4.2 DIRECTED GRAPHS

- digraph API
- digraph search
- ▶ topological sort
- strong components

Directed graphs

Digraph. Set of vertices connected pairwise by directed edges.

Road network

Vertex = intersection; edge = one-way street.

Political blogosphere graph

Vertex = political blog; edge = link.

The Political Blogosphere and the 2004 U.S. Election: Divided They Blog, Adamic and Glance, 2005

Overnight interbank loan graph

Vertex = bank; edge = overnight loan.

The Topology of the Federal Funds Market, Bech and Atalay, 2008

Implication graph

Vertex = variable; edge = logical implication.

Combinational circuit

Vertex = logical gate; edge = wire.

WordNet graph

Vertex = synset; edge = hypernym relationship.

The McChrystal Afghanistan PowerPoint slide

Digraph applications

digraph	vertex	directed edge	
transportation	street intersection	one-way street	
web	web page	hyperlink	
food web	species	predator-prey relationship	
WordNet	synset	hypernym	
scheduling	task	precedence constraint	
financial	bank	transaction	
cell phone	person	placed call	
infectious disease	person	infection	
game	board position	legal move	
citation	journal article	citation	
object graph	object	pointer	
inheritance hierarchy	class	inherits from	
control flow	code block	jump	

Some digraph problems

Path. Is there a directed path from s to t?

Shortest path. What is the shortest directed path from s to t?

Topological sort. Can you draw the digraph so that all edges point upwards?

Strong connectivity. Is there a directed path between all pairs of vertices?

Transitive closure. For which vertices v and w is there a path from v to w?

PageRank. What is the importance of a web page?

digraph API

- digraph search
- ▶ topological sort
- strong components

Digraph API

```
public class Digraph
                       Digraph(int V)
                                                          create an empty digraph with V vertices
                       Digraph(In in)
                                                            create a digraph from input stream
                void addEdge(int v, int w)
                                                                 add a directed edge v \rightarrow w
Iterable<Integer> adj(int v)
                                                                 vertices pointing from v
                 int V()
                                                                   number of vertices
                 int E()
                                                                    number of edges
            Digraph reverse()
                                                                  reverse of this digraph
             String toString()
                                                                  string representation
```

Digraph API


```
% java TestDigraph tinyDG.txt
0->5
0->1
2->0
2->3
3->5
4->3
4->2
5->4
6->9
6->4
6->0
...
11->4
11->12
12-9
```

```
In in = new In(args[0]);
Digraph G = new Digraph(in);

for (int v = 0; v < G.V(); v++)
   for (int w : G.adj(v))
        StdOut.println(v + "->" + w);
read digraph from input stream

print out each edge (once)
```

Adjacency-lists digraph representation

Maintain vertex-indexed array of lists (use Bag abstraction).

Adjacency-lists digraph representation: Java implementation

Same as Graph, but only insert one copy of each edge.

```
public class Digraph
   private final int V;
                                                      adjacency lists
   private final Bag<Integer>[] adj;
   public Digraph(int V)
                                                      create empty graph
                                                      with V vertices
      this.V = V;
      adj = (Bag<Integer>[]) new Bag[V];
      for (int v = 0; v < V; v++)
          adj[v] = new Bag<Integer>();
   public void addEdge(int v, int w)
                                                      add edge from v to w
      adj[v].add(w); }
   public Iterable<Integer> adj(int v)
                                                      iterator for vertices
                                                      pointing from v
      return adj[v]; }
```

Digraph representations

In practice. Use adjacency-lists representation.

- Algorithms based on iterating over vertices pointing from v.
- Real-world digraphs tend to be sparse.

representation	space	insert edge from v to w	edge from v to w?	iterate over vertices pointing from v?
list of edges	E	1	E	E
adjacency matrix	V ²	1 †	1	V
adjacency lists	E + V	1	outdegree(v)	outdegree(v)

† disallows parallel edges

- digraph API
- digraph search
- topological sort
- strong components

Reachability

Problem. Find all vertices reachable from s along a directed path.

Depth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- DFS is a digraph algorithm.

DFS (to visit a vertex v)

Mark v as visited.

Recursively visit all unmarked vertices w pointing from v.

Depth-first search demo

Depth-first search (in undirected graphs)

Recall code for undirected graphs.

```
public class DepthFirstSearch
                                                           true if path to s
   private boolean[] marked;
   public DepthFirstSearch(Graph G, int s)
                                                           constructor marks
      marked = new boolean[G.V()];
                                                           vertices connected to s
      dfs(G, s);
   private void dfs(Graph G, int v)
                                                           recursive DFS does the work
      marked[v] = true;
      for (int w : G.adj(v))
          if (!marked[w]) dfs(G, w);
                                                           client can ask whether any
   public boolean visited(int v)
                                                           vertex is connected to s
      return marked[v]; }
```

Depth-first search (in directed graphs)

Code for directed graphs identical to undirected one. [Substitute Digraph for Graph]

```
public class DirectedDFS
                                                           true if path from s
   private boolean[] marked;
   public DirectedDFS(Digraph G, int s)
                                                           constructor marks
      marked = new boolean[G.V()];
                                                           vertices reachable from s
      dfs(G, s);
   private void dfs(Digraph G, int v)
                                                           recursive DFS does the work
      marked[v] = true;
      for (int w : G.adj(v))
          if (!marked[w]) dfs(G, w);
                                                           client can ask whether any
   public boolean visited(int v)
                                                           vertex is reachable from s
      return marked[v]; }
```

Reachability application: program control-flow analysis

Every program is a digraph.

• Vertex = basic block of instructions (straight-line program).

• Edge = jump.

Dead-code elimination.

Find (and remove) unreachable code.

Infinite-loop detection.

Determine whether exit is unreachable.

Reachability application: mark-sweep garbage collector

Every data structure is a digraph.

- Vertex = object.
- Edge = reference.

Roots. Objects known to be directly accessible by program (e.g., stack).

Reachable objects. Objects indirectly accessible by program

(starting at a root and following a chain of pointers).

Reachability application: mark-sweep garbage collector

Mark-sweep algorithm. [McCarthy, 1960]

- Mark: mark all reachable objects.
- Sweep: if object is unmarked, it is garbage (so add to free list).

Memory cost. Uses 1 extra mark bit per object, plus DFS stack.

Depth-first search in digraphs summary

DFS enables direct solution of simple digraph problems.

- ✓ Reachability.
 - Path finding.
 - Topological sort.
 - Directed cycle detection.
 - Transitive closure.

Basis for solving difficult digraph problems.

- Directed Euler path.
- Strongly-connected components.

Breadth-first search in digraphs

Same method as for undirected graphs.

- Every undirected graph is a digraph (with edges in both directions).
- BFS is a digraph algorithm.

BFS (from source vertex s)

Put s onto a FIFO queue, and mark s as visited. Repeat until the queue is empty:

- remove the least recently added vertex v
- for each unmarked vertex pointing from v: add to queue and mark as visited..

Proposition. BFS computes shortest paths (fewest number of edges).

Multiple-source shortest paths

Multiple-source shortest paths. Given a digraph and a set of source vertices, find shortest path from any vertex in the set to a target vertex v.

Ex. Shortest path from $\{1, 7, 10\}$ to 5 is $7 \rightarrow 6 \rightarrow 4 \rightarrow 3 \rightarrow 5$.

- Q. How to implement multi-source constructor?
- A. Use BFS, but initialize by enqueuing all source vertices.

Breadth-first search in digraphs application: web crawler

Goal. Crawl web, starting from some root web page, say www.princeton.edu. Solution. BFS with implicit graph.

BFS.

- Choose root web page as source s.
- Maintain a Queue of websites to explore.
- Maintain a SET of discovered websites.
- Dequeue the next website and enqueue websites to which it links (provided you haven't done so before).

Q. Why not use DFS?

Bare-bones web crawler: Java implementation

```
Queue<String> queue = new Queue<String>();
                                                              queue of websites to crawl
                                                               set of visited websites
SET<String> visited = new SET<String>();
String s = "http://www.princeton.edu";
queue.enqueue(s);
                                                              start crawling from website s
visited.add(s);
while (!queue.isEmpty())
   String v = queue.dequeue();
                                                               read in raw html from next
   StdOut.println(v);
                                                               website in queue
   In in = new In(v);
   String input = in.readAll();
   String regexp = "http://(\\w+\\.)*(\\w+)";
                                                              use regular expression to find all URLs
   Pattern pattern = Pattern.compile(regexp); 
                                                              in website of form http://xxx.yyy.zzz
   Matcher matcher = pattern.matcher(input);
   while (matcher.find())
      String w = matcher.group();
      if (!visited.contains(w))
                                                              if unvisited, mark as visited
          visited.add(w);
                                                               and put on queue
          queue.enqueue(w);
```

- digraph API
- ▶ digraph search
- ▶ topological sort
- strong components

Precedence scheduling

Goal. Given a set of tasks to be completed with precedence constraints, in which order should we schedule the tasks?

Graph model. vertex = task; edge = precedence constraint.

- 0. Algorithms
- 1. Complexity Theory
- 2. Artificial Intelligence
- 3. Intro to CS
- 4. Cryptography
- 5. Scientific Computing

tasks

6. Advanced Programming

precedence constraint graph

feasible schedule

33

Topological sort

DAG. Directed acyclic graph.

Topological sort. Redraw DAG so all edges point up.

DAG

topological order

Solution. DFS. What else?

Topological sort demo

Depth-first search order

```
public class DepthFirstOrder
   private boolean[] marked;
   private Stack<Integer> reversePost;
   public DepthFirstOrder(Digraph G)
      reversePost = new Stack<Integer>();
      marked = new boolean[G.V()];
      for (int v = 0; v < G.V(); v++)
         if (!marked[v]) dfs(G, v);
   private void dfs(Digraph G, int v)
      marked[v] = true;
      for (int w : G.adj(v))
         if (!marked[w]) dfs(G, w);
      reversePost.push(v);
                                                      returns all vertices in
   public Iterable<Integer> reversePost()
                                                      "reverse DFS postorder"
   { return reversePost; }
```

Reverse DFS postorder in a DAG

0→5

0→2

0→1

3→6

3→5

3→4

5→4

6→4

6→0

3→2

1→4

marked[]

reversePost

```
dfs(0)
                   1 0 0 0 0 0 0
  dfs(1)
                   1 1 0 0 0 0 0
                   1 1 0 0 1 0 0
    dfs(4)
    4 done
                   1 1 0 0 1 0 0
                   1 1 0 0 1 0 0
  1 done
                                   4 1
  dfs(2)
                   1 1 1 0 1 0 0
                                   4 1 2
  2 done
                  1 1 1 0 1 0 0
                                   4 1 2
  dfs(5)
                   1 1 1 0 1 1 0
                  1 1 1 0 1 1 0
                                   4 1 2
    check 2
  5 done
                                   4 1 2 5
                   1 1 1 0 1 1 0
                                   4 1 2 5 0
0 done
                   1 1 1 0 1 1 0
                  1 1 1 0 1 1 0
                                   4 1 2 5 0
check 1
                                   4 1 2 5 0
check 2
                  1 1 1 0 1 1 0
dfs(3)
                   1 1 1 1 1 0
                                   4 1 2 5 0
                  1 1 1 1 1 1 0
                                   4 1 2 5 0
  check 2
  check 4
                                   4 1 2 5 0
                   1 1 1 1 1 0
  check 5
                                   4 1 2 5 0
                   1 1 1 1 1 1 0
  dfs(6)
                                   4 1 2 5 0
                   1 1 1 1 1 1 1
  6 done
                   1 1 1 1 1 1 1
                                   4 1 2 5 0 6
3 done
                                   4 1 2 5 0 6 3
                                       2 5 0 6 3
check 4
                                       2 5 0 6 3
check 5
                   1 1 1 1 1 1 0
                                   4 1 2 5 0 6 3
check 6
                   1 1 1 1 1 1 1
                                   4 1 2 5 0 6 3
done
```


reverse DFS postorder is a topological order!

Topological sort in a DAG: correctness proof

Proposition. Reverse DFS postorder of a DAG is a topological order.

Pf. Consider any edge $v \rightarrow w$. When afs(G, v) is called:

- Case 1: afs(G, w) has already been called and returned. Thus, w was done before v.
- Case 2: afs(G, w) has not yet been called.
 It will get called directly or indirectly by afs(G, v) and will finish before afs(G, v).
 Thus, w will be done before v.
- Case 3: afs(G, w) has already been called, but has not returned.
 Can't happen in a DAG: function call stack contains path from w to v, so v→w would complete a cycle.

Directed cycle detection

Proposition. A digraph has a topological order iff no directed cycle. Pf.

- If directed cycle, topological order impossible.
- If no directed cycle, DFS-based algorithm finds a topological order.

Goal. Given a digraph, find a directed cycle.

Solution. DFS. What else? See textbook.

Directed cycle detection application: precedence scheduling

Scheduling. Given a set of tasks to be completed with precedence constraints, in what order should we schedule the tasks?

PAGE 3			
DEPARTMENT	COURSE	DESCRIPTION	PREREQS
COMPUTER SCIENCE	CPSC 432	INTERMEDIATE COMPILER DESIGN, WITH A FOCUS ON DEPENDENCY RESOLUTION.	CPSC 432
00.	0000 1155	LOUIS COLOUIS DECICAL	0.47

http://xkcd.com/754

Remark. A directed cycle implies scheduling problem is infeasible.

Directed cycle detection application: cyclic inheritance

The Java compiler does cycle detection.

```
public class A extends B
{
    ...
}
```

```
public class B extends C
{
    ...
}
```

```
public class C extends A
{
    ...
}
```

Directed cycle detection application: spreadsheet recalculation

Microsoft Excel does cycle detection (and has a circular reference toolbar!)

Directed cycle detection application: symbolic links

The Linux file system does not do cycle detection.

```
% ln -s a.txt b.txt
% ln -s b.txt c.txt
% ln -s c.txt a.txt

% more a.txt
a.txt: Too many levels of symbolic links
```

Directed cycle detection application: WordNet

The WordNet database (occasionally) has directed cycles.

WordNet Search - 3.0 - WordNet home page - Glossary - Help			
Word to search for: dampen Search WordNet			
Display Options: (Select option to change) 🔻 Change			
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations			
Verb			
• S: (v) stille, dampen (smother or suppress) "Stifle your curiosity"			
o direct troponym full troponym			
o direct hypernym inherited hypernym sister term			
• S: (v) suppress, stamp down, inhibit, subdue, conquer, curb (to put down by force or authority) "suppress a nascent uprising"; "stamp down on littering"; "conquer one's desires" o direct troponym full troponym			
o direct hypernym I inherited hypernym I sister term			
• S: (v) control, hold in, hold, contain, check, curb, moderate (lessen the intensity of, temper, hold in restraint, hold or keep within limits) "moderate your alcohol intake";			
"hold your tongue"; "hold your temper"; "control your anger"			
o direct troponym full troponym			
o direct hypernym inherited hypernym sister term			
• S: (v) restrain, keep, keep back, hold back (keep under control, keep in check) "suppress a smile"; "Keep your temper"; "keep your cool"			
o <u>direct troponym</u> I <u>full troponym</u>			
 direct hypernym inherited hypernym sister term 			
 S: (v) inhibit, bottle up, suppress (control and refrain from showing, of emotions, desires, impulses, or behavior) 			
o direct troponym full troponym			
• direct hypernym inherited hypernym sister term			
• S: (v) restrain, keep, keep back, hold back (keep under control; keep in check) "suppress a smile"; "Keep your temper"; "keep			
your cool"			
o direct troponym full troponym			
o direct hypernym inherited hypernym sister term			
• S: (v) inhibit, bottle up, suppress (control and refrain from showing, of emotions, desires, impulses, or behavior)			
o derivationally related form			
o sentence frame			
derivationally related form			

- digraph API
- ▶ digraph search
- ▶ topological sort
- strong components

Strongly-connected components

Def. Vertices v and w are strongly connected if there is a directed path from v to w and a directed path from w to v.

Key property. Strong connectivity is an equivalence relation:

- v is strongly connected to v.
- If v is strongly connected to w, then w is strongly connected to v.
- If v is strongly connected to w and w to x, then v is strongly connected to x.

Def. A strong component is a maximal subset of strongly-connected vertices.

Connected components vs. strongly-connected components

v and w are connected if there is a path between v and w

v and w are strongly connected if there is a directed path from v to w and a directed path from w to v

connected component id (easy to compute with DFS)


```
public int connected(int v, int w)
    return cc[v] == cc[w]; }
constant-time client connectivity query
```

strongly-connected component id (how to compute?)

```
public int stronglyConnected(int v, int w)
  return scc[v] == scc[w]; }
```

constant-time client strong-connectivity query

Strong component application: ecological food webs

Food web graph. Vertex = species; edge = from producer to consumer.

http://www.twingroves.district96.k12.il.us/Wetlands/Salamander/SalGraphics/salfoodweb.gif

Strong component. Subset of species with common energy flow.

Strong component application: software modules

Software module dependency graph.

- Vertex = software module.
- Edge: from module to dependency.

Firefox

Internet Explorer

Strong component. Subset of mutually interacting modules.

Approach 1. Package strong components together.

Approach 2. Use to improve design!

Strong components algorithms: brief history

1960s: Core OR problem.

- Widely studied; some practical algorithms.
- Complexity not understood.

1972: linear-time DFS algorithm (Tarjan).

- Classic algorithm.
- Level of difficulty: Algs4++.
- Demonstrated broad applicability and importance of DFS.

1980s: easy two-pass linear-time algorithm (Kosaraju).

- Forgot notes for lecture; developed algorithm in order to teach it!
- Later found in Russian scientific literature (1972).

1990s: more easy linear-time algorithms.

- Gabow: fixed old OR algorithm.
- Cheriyan-Mehlhorn: needed one-pass algorithm for LEDA.

Kosaraju's algorithm: intuition

Reverse graph. Strong components in G are same as in G^R .

Kernel DAG. Contract each strong component into a single vertex.

Idea.

how to compute?

- Compute topological order (reverse postorder) in kernel DAG.
- Run DFS, considering vertices in reverse topological order.

0 2 3 4 5 9 10 11 12

digraph G and its strong components

kernel DAG of G

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.

- Run DFS on G^R to compute reverse postorder.
- Run DFS on G, considering vertices in order given by first DFS.

DFS in reverse digraph (ReversePost)

check unmarked vertices in the order 0 1 2 3 4 5 6 7 8 9 10 11 12

1 0 2 4 5 3 11 9 12 10 6 7 8

reverse postorder

```
dfs(0)
    dfs(6)
    dfs(7)
    dfs(8)
    deck 7
    8 done
    7 done
    6 done
    dfs(2)
    dfs(4)
    dfs(11)
    dfs(9)
    dfs(12)
    dfs(12)
    deck 11
```

Kosaraju's algorithm

Simple (but mysterious) algorithm for computing strong components.

- Run DFS on G^R to compute reverse postorder.
- Run DFS on G, considering vertices in order given by first DFS.

Proposition. Second DFS gives strong components. (!!)