gathered}$

Optimization. Always keep root page in memory.

Balanced trees in the wild

Red-black trees are widely used as system symbol tables.

- Java: java.util.TreeMap, java.util.TreeSet.
- C++ STL: map, multimap, multiset.
- Linux kernel: completely fair scheduler, linux/rbtree.h.

B-tree variants. $\mathrm{B}+$ tree, B^{\star} tree, $\mathrm{B} \#$ tree, ...

B-trees (and variants) are widely used for file systems and databases.

- Windows: HPFS.
- Mac: HFS, HFS+.
- Linux: ReiserFS, XFS, Ext3FS, JFS.
- Databases: ORACLE, DB2, INGRES, SQL, PostgreSQL.

Red-black BSTs in the wild

Common sense. Sixth sense.
Together they're the FBI's newest team.

[^0]: Searching in a B-tree set ($M=6$)

