4.3 Prim's Algorithm Demo

- Prim's algorithm
- lazy Prim
- eager Prim

Prim's algorithm

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{array}{ll}
0-7 & 0.16 \\
2-3 & 0.17 \\
1-7 & 0.19 \\
0-2 & 0.26 \\
5-7 & 0.28 \\
1-3 & 0.29 \\
1-5 & 0.32 \\
2-7 & 0.34 \\
4-5 & 0.35 \\
1-2 & 0.36 \\
4-7 & 0.37 \\
0-4 & 0.38 \\
6-2 & 0.40 \\
3-6 & 0.52 \\
6-0 & 0.58 \\
6-4 & 0.93
\end{array}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

edges with exactly one endpoint in T (sorted by weight)
in MST $\longrightarrow \begin{array}{cc}0-7 & 0.16 \\ 0-2 & 0.26 \\ 0-4 & 0.38 \\ 6-0 & 0.58\end{array}$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{gathered}
\text { MST edges } \\
0-7
\end{gathered}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

in MST	edges with exactly one endpoint in T (sorted by weight)	
	1-7	0.19
	0-2	0.26
	5-7	0.28
	2-7	0.34
	4-7	0.37
	0-4	0.38
	6-0	0.58

$$
\begin{gathered}
\text { MST edges } \\
0-7
\end{gathered}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

in MST \longrightarrow\begin{tabular}{cc}

edges with exactly
one endpoint in T
(sorted by weight)

\hline $0-2$ \& 0.26

$5-7$ \& 0.28

$1-3$ \& 0.29

$1-5$ \& 0.32

$2-7$ \& 0.34

$1-2$ \& 0.36

$4-7$ \& 0.37

$0-4$ \& 0.38

$6-0$ \& 0.58
\end{tabular}

MST edges

$$
0-7 \quad 1-7
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{lll}
0-7 & 1-7 & 0-2
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

edges with exactly one endpoint in T (sorted by weight)
in MST \longrightarrow 2-3 0.17
5-7 0.28
1-3 0.29
1-5 0.32
4-7 0.37
0-4 0.38
6-2 0.40
6-0 0.58

MST edges

$$
0-7 \quad 1-7 \quad 0-2
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{llll}
0-7 & 1-7 & 0-2 & 2-3
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
min weight edge with
exactly one endpoint in T

edges with exactly one endpoint in T
(sorted by weight)
\downarrow
in MST \longrightarrow 5-7 0.28
1-5 0.32
4-7 0.37
0-4 0.38
6-2 0.40
3-6 0.52
6-0 0.58

MST edges

$$
\begin{array}{llll}
0-7 & 1-7 & 0-2 & 2-3
\end{array}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{lllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

min weight edge with

exactly one endpoint in T

MST edges

$$
\begin{array}{lllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7
\end{array}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned} \quad 0-2 \quad 2-3 \quad 5-7 \quad 4-5 .
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
min weight edge with exactly one endpoint in T

MST edges

$$
\begin{array}{llllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& \qquad \begin{array}{lllllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5 & 6-2
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{array}{ll}
0-7 & 0.16 \\
2-3 & 0.17 \\
1-7 & 0.19 \\
0-2 & 0.26 \\
5-7 & 0.28 \\
1-3 & 0.29 \\
1-5 & 0.32 \\
2-7 & 0.34 \\
4-5 & 0.35 \\
1-2 & 0.36 \\
4-7 & 0.37 \\
0-4 & 0.38 \\
6-2 & 0.40 \\
3-6 & 0.52 \\
6-0 & 0.58 \\
6-4 & 0.93
\end{array}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
add to PQ all edges incident to 0

$\begin{array}{c}\text { edges on PQ } \\ \text { (sorted by weight) }\end{array}$		
* $0-7$	0.16	
*	$0-2$	0.26
*	$0-4$	0.38
$*$	$6-0$	0.58

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete 0-7 and add to MST

edges on PQ (sorted by weight)	
$0-7$	0.16
$0-2$	0.26
$0-4$	0.38
$6-0$	0.58

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

edges on PQ (sorted by weight)	
$0-2$	0.26
$0-4$	0.38
$6-0$	0.58

$$
\begin{gathered}
\text { MST edges } \\
0-7
\end{gathered}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
add to PQ all edges incident to 7

edges on PQ
(sorted by weight)
* 1-7 0.19

0-2 0.26

* 5-7 0.28
* 2-7 0.34
* 4-7 0.37

0-4 0.38
6-0 0.58

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete 1-7 and add to MST

edges on PQ (sorted by weight)	
$1-7$	0.19
$0-2$	0.26
$5-7$	0.28
$2-7$	0.34
$4-7$	0.37
$0-4$	0.38
$6-0$	0.58

$$
\begin{gathered}
\text { MST edges } \\
0-7
\end{gathered}
$$

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

edges on PQ (sorted by weight)	
$0-2$	0.26
$5-7$	0.28
$2-7$	0.34
$4-7$	0.37
$0-4$	0.38
$6-0$	0.58

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
add to PQ all edges incident to 1

edges on PQ (sorted by weight)	
$0-2$	0.26
$5-7$	0.28
* $1-3$	0.29
* $1-5$	0.32
$2-7$	0.34
* $1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-0$	0.58

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete edge 0-2 and add to MST

edges on PQ (sorted by weight)	
$0-2$	0.26
$5-7$	0.28
$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-0$	0.58

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
no need to add edge 1-2 or 2-7
because it's already obsolete
add to PQ all edges incident to 2

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete 2-3 and add to MST

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

edges on PQ (sorted by weight)	
$5-7$	0.28
$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$6-0$	0.58

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{llll}
0-7 & 1-7 & 0-2 & 2-3
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
add to PQ all edges incident to 3

edges on PQ
(sorted by weight)

$$
\begin{array}{ll}
5-7 & 0.28
\end{array}
$$

$$
1-3 \quad 0.29
$$

$$
1-5 \quad 0.32
$$

$$
2-7 \quad 0.34
$$

$$
1-2 \quad 0.36
$$

$$
4-7 \quad 0.37
$$

$$
0-4 \quad 0.38
$$

$$
6-2 \quad 0.40
$$

$$
\text { * 3-6 } 0.52
$$

MST edges

$$
6-0 \quad 0.58
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete 5-7 and add to MST

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

edges on PQ (sorted by weight)	
$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2 \quad 2-3 \quad 5-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
add to PQ all edges incident to 5

edges on PQ (sorted by weight)	
$1-3$	0.29
$1-5$	0.32
$2-7$	0.34
* $4-5$	0.35
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete 1-3 and discard obsolete edge

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete 1-5 and discard obsolete edge

edges on PQ (sorted by weight)	
$1-5$	0.32
$2-7$	0.34
$4-5$	0.35
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2 \quad 2-3 \quad 5-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete 2-7 and discard obsolete edge

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete 4-5 and add to MST

edges on PQ (sorted by weight)	
$4-5$	0.35
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{lllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7
\end{array}
\end{aligned}
$$

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

edges on PQ (sorted by weight)	
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{cccccc}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
add to PQ all edges incident to 4

edges on PQ (sorted by weight)	
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58
* $6-4$	0.93

MST edges
$\begin{array}{llllll}0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5\end{array}$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete 1-2 and discard obsolete edge

edges on PQ (sorted by weight)	
$1-2$	0.36
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58
$6-4$	0.93

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{cccccc}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete 4-7 and discard obsolete edge

edges on PQ (sorted by weight)	
$4-7$	0.37
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58
$6-4$	0.93

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{cccccc}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete 0-4 and discard obsolete edge

edges on PQ (sorted by weight)	
$0-4$	0.38
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58
$6-4$	0.93

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{cccccc}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete 6-2 and add to MST

edges on PQ (sorted by weight)	
$6-2$	0.40
$3-6$	0.52
$6-0$	0.58
$6-4$	0.93

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{cccccc}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
delete 6-2 and add to MST

edges on PQ (sorted by weight)

```
MST edges
\[
\begin{array}{lllllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5 & 6-2
\end{array}
\]
```


Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.
stop since \mathbf{V} - 1 edges

edges on PQ (sorted by weight)

```
MST edges
\[
\begin{array}{lllllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5 & 6-2
\end{array}
\]
```


Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned} 0-2 \quad 2-3 \quad 5-7 \quad 4-5 \quad 6-2, ~ l
$$

> Prim's algorithm

» eager implementation

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{array}{ll}
0-7 & 0.16 \\
2-3 & 0.17 \\
1-7 & 0.19 \\
0-2 & 0.26 \\
5-7 & 0.28 \\
1-3 & 0.29 \\
1-5 & 0.32 \\
2-7 & 0.34 \\
4-5 & 0.35 \\
1-2 & 0.36 \\
4-7 & 0.37 \\
0-4 & 0.38 \\
6-2 & 0.40 \\
3-6 & 0.52 \\
6-0 & 0.58 \\
6-4 & 0.93
\end{array}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{gathered}
\text { MST edges } \\
0-7
\end{gathered}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

\mathbf{v}	edgeTo []	distTo[]
0	-	-
7	$0-7$	0.16
1	$1-7$	0.19
$\mathbf{2}$	$0-2$	0.26
5	$5-7$	0.28
4	$0-4$	0.38
6	$6-0$	0.58
	vertices on PQ (sorted by weight)	

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

\mathbf{v}	edgeTo[]	distTo[]
0	-	-
7	$0-7$	0.16
$\rightarrow 1$	$1-7$	0.19
2	$0-2$	0.26
5	$5-7$	0.28
3	$1-3$	0.29
4	$0-4$	0.38
6	$6-0$	0.58

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{lll}
0-7 & 1-7 & 0-2
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{llll}
0-7 & 1-7 & 0-2 & 2-3
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{llll}
0-7 & 1-7 & 0-2 & 2-3
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2 \quad 2-3
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \quad 0-2 \quad 2-3
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{lllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{cccccc}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& \begin{array}{cccccc}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

$$
\begin{aligned}
& \text { MST edges } \\
& \qquad \begin{array}{lllllll}
0-7 & 1-7 & 0-2 & 2-3 & 5-7 & 4-5 & 6-2
\end{array}
\end{aligned}
$$

Prim's algorithm

- Start with vertex 0 and greedily grow tree T.
- At each step, add to T the min weight edge with exactly one endpoint in T.

v	edgeTo[]	distTo[]
0	-	-
7	$0-7$	0.16
1	$1-7$	0.19
2	$0-2$	0.26
3	$2-3$	0.17
5	$5-7$	0.28
4	$4-5$	0.35
6	$6-2$	0.40

$$
\begin{aligned}
& \text { MST edges } \\
& 0-7 \quad 1-7 \\
& 0-2
\end{aligned} \quad 2-3 \quad 5-7 \quad 4-5 \quad 6-2 \text { 2-7 }
$$

