4.1 UNDIRECTED GRAPHS

- graph API
- depth-first search
- breadth-first search
- connected components
- challenges

Undirected graphs

Graph. Set of vertices connected pairwise by edges.

Why study graph algorithms?

- Interesting and broadly useful abstraction.
- Challenging branch of computer science and discrete math.
- Hundreds of graph algorithms known.
- Thousands of practical applications.

Protein-protein interaction network

Reference: Jeong et al, Nature Review | Genetics

The Internet as mapped by the Opte Project

Map of science clickstreams

Kevin's facebook friends (Princeton network)

10 million Facebook friends

"Visualizing Friendships" by Paul Butler

The evolution of FCC lobbying coalitions

"The Evolution of FCC Lobbying Coalitions" by Pierre de Vries in JoSS Visualization Symposium 2010

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle is proportional to the person's body-mass index. The interior color of the circles indicates the person's obesity status: yellow denotes an obese person (body-mass index, ≥ 30) and green denotes a nonobese person. The colors of the ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange denotes a familial tie.
"The Spread of Obesity in a Large Social Network over 32 Years" by Christakis and Fowler in New England Journal of Medicine, 2007

Graph applications

graph	vertex	edge
communication	telephone, computer	fiber optic cable
circuit	gate, register, processor	wire
mechanical	joint	rod, beam, spring
financial	stock, currency	transactions
transportation	street intersection, airport	highway, airway route
internet	class C network	connection
game	board position	legal move
social relationship	person, actor	friendship, movie cast
neural network	neuron	synapse
protein network	protein	protein-protein interaction
chemical compound	molecule	bond

Graph terminology

Path. Sequence of vertices connected by edges. Cycle. Path whose first and last vertices are the same.

Two vertices are connected if there is a path between them.

Some graph-processing problems

Path. Is there a path between s and t ?
Shortest path. What is the shortest path between s and t ?

Cycle. Is there a cycle in the graph?
Euler tour. Is there a cycle that uses each edge exactly once?
Hamilton tour. Is there a cycle that uses each vertex exactly once?

Connectivity. Is there a way to connect all of the vertices?
MST. What is the best way to connect all of the vertices?
Biconnectivity. Is there a vertex whose removal disconnects the graph?

Planarity. Can you draw the graph in the plane with no crossing edges? Graph isomorphism. Do two adjacency lists represent the same graph?

Challenge. Which of these problems are easy? difficult? intractable?

- graph API

Graph representation

Graph drawing. Provides intuition about the structure of the graph. Caveat. Intuition can be misleading.

two drawings of the same graph

Graph representation

Vertex representation.

- This lecture: use integers between 0 and $V-1$.
- Applications: convert between names and integers with symbol table.

Anomalies.

Graph API

public class Graph

	Graph(int V)	create an empty graph with V vertices
	Graph(In in)	create a graph from input stream
void	addEdge (int v , int w)	add an edge v-w
Iterable<Integer>	adj(int v)	vertices adjacent to v
int	V ()	number of vertices
int	E ()	number of edges
String	toString()	string representation

```
In in = new In(args[0]);
Graph G = new Graph(in);
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "-" + w);
```


read graph from input stream
print out each edge (twice)

Graph API: sample client

Graph input format.


```
In in = new In(args[0]);
Graph G = new Graph(in);
for (int v = 0; v < G.V(); v++)
    for (int w : G.adj(v))
        StdOut.println(v + "-" + w);
```



``` read graph from input stream
print out each edge (twice)
```


Typical graph-processing code

compute the degree of v	```public static int degree(Graph G, int v) { int degree = 0; for (int w : G.adj(v)) degree++; return degree; }```
compute maximum degree	```public static int maxDegree(Graph G) { int max = 0; for (int v = 0; v < G.V(); v++) if (degree(G, v) > max) max = degree(G, v); return max; }```
compute average degree	```public static int avgDegree(Graph G) { return 2 * G.E() / G.V(); }```
count self-loops	```public static int numberOfSelfLoops(Graph G) { int count = 0; for (int v = 0; v < G.V(); v++) for (int w: G.adj(v)) if (v == w) count++; return count/2; }```

Set-of-edges graph representation

Maintain a list of the edges (linked list or array).

0	1
0	2
0	5
0	6
3	4
3	5
4	5
4	6
7	8
9	10
9	11
9	12
11	12

Adjacency-matrix graph representation

Maintain a two-dimensional V-by- V boolean array; for each edge $v-w$ in graph: $\operatorname{adj}[v][w]=\operatorname{adj}[w][v]=$ true.
two entries

for each edge

| | 0 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 6 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 7 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| 8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 |
| 10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 11 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
| 12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 |

Adjacency-list graph representation

Maintain vertex-indexed array of lists.

Adjacency-list graph representation: Java implementation

```
public class Graph
{
    private final int V;
    private Bag<Integer>[] adj;
    public Graph(int V)
    {
        this.V = V;
        adj = (Bag<Integer>[]) new Bag[V];
        for (int v = 0; v < v; v++)
            adj[v] = new Bag<Integer>();
    }
    public void addEdge(int v, int w)
    {
        adj[v].add(w);
        adj[w].add(v);
    }
    public Iterable<Integer> adj(int v)
    { return adj[v]; }
}
```


Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be "sparse."
huge number of vertices,
small average vertex degree

Graph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices adjacent to v.
- Real-world graphs tend to be "sparse."

representation	space	add edge	edge between V and w?	iterate over vertices adjacent to $\mathrm{v} ?$
list of edges	E	1	E	E
adjacency matrix	V^{2}	$1 *$	1	V
adjacency lists	$\mathrm{E}+\mathrm{V}$	1	degree(v)	degree(v)

* disallows parallel edges
depth-first search

Maze exploration

Maze graphs.

- Vertex = intersection.
- Edge = passage .

Goal. Explore every intersection in the maze.

Trémaux maze exploration

Algorithm.

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options.

Algorithm.

- Unroll a ball of string behind you.
- Mark each visited intersection and each visited passage.
- Retrace steps when no unvisited options.

First use? Theseus entered labyrinth to kill the monstrous Minotaur: Ariadne held ball of string.

Claude Shannon (with Theseus mouse)

Maze exploration

Maze exploration

Goal. Systematically search through a graph.
Idea. Mimic maze exploration.

> | DFS (to visit a vertex v) |
| :--- |
| Mark v as visited. |
| Recursively visit all unmarked |
| \quad vertices w adjacent to v. |

Typical applications. [ahead]

- Find all vertices connected to a given source vertex.
- Find a path between two vertices.

Design pattern for graph processing

Design pattern. Decouple graph data type from graph processing.

```
public class Search
Search(Graph G, int s) find vertices connected to s
boolean marked(int v) is vertex v connected to s?
int count() how many vertices connected to s?
```

Typical client program.

- Create a Graph.
- Pass the Graph to a graph-processing routine, e.g., Search.
- Query the graph-processing routine for information.

```
Search search = new Search(G, s);
for (int v = 0; v < G.V(); v++)
    if (search.marked(v))
            StdOut.println(v);

Goal．Find all vertices connected to \(s\) ．
Idea．Mimic maze exploration．

Algorithm．
－Use recursion（ball of string）．
－Mark each visited vertex．
－Return（retrace steps）when no unvisited options．

Data structure．
－boolean［］marked to mark visited vertices．
dfs（0）
dfs（2）
check 0
dfs（1）
check 0
check 2
1 done
dfs（3）
dfs（5）
check 3 check 0
done
dfs（4） check 3
check 2
4 done
check 2
done
check 4
2 done
check 1
check 5
0 done

marked［］adj［］

\(\frac{\text { ルロWN• }}{\text { ル }-1 \dashv \dashv \dashv \dashv}\)
 \begin{tabular}{l|l}
0 & 2 \\
1 & 0 \\
2 & 0 \\
3 & 5 \\
4 & 3 \\
5 & 3
\end{tabular}
```

public class DepthFirstSearch
{
private boolean[] marked;
public DepthFirstSearch(Graph G, int s)
{
marked = new boolean[G.V()];
dfs(G, s);
}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!marked[w])
dfs(G, w);
}
public boolean marked(int v)
{ return marked[v]; }
}

```

Proposition. DFS marks all vertices connected to \(s\) in time proportional to the sum of their degrees.

Pf.
- Correctness:
- if \(w\) marked, then \(w\) connected to \(s\) (why?)
- if \(w\) connected to \(s\), then \(w\) marked (if \(w\) unmarked, then consider last edge on a path from \(s\) to \(w\) that goes from a marked vertex to an unmarked one)
- Running time: each vertex connected to \(s\) is visited once.


Depth-first search application: preparing for a date

xkcd
http://xkcd.com/761/


I REALCY NEED TO STOP USING DEPTH-FRST SEARCHES.

Depth-first search application: flood fill

Challenge. Flood fill (Photoshop magic wand).
Assumptions. Picture has millions to billions of pixels.


Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.
- Vertex: pixel.
- Edge: between two adjacent red pixels.
- Blob: all pixels connected to given pixel.


Change color of entire blob of neighboring red pixels to blue.

Build a grid graph.
- Vertex: pixel.
- Edge: between two adjacent red pixels.
- Blob: all pixels connected to given pixel.


Paths in graphs

Goal. Does there exist a path from \(s\) to \(t\) ?


Paths in graphs: union-find vs. DFS

Goal. Does there exist a path from \(s\) to \(t\) ?
\begin{tabular}{|c|c|c|c|}
\hline method & preprocessing time & query time & space \\
\hline union-find & \(V+E \log ^{*} V\) & \(\log ^{*} V+\) & \(V\) \\
\hline DFS & \(E+V\) & 1 & \(E+V\) \\
\hline
\end{tabular}

Union-find. Can intermix connected queries and edge insertions. Depth-first search. Constant time per query.

Pathfinding in graphs

Goal. Does there exist a path from \(s\) to \(t\) ? If yes, find any such path.


Pathfinding in graphs

Goal. Does there exist a path from \(s\) to \(t\) ? If yes, find any such path.
```

 public class Paths
 Paths(Graph G, int s) find paths in G from source s
 boolean hasPathTo(int v)
 Iterable<Integer> pathTo(int v)
path from s to v; null if no such path

```

Union-find. Not much help.
Depth-first search. After linear-time preprocessing, can recover path itself in time proportional to its length.

Goal. Find paths to all vertices connected to a given source s.
Idea. Mimic maze exploration.

Algorithm.
- Use recursion (ball of string).
- Mark each visited vertex by keeping
- track of edge taken to visit it.
- Return (retrace steps) when no unvisited options.

\section*{Data structures.}
- boolean [] marked to mark visited vertices.
- int[] edgeTo to keep tree of paths.
- (edgeTo [w] == v) means that edge v-w was taken to visit w the first time
edgeTo[]
dfs (0)

dfs(2)
check 0

dfs (1)
check 0
check 2
1 done

dfs(3)

dfs(5)
check
check 0
done

dfs(4) check 3 check 2 4 done check 2
3 done
check 4
2 done
check 1
check 5
done


\section*{Depth-first search (pathfinding)}
```

public class DepthFirstPaths
{
private boolean[] marked;
private int[] edgeTo;
private final int s;
public DepthFirstPaths(Graph G, int s)
{
marked = new boolean[G.V()];
edgeTo = new int[G.V()];
this.s = s;
dfs(G, s) ;
}
private void dfs(Graph G, int v)
{
marked[v] = true;
for (int w : G.adj(v))
if (!marked[w])
{
edgeTo[w] = v;
dfs(G, w) ;
}
}
public boolean hasPathTo(int v)
public Iterable<Integer> pathTo(int v)
}

```

Depth-first search (pathfinding trace)


Depth-first search (pathfinding iterator)
edgeTo[] is a parent-link representation of a tree rooted at s.

\begin{tabular}{c|c}
\multicolumn{2}{c}{ edgeTo[] } \\
0 & \\
1 & 2 \\
2 & 0 \\
3 & 2 \\
4 & 3 \\
5 & 3
\end{tabular}

\begin{tabular}{|c|c|}
\hline x & path \\
\hline 5 & 5 \\
\hline 3 & 35 \\
\hline 2 & 235 \\
\hline 0 & 0235 \\
\hline
\end{tabular}
```

public boolean hasPathTo(int v)
{ return marked[v]; }
public Iterable<Integer> pathTo(int v)
{
if (!hasPathTo(v)) return null;
Stack<Integer> path = new Stack<Integer>();
for (int x = v; x != s; x = edgeTo[x])
path.push(x);
path.push(s);
return path;
}

```

Depth-first search summary

Enables direct solution of simple graph problems.
\(\checkmark\) - Does there exists a path between \(s\) and \(t\) ?
\(\checkmark\) - Find path between \(s\) and \(t\).
- Connected components (stay tuned).
- Euler tour (see book).
- Cycle detection (see book).
- Bipartiteness checking (see book).

Basis for solving more difficult graph problems.
- Biconnected components (beyond scope).
- Planarity testing (beyond scope).
breadth-first search

\section*{Breadth-first search}

Depth-first search. Put unvisited vertices on a stack.
Breadth-first search. Put unvisited vertices on a queue.

Shortest path. Find path from \(s\) to \(t\) that uses fewest number of edges.

\section*{BFS (from source vertex s)}

Put s onto a FIFO queue, and mark s as visited.


Repeat until the queue is empty:
- remove the least recently added vertex v
- add each of v's unvisited neighbors to the queue, and mark them as visited.


Intuition. BFS examines vertices in increasing distance from \(s\).

\section*{Breadth-first search (pathfinding)}
```

private void bfs(Graph G, int s)
{
Queue<Integer> q = new Queue<Integer>();
q.enqueue(s);
marked[s] = true;
while (!q.isEmpty())
{
int v = q.dequeue();
for (int w : G.adj(v))
if (!marked[w])
{
q.enqueue(w);
marked[w] = true;
edgeTo[w] = v;
}
}

```
\}

\begin{tabular}{l|l}
0 & T \\
1 & T \\
2 & T \\
3 & \\
4 & \\
5 & T
\end{tabular}
\begin{tabular}{l|ll|lll}
0 & & 0 & 2 & 1 & 5 \\
\hline & 0 & 1 & 0 & 2 & \\
3 & 0 & 2 & 0 & 1 & 3 \\
4 & & 3 & 5 & 4 & 2 \\
5 & & 4 & 3 & 2 & \\
& 0 & 5 & 3 & 0 &
\end{tabular}


\begin{tabular}{l|l}
0 & \(T\) \\
1 & \(T\) \\
2 & \(T\) \\
3 & \(T\) \\
4 & \(T\) \\
5 & \(T\)
\end{tabular} \(\begin{array}{|ll|} & \\ 0 & 0 \\ 0 & 1 \\ 0 & 2 \\ 2 & 3 \\ 2 & 4 \\ 0 & 5\end{array}\) \(\left\lvert\, \begin{array}{lll}2 & 1 & 5 \\ 0 & 2 & \\ 0 & 1 & 3 \\ 5 & 4 & 2 \\ 3 & 2 & \\ 3 & 0\end{array}\right.\)
\(\left|\begin{array}{l}3 \\ 4\end{array}\right|\)

\(\frac{\ddots \perp \omega N \vdash 0}{\dashv \dashv \dashv \dashv \dashv \dashv}\) vAWNமO
\begin{tabular}{|l|l} 
& 0 \\
0 \\
2 \\
2 \\
0
\end{tabular}
\(\begin{array}{lll}5 & 4 & 2 \\ 3 & 2\end{array}\) \(\begin{array}{ll}5 & 4 \\ 3 & 2\end{array}\)



\section*{Breadth-first search properties}

Proposition. BFS computes shortest path (number of edges) from \(s\) in a connected graph in time proportional to \(E+V\).

Pf.
- Correctness: queue always consists of zero or more vertices of distance \(k\) from \(s\), followed by zero or more vertices of distance \(k+1\).
- Running time: each vertex connected to \(s\) is visited once.

standard drawing


\section*{Breadth-first search application: routing}

Fewest number of hops in a communication network.


\section*{Breadth-first search application: Kevin Bacon numbers}

Kevin Bacon numbers.


Endless Games board game


SixDegrees iPhone App

\section*{Kevin Bacon graph}
- Include a vertex for each performer and for each movie.
- Connect a movie to all performers that appear in that movie.
- Compute shortest path from \(s=\) Kevin Bacon.


\section*{Breadth-first search application: Erdös numbers}

hand-drawing of part of the Erdös graph by Ron Graham

\section*{> graph API \\ depth-first sc}

\section*{> connected components}

Connectivity queries

Def. Vertices \(v\) and \(w\) are connected if there is a path between them.

Goal. Preprocess graph to answer queries: is \(v\) connected to \(w\) ? in constant time.
```

public class CC

```
CC(Graph G)
boolean connected(int \(v\), int \(w)\)
int count()
int id(int \(v)\)
find connected components in \(G\)
are \(v\) and \(w\) connected?
number of connected components
component identifier for \(v\)

Union-Find? Not quite.
Depth-first search. Yes. [next few slides]

\section*{Connected components}

The relation "is connected to" is an equivalence relation:
- Reflexive: \(v\) is connected to \(v\).
- Symmetric: if \(v\) is connected to \(w\), then \(w\) is connected to \(v\).
- Transitive: if \(v\) connected to \(w\) and \(w\) connected to \(x\), then \(v\) connected to \(x\).

Def. A connected component is a maximal set of connected vertices.


Remark. Given connected components, can answer queries in constant time.

Def. A connected component is a maximal set of connected vertices.


63 connected components

\section*{Connected components}

Goal. Partition vertices into connected components.

\section*{Connected components}

Initialize all vertices vas unmarked.

For each unmarked vertex v, run DFS to identify all vertices discovered as part of the same component.

\footnotetext{
tinyG.txt
\(V \longrightarrow 13\)
13
05
43
01
912
64
54
02
1112
910
06
78
911
53
}

\section*{Finding connected components with DFS}
```

public class CC
{
private boolean marked[];
private int[] id;
private int count;
public CC(Graph G)
{
marked = new boolean[G.V()];
id = new int[G.V()];
for (int v = 0; v < G.V(); v++)
{
if (!marked[v])
{
dfs(G, v);
count++;
}
}
}
public int count()
public int id(int v)
private void dfs(Graph G, int v)
}

```

\section*{Finding connected components with DFS (continued)}


Finding connected components with DFS (trace)
```

dfs(0)
dfs(6)
0
T
check 0
dfs(4)
dfs(5)
dfs(3)
$\left.\begin{array}{lllll}0 & T & & T & T \\ 0 & T & & T & T\end{array}\right]$0
0
check 5
check 4
3 done
check 4
check 0
5 done
check 6
check 3
4 done
6 done
dfs(2)
0 T T T T T T
00000
check 0
2 done
dfs(1) 0 T T T T T T T 0 0 0 0 0 0 0
check 0
1 done
check 5
0 done

```

Finding connected components with DFS (trace)

0 done dfs(7)

1 T T T T T T T T
0000000001
dfs(8)
1 T T T T T T T T T
000000011
check 7
8 done
7 done
dfs (9)
2 T T T T T T T T T
000000000112
dfs(11)
check 9 dfs (12)
check 11 check 9 12 done 11 done dfs(10)

2 T T T T T T T T T T T T T 000000000112222 heck 9 10 done check 12 9 done



Connected components application: study spread of STDs


Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

Connected components application: particle detection

Particle detection. Given grayscale image of particles, identify "blobs."
- Vertex: pixel.
- Edge: between two adjacent pixels with grayscale value \(\geq 70\).
- Blob: connected component of 20-30 pixels.


Particle tracking. Track moving particles over time.

\title{
graph API \\ depth-first \(s\) a \\ oreadth-ffrst search
}
> challenges

Graph-processing challenge 1

Problem. Is a graph bipartite?

How difficult?
- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.

- Hire an expert.
- Intractable.
- No one knows.
- Impossible.



Relationship graph at "Jefferson High"

Peter Bearman, James Moody, and Katherine Stovel. Chains of affection: The structure of adolescent romantic and sexual networks. American Journal of Sociology, 110(1): 44-99, 2004.

Graph-processing challenge 2

Problem. Find a cycle.

How difficult?
- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.

- Hire an expert.
- Intractable.
- No one knows.
- Impossible.


Graph-processing challenge 3

Problem. Find a cycle that uses every edge.
Assumption. Need to use each edge exactly once.

How difficult?
- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.

- Hire an expert.
- Intractable.
- No one knows.
- Impossible.

\section*{Bridges of Königsberg}

\section*{The Seven Bridges of Königsberg. [Leonhard Euler 1736]}
" ... in Königsberg in Prussia, there is an island A, called the
Kneiphof; the river which surrounds it is divided into two branches ... and these branches are crossed by seven bridges. Concerning these bridges, it was asked whether anyone could arrange a route in such a way that he could cross each bridge once and only once. "


Euler tour. Is there a (general) cycle that uses each edge exactly once? Answer. Yes iff connected and all vertices have even degree.
To find path. DFS-based algorithm (see textbook).

Graph-processing challenge 4

Problem. Find a cycle that visits every vertex.
Assumption. Need to visit each vertex exactly once.

How difficult?
- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.
- Hire an expert.

- Intractable.
- No one knows.
- Impossible.

Graph-processing challenge 5

Problem. Are two graphs identical except for vertex names?

How difficult?
- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.

- Hire an expert.
- Intractable.
- No one knows.
- Impossible.


Graph-processing challenge 6

Problem. Lay out a graph in the plane without crossing edges?

How difficult?
- Any COS 126 student could do it.
- Need to be a typical diligent COS 226 student.

- Hire an expert.
- Intractable.
- No one knows.
- Impossible.
```

