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EXPERIMENTS

Selecting a suitable brain atlas for node definition is a critical yet
challenging step in functional connectome analysis. A mismatched atlas
can obscure subtle topographies and undermine the subsequent
analysis. In this work, we propose an Atlas-Free functional brain
CONnectome analysis (AFCON) that bypasses atlas selection by jointly
optimizing an adaptive parcellation module and a graph-based
connectome analysis module. Unlike classical methods reliant on fixed,
predefined atlases, AFCON adaptively generates task-specific,
individualized parcellations from fMRI data, which better align with the
prediction task and offer enhanced interpretability. In addition, we
introduce two neurobiologically-informed regularizers to ensure
plausible parcellations: a balanced distribution regularizer to mitigate
extreme parcel size imbalances and a spatial compactness regularizer to
promote anatomical coherence. Experiments on ADHD and ADNI
datasets demonstrate that AFCON consistently matches or outperforms
atlas-based baselines in terms of predictive accuracy while identifying
disease-relevant brain regions, enhancing both interpretability and
clinical relevance. Notably, this work focuses on the cerebral cortex,
serving as an initial step towards potential whole-brain connectivity
analysis in the future for more robust clinical utility.
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Figure: The Overall Framework of AFCON.

Adaptive Brain Parcellation. We apply a 3D U-Net to generate
voxel-wise soft assignments of cortical voxels into K ROIs. During
training, Gumbel-Softmax enables differentiable one-hot assignments;
during inference, Argmax is used for deterministic parcellation.

To enhance biological plausibility, we introduce two regularizers:

Balanced Distribution Regularizer: Prevents extreme imbalances of
ROI sizes by penalizing deviations from a uniform volume distribu-

tion:
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where p, r is the proportion of cortical voxels assigned to ROI k for
subject 7.

Spatial Compactness Regularizer: Promotes geometric coherence of
voxels within each ROI by minimizing spatial variance around soft
centroids:
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Graph-based Connectome Analysis. From the parcellation, ROI-wise
time series are obtained by averaging voxel time courses. We compute
functional connectivity matrices C, using Pearson correlation and retain
the top 10% positive connections to form sparse brain networks
A, € R®K. We adopt a Graph Convolutional Network (GCN) to predict
target labels:

911 = GCN(Anz Hn)

where H,, is the connection profile node feature matrix (i.e., rows of C,).
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Datasets. Two rs-fMRI datasets: ADHD-200 (569 subjects; 43.2% ADHD;

64 timepoints) and ADNI (200 subjects balanced between AD and HC;
197 timepoints), both preprocessed using fMRIPrep.

Table: Overall Prediction Performance (mean+std, %).

ADHD ADNI
Model
ACCt AUCt F11 ACCt AUCt F11

GCN 59.7462 632469 48.34127| 60.54917 65.7195 63.4153
GAT 577429 60.3437 53.64100 | 56.0425 594191 5544157
BrainGNN 53.2438 552437 50.3470 | 51.0454 523463 53.2455
BrainNetCNN 56.0433 58.7464 521467 | 58.544¢ 659178 53.64191
BrainGB 56.7407 583444 46.0461 | 56.5458 59.7149 58247,
BrainNetTF 59.8454 63.8477 45.0428 | 59.54535 623138 59.74g¢
NeuroGraph 56.5454 594143 b57.6447 | 56.5185 57.6452 5891111
AFCON (K=48) | 63.2127 65.6421 56.8435 | 625165 66.11735 62.64157
AFCON (K=90) | 60.0449 635431 50.71120 | 61.5441 65.645¢ 615459
AFCON (K=200) | 61.8409 629470 47946s | 62.0451 66.7142 59.8475
AFCON (K=360) | 61.1139 63.4157; 49.84116| 59.541335 65.1127 55.14¢s

e AFCON consistently matches or outperforms baselines with lower
variances, indicating improved accuracy and robustness.
e Parcellation resolution (i.e., ROI count) affects performance; careful

selection is essential based on disease characteristics and research goals.
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Figure: (a)-(c) Quantitative analysis of the learned parcellation. (d)-(i) highlight salient
ROIs for ADHD and AD. (j)-(k) Ablation Study of the proposed regularizers.

e Fig (a)-(c) show that AFCON produces functionally coherent and
consistent parcellations, and identifies clinically relevant regions
aligned with known ADHD and AD pathology.

e Regularizers improve performance across cohorts.
Balanced-Distribution contributes more to prediction gains in ADHD,
while Spatial-Compactness has a notable impact in ADNI, suggesting
that balanced ROI sizes help capture ADHD’s diffuse dysconnectivity,

whereas compact parcels better reflect the focal atrophy patterns in AD.
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