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Abstract

Many data mining and analytical tasks rely on the
abstraction of networks (graphs) to summarize rela-
tional structures among individuals (nodes). Since
relational data are often sensitive, we aim to seek ef-
fective approaches to generate utility-preserved yet
privacy-protected structured data. In this paper, we
leverage the differential privacy (DP) framework to
formulate and enforce rigorous privacy constraints
on deep graph generation models, with a focus on
edge-DP to guarantee individual link privacy. In
particular, we enforce edge-DP by injecting proper
noise to the gradients of a link reconstruction based
graph generation model, while ensuring data util-
ity by improving structure learning with structure-
oriented graph discrimination. Extensive experi-
ments on two real-world network datasets show that
our proposed DPGGAN model is able to generate
graphs with effectively preserved global structure
and rigorously protected individual link privacy.

1 Introduction
Nowadays, open data of networks (graphs) play a pivotal
role in data mining and data analytics [Hu et al., 2020;
Xie et al., 2020]. By releasing and sharing structured re-
lational data with research facilities and enterprise partners,
data companies harvest the enormous potential value from
their data, which benefits decision-making on various aspects,
including social, financial, environmental, through collec-
tively improved ads, recommendation, retention, and so on
[Sigurbjörnsson and Van Zwol, 2008; Kuhn, 2009]. How-
ever, graph data usually encode sensitive information not only
about individuals but also their interactions, which makes di-
rect release and exploitation rather unsafe. More importantly,
even with careful anonymization, individual privacy is still
at stake under collective attack models facilitated by the un-
derlying graph structure [Zhang et al., 2019; Cai et al., 2018;
Sun et al., 2018]. Can we find a way to securely generate
graph data without drastic sanitization that essentially renders
the released data useless?
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(a) Anonymized original net.(b) DPGGAN generated net.

Figure 1: A toy pair of anonymized and generated networks.

In dealing with such tension between the need to release
utilizable data and the concern of data owners’ privacy, quite
a few secure deep generative models have been proposed
recently, focusing on grid-based data like images, texts and
gene sequences [Papernot et al., 2018; Sun et al., 2020a; Sun
and Lyu, 2020]. However, none of the existing models can
be directly applied to the network (graph) setting. While a
secure generative model on grid-based data apparently aims
to preserve high-level semantics (e.g., class distributions) and
protect detailed training data (e.g., exact images or sentences),
it remains obtuse what to be preserved and what to be protected
for graph data, due to its modeling of complex interactive
objects.

Motivating scenario. In Figure 1, a bank aims to encourage
public studies on its customers’ community structures. It does
so by firstly anonymizing all customers and then sharing the
network (i.e., (a) in Figure 1) to the public. However, an
attacker interested in knowing the financial interactions (e.g.,
money transfer) between particular customers in the bank may
happen to have access to another network of a similar set of
customers (e.g., a malicious employee of another financial
company). The similarity of simple graph properties like
node degree distribution and triangle count between the two
networks can then be used to identify specific customers with
high accuracy in the released network (e.g., customer A as the
only node with degree 5 and within 1 triangle, and customer
B as the only node with degree 2 and within 1 triangle). Thus,
the attacker confidently knows the A and B’s identities and the
fact that they have financial interactions in the bank, which
seriously harms customers’ privacy and poses potential crises.

As the first contribution in this work, we define and formu-
late the goals of secure graph generation as preserving global
graph structure while protecting individual link privacy. Con-
tinue with the toy example, the solution we propose is to train



a deep graph generation model on the original network and
release the generated networks (e.g., (b) in Figure 1). Towards
the utility of generated networks, we require them to be simi-
lar to the original networks from a global perspective, which
can be measured by various commonly graph properties (e.g.,
network (b) has very similar degree distribution and the same
triangle count as (a)). In this way, we expect many down-
stream data mining and analytical tasks on them to produce
similar results as on the original networks. As for privacy
protection, we require that information in the generated net-
works cannot confidently reveal the existence or absence of
any individual links in the original networks (e.g., the attacker
may still identify customers A and B in network (b), but their
link structure may have changed).

Subsequently, there are two unique challenges in learning
such structure-preserved and privacy-protected graph genera-
tion models, which have never been explored so far.

Challenge 1: Rigorous protection of individual link pri-
vacy. The rich relational structures in graph data often al-
low attackers to recover private information through various
ways of collective inference [Zhang et al., 2014; Narayanan
and Shmatikov, 2009]. Moreover, graph structure can al-
ways be converted to numerical features such as spectral em-
bedding, after which most attacks on grid-based data like
model inversion [Fredrikson et al., 2015] and membership
inference [Shokri et al., 2017] can be directly applied for
link identification. Existing frameworks [Nobari et al., 2014;
Xue et al., 2012] for graph link protection only demonstrate
certain types of privacy regarding specific empirical measures
without principled theoretical guarantee. How can we design
an effective mechanism with rigorous privacy protection on
links in graphs against various attacks?

Challenge 2: Effective preservation of global graph struc-
ture. To capture the global graph structure, the model has
to constantly compare the structures of the input graphs and
currently generated graphs during training. However, unlike
images and other grid-based data, graphs have flexible struc-
tures and arbitrary node orders. How can we allow a graph
generation model to effectively learn from the structural differ-
ence between two graphs, without conducting very time-costly
operations like isomorphism tests all the time?

Present work. In this work, for the first time, we draw atten-
tion to the secure generation of graph data with deep neural
networks. Technically, towards the aforementioned two chal-
lenges, we develop Differentially Private Graph Generative
Adversarial Networks (DPGGAN), which imposes DP train-
ing over a link reconstruction based graph generation model
for rigorous individual link privacy protection, and further en-
sures structure-oriented graph comparison for effective global
graph structure preservation. In particular, we first formulate
and enforce edge-DP via gradient distortion by properly in-
jecting designed noises during model training. Then we lever-
age graph convolutional networks [Kipf and Welling, 2017]
through a generative adversarial network architecture [Gu et
al., 2019] to enable structure-oriented graph discrimination.

To evaluate the effectiveness of DPGGAN, we conduct ex-
tensive experiments on two real-world network datasets. On

one hand, we evaluate the utility of generated graphs by com-
puting a suite of commonly used graph properties to compare
the global structures of generated graphs with the original ones.
On the other hand, we validate the privacy of individual links
by evaluating links predicted from the generated graphs on
the original graphs. Consistent experimental results show that
DPGGAN is able to effectively generate graphs that are simi-
lar to the original ones regarding global graph structure, while
at the same time useless towards individual link prediction.

2 Related Work

Differential Privacy (DP). Differential privacy is a statistical
approach in addressing the paradox of learning nothing about
an individual while learning useful information about a popu-
lation [Dwork et al., 2014]. Recent advances in deep learning
have led to the rapid development of DP-oriented learning
schemes. Among them, the Gaussian Mechanism [Dwork et
al., 2014], defined as follows, provides a neat and compatible
framework for DP analysis over machine learning models.

Definition 1 (Gaussian Mechanism [Dwork et al., 2014]).
For a deterministic function f with its `2-norm sensitivity
as ∆2f = max

‖G−G′‖1=1
‖f(G)− f(G′)‖2, we have:

Mf (G) , f(G) +N (0,∆2f
2σ2), (1)

where N (0,∆2f
2σ2) is a random variable obeying the Gaus-

sian distribution with mean 0 and standard deviation ∆2fσ.
The randomized mechanism Mf (G) is (ε, δ)-DP if σ ≥
∆2f

√
2 ln(1.25/δ)/ε and ε < 1.

Following this framework, [Abadi et al., 2016] proposes
a general training strategy called DPSGD, which looses the
condition on the overall privacy loss than that in Definition 1
by tracking detailed information of the SGD process to achieve
an adaptive Gaussian Mechanism.

DP learning has also been widely adapted to generative
models [Frigerio et al., 2019; Papernot et al., 2018; Sun et al.,
2020b]. For example, [Frigerio et al., 2019] enforces DP on
the discriminators, and thus inductively on the generators, in a
GAN scheme. However, none of them can be directly applied
to graph data due to the lack of consideration of structure
generation.

For graph structured data, two types of privacy constraints
can be applied, i.e., node-DP [Kasiviswanathan et al., 2013]
and edge-DP [Blocki et al., 2012], which define two neigh-
boring graphs to differ by at most one node or edge. In this
work, we aim at secure graph generation, and particularly, we
focus on edge privacy because it is essential for the protection
of object interactions unique for graph data. Several existing
works have studied the protection of edge-DP. For example,
[Sala et al., 2011] generates graphs based on the statistical
representations extracted from the original graphs blurred by
designed noise, whereas [Wang and Wu, 2013] enforces the
parameters of dK-graph models to be private. However, based
on shallow graph generation models, they do not flexibly cap-
ture global graph structure that can support various unknown
downstream analytical tasks.



Graph Generation (GGen). GGen has been studied for
decades and is widely used to synthesize network data for
developing various collective analysis and mining models.
Earlier works mainly use probabilistic models to generate
graphs with certain properties [Watts and Strogatz, 1998;
Barabási and Albert, 1999], which are manually designed
based on sheer observations and prior assumptions.

Thanks to the surge of deep learning, many advanced GGen
models have been developed recently, which leverage different
powerful neural networks in a learn-to-generate manner [Kipf
and Welling, 2016; Bojchevski et al., 2018; You et al., 2018;
Simonovsky and Komodakis, 2018] For example, NetGAN
[Bojchevski et al., 2018] converts graphs into biased random
walks, learns the generation of walks with GAN, and assem-
bles the generated walks into graphs; GraphRNN [You et al.,
2018] regards the generation of graphs as node-and-edge ad-
dition sequences, and models it with a heuristic breadth-first-
search scheme and hierarchical RNN. These deep learning
models can often generate graphs with much richer properties,
and flexible structures learned from real-world networks.

To the best of our knowledge, no existing work on deep
GGen has looked into the potential privacy threats laid during
the learning and generation with powerful models. Such con-
cerns are rather urgent in the graph setting, where sensitive
information can often be more easily compromised in a col-
lective manner [Zhang et al., 2014], and privacy leakage can
easily further propagate [Sun et al., 2018].

3 DPGGAN

In this work, we propose DPGGAN for securely generating
graphs, whose global structures are similar to the original sen-
sitive ones, but the individual links (edges) between objects
(nodes) are safely protected. To provide robust privacy guaran-
tees towards various graph attacks, we propose to leverage the
well-studied technique of differential privacy (DP) [Dwork et
al., 2014] by enforcing the edge-DP defined as follows.

Definition 2 (Edge Differential Privacy [Blocki et al., 2012]).
A randomized mechanismM satisfies (ε, δ)-edge-DP if for
any two neighboring graphs G1,G2 ∈ G, which differ by at
most one edge, Pr[M(G1) ∈ S] ≤ exp(ε) × Pr[M(G2) ∈
S] + δ, where S ⊂ range(M).

Our key insight is, a graph generation modelM satisfying
the above edge-DP should learn to generate similar graphs
given the input of two neighboring graphs that differ by at most
one edge; as a consequence, the information in the generated
graph does not confidently reveal the existence or absence of
any one particular edge in the original graph, thus rigorously
protecting individual link privacy.

To ensure DP on individual links, we exploit the existing
link reconstruction based graph generation model GVAE [Kipf
and Welling, 2016], and design a training algorithm to dynam-
ically distort the gradients of its sensitive model parameters
by injecting proper amounts of Gaussian noise based on the
framework of DPSGD [Abadi et al., 2016]. We provide the-
oretical analysis on applying DPSGD to achieve edge-DP
with GVAE based on the nature of graph data and the link
reconstruction loss. Moreover, to improve the capturing of

global graph structures, we replace the direct binary cross-
entropy (BCE) loss on graph adjacency matrices in GVAE
with a structure-oriented graph discriminator based on GCN
and the framework of VAEGAN [Gu et al., 2019]. We further
prove the improved model to maintain the same edge-DP.

Backbone GVAE. Recent research on graph models has been
primarily focused around GCN [Kipf and Welling, 2017],
which is shown to be promising in calculating universal graph
representations [Maron et al., 2019; Xu et al., 2019]. To
guarantee individual link privacy without severely damaging
global network structure, in this work, we harness the power
and simplicity of GCN under the consideration of edge-DP
by adapting the link reconstruction based graph variational au-
toencoder (GVAE) [Kipf and Welling, 2016] as our backbone
graph generation model.

Notably, we are given a graph G = {V,E}, where V is the
set of N nodes (vertices), and E is the set of M links (edges),
which can be further modeled by a binary adjacency matrix A.
As a common practice [Hamilton et al., 2017], we set the node
features X simply as the one-hot node identity matrix. The
autoencoder architecture of GVAE consists of a GCN-based
graph encoder to guide the learning of a feedforward neural
network (FNN) based adjacency matrix decoder, which can
be trained to directly reconstruct graphs with similar links as
in the input graphs. A stochastic latent variable Z is further
introduced as the latent representation of A as

q(Z|X,A) =

N∏
i=1

q(Zi|X,A) =

N∏
i

N (zi|µi, diag(σ2
i )),

(2)

where µ = gµ(X,A) is the matrix of mean vectors µi,
and σ = gσ(X,A) is the matrix of standard deviation vec-
tors σi. g•(X,A) = ÃReLU(ÃXW0)W1 is a two-layer
GCN model. gµ and gσ share the first-layer parameters W0.
Ã = D−

1
2AD−

1
2 is the symmetrically normalized adjacency

matrix of G, with degree matrix Dii =
∑N
j=1 Aij . gµ and

gσ form the encoder network.
To generate a graph G′, a reconstructed adjacency matrix

A′ is computed from Z by an FNN decoder

p(A|Z) =

N∏
i=1

N∏
j=1

p(Aij |zi, zj) =

N∏
i=1

N∏
j=1

σ(f(zi)
T f(zj)),

(3)

where σ(z) = 1/(1 + e−z), f is a two-layer FNN appended
to Z before the logistic sigmoid function. The whole model
is trained through optimizing the following variational lower
bound

Lvae = Lrec + Lprior (4)
= Eq(Z|X,A)[log p(A|Z)]−DKL(q(Z|X,A)‖p(Z)),

where Lrec is implemented as the sum of an element-wise
binary cross entropy (BCE) loss between the adjacency ma-
trices of the input and generated graphs, and Lprior is a prior
loss based on the Kullback-Leibler divergence towards the
Gaussian prior p(Z) =

∏N
i=1 p(zi) =

∏N
i N (zi|0, I).



Enforcing DP. The probabilistic nature of Z allows the model
to be generative, meaning that after training the model with
an input graph G, we can detach and disregard the encoder,
and then freely generate an unlimited amount of graphs G′

with similar links to G, by solely drawing random samples of
Z from the prior distribution N (0, I) and computing A′ with
the learned decoder network w.r.t. Eq. (3). However, as shown
in [Kurakin et al., 2017], powerful neural network models like
VAE can easily overfit training data, so directly releasing a
trained GVAE model poses potential privacy threats.

In this work, we care about the generation model’s rigor-
ously protecting the privacy of individual links in the training
data, i.e., ensuring edge-DP. Particularly, in Definition 2, the
inequality guarantees that the distinguishability of any one
edge in the graph will be restricted to the privacy leak level
proportional to ε, quantifying the absolute value of privacy
information possibly to be leaked by a graph generation model.

According to Eq. (3), GVAE essentially takes a graph G,
in particular, the links E among the nodes V in G, as input
and generates a new graph G′ by reconstructing the links
E′ among the same set of nodes V. Therefore, if we regard
GVAE as the mechanismM, as long as its model parameters
are properly randomized, the framework satisfies edge-DP. To
be specific, any two input graphs G1 and G2 differing by at
most one link in principle lead to similar generated graphs G′,
so information in G′ does not confidently reveal the existence
or absence of any particular link in G1 or G2.

To exploit the well-structured graph generation framework
of GVAE, we leverage the Gaussian mechanism (Definition
1) [Dwork et al., 2014] and DPSGD [Abadi et al., 2016]
to enforce edge-DP on it. In our setting, G is the original
training graph. Then Eq. (1) tells us that a link reconstruction
based graph generation modelM can be randomized to ensure
(ε, δ)-edge-DP with properly parameterized Gaussian noise.
Prominently, we follow DPSGD [Abadi et al., 2016] to inject
a designed Gaussian noise to the gradients of our decoder
network clipped by a hyper-parameter C as follows

g̃θ,L =
1

N

(
N∑
i=1

(
∇vi,θL/max(1,

‖∇vi,θL‖2
C

)

)
+N (0, σ2C2I)

)
,

(5)
where L is the loss function of a link reconstruction based

graph generation model, C is the clipping hyper-parameter for
the model’s original gradient to bound the influence of each
link, and σ is the noise scale hyper-parameter.

Now we prove that the noised clipped gradient g̃θ,L applied
as above guarantees the learned graph generation model to be
edge-DP, with a different condition from that in Definition 1
due to the nature of graph generation.
Theorem 1. In training a link reconstruction based graph
generation model on a graph with N nodes with batch size B,
given the sampling probability q = B/N , and the number of
steps T , there exist explicit constants c1 and c2 that for any
ε < c1q

2T , iteratively updating the model T times with g̃θ,L
attains it with (ε, δ)-edge-DP for any δ > 0 if we choose

σ ≥ c2
q
√
T log(1/δ)

ε
,

where c1 ≥ 1
c0

log 1
qσ , c2 ≤ 1/

√
c0(1− c0) for any c0 ∈

(0, 1).

The proofs of Theorem 1 are detailed in Appendix A.
For the training of the DPGVAE decoder, L in Eq. (5) is

specified as Lrec in Eq. (4). Due to the link reconstruction
nature of DPGVAE, we derive the following Corollary.

Corollary 1.1 (DPGVAE edge-DP). Under the same condi-
tions in Theorem 1, iteratively updating the decoder in DPG-
VAE for T times with g̃θ,Lrec attains it with (ε, δ)-edge-DP.

In the generation stage, we can disregard the encoder and
only use the decoder to generate an unlimited amount of graphs
from randomly sampled vectors from the prior distribution
N (0, I). Due to the randomness of the normal Gaussian dis-
tribution, the sampling process can be regarded as (0, 0)-DP.
By the composability property of DP [Dwork et al., 2014],
generating graphs from random noises with the DPGVAE de-
coder satisfies (ε, δ)-edge-DP, whose release in principle does
not disclose sensitive information regarding individual links
in the original sensitive networks. Since we do not release
the encoder network, we do not need to clip and perturb its
gradients during training to induce minimum interruptions.

Improving structure learning. Besides individual link pri-
vacy, we also aim to preserve the global network structure
to ensure the utility of released data. As we discuss before,
original GVAE computes the reconstruction loss between in-
put and generated graphs based on the element-wise BCE
between their adjacency matrices. Such a computation is
specified on each link, rather than the graph structure as a
whole. To improve the global graph structure learning, we
leverage GCN again, which has been shown universally pow-
erful in capturing graph-level structures [Maron et al., 2019;
Xu et al., 2019]. Therefore, we borrow the framework of VAE-
GAN and compute a structure-oriented generative adversarial
network (GAN) loss as

Lgan = log(D(A)) + log(1−D(A′))

with D(A) = f ′(g′(X,A)), (6)

where g′ and f ′ are GCN and FNN networks similar as defined
before, besides at the end of g′ the node-level representations
are summed up as the graph-level representation, which resem-
bles the recently proposed GIN model for graph-level represen-
tation learning [Xu et al., 2019]. In this DPGGAN framework,
the decoder also serves as the generator, while D = f ′ · g′ is
the discriminator.

Following [Gu et al., 2019], the encoder is trained
w.r.t. Lrec + λ1Lprior, the generator w.r.t. Lrec − λ2Lgan,
and the discriminator w.r.t. λ2Lgan, where λ1 and λ2 are
hyper-parameters. In practice, to apply DPSGD to our graph
generation model, we consider various options for noise injec-
tion towards the appropriate DP constraints, such as adding
noises to the GCN encoder, latent graph representation, FNN
decoder, GCN discriminator or any of their combinations.
With theoretical justification and empirical analysis, we find
injecting a designed Gaussian noise to the clipped gradi-
ents of our decoder network sufficiently leads to edge-DP
of generated graphs while best preserving the desired global
graph structures. Therefore, Eq. (5) with Lrec substituted by
Lrec − λ2Lgan is applied to distort the gradients of the de-
coder (generator) and guarantee edge-DP, which can be used



Figure 2: Neural architecture of DPGGAN (best viewed in color): Our novel graph generation model consists of a GCN-based encoder, an
FNN-based decoder (generator), and a GCN+FNN-based discriminator. Sensitive data and modules are marked as red, while safe operations
(i.e., gradient clipping, noise injection and sampling) are marked as green, leading to DP modules and data.

to securely generate networks with the other parts disregarded
after training. Furthermore, to achieve the best performance
without losing the DP guarantee, we gradually reduce C in
Eq. (5) for an adaptive perturbation. The overall framework
of DPGGAN is shown in Figure 2, and the training process is
detailed in Appendix B.

The intuition behind the novel design of DPGGAN is,
the GCN encodings g′(A) and g′(A′) capture the graph
structures of G and G′, so a reconstruction loss Lrec =
‖g′(A)−g′(A′)‖22 captures the intrinsic structural difference
between G and G′ instead of the simple sum of the differences
over their individual links. Note that the effectiveness of our
structure-oriented discriminator is critical not only because it
can directly enforce effective training of the graph generator
through the minimax game in Eq. (6), but also because it can
learn to relax the penalty on certain individual links through
flexible and diverse configurations of the whole graph as long
as the global structures remain similar, which exactly fulfills
our goals of secure network release. The benefits of such
diversity enabled by the VAEGAN have also been discussed
in image generation [Gu et al., 2019].

Compared with DPGVAE, DPGGAN does not directly com-
pute the link reconstruction loss based on BCE in Eq. (4), but
rather computes it based on the graph discriminator D. How-
ever, the link reconstruction based graph generator of DPG-
GAN is exactly the same as DPGVAE. Since we also do not
release D after training, we can simply retrieve Corollary 1.2
from Theorem 1 as follows.

Corollary 1.2 (DPGGAN edge-DP). Under the same con-
ditions in Theorem 1, iteratively updating the generator in
DPGGAN for T times with g̃θ,(Lrec−λ2Lgan) attains it with
(ε, δ)-edge-DP.

With Corollary 1.2, we attain DPGGAN with the same
(ε, δ)-edge-DP protection of DPGVAE. For both DPG-
VAE and DPGGAN, the decoder/generator networks only get
exposed to the noised and clipped gradients, representing the
partial sensitive information within the training graphs. Hence,
it prevents the inference of training graphs from both learned
model parameters and generated graphs.

4 Experimental Evaluations
We conduct two sets of experiments to evaluate the effective-
ness of DPGGAN in preserving global network structure and
protecting individual link privacy. All code and data are in the
Supplementary Materials accompanying the submission.

Experimental settings. To provide a side-to-side comparison
between the original networks and generated networks, we
use two standard datasets of real-world networks, i.e., DBLP,
and IMDB. DBLP includes 72 networks of author nodes and
co-author links, where the average numbers of nodes and
links are 177.2 and 258; IMDB includes 1500 networks of
actor/actress nodes and co-star links, with average node and
link numbers 13 and 65.9. To facilitate a better understanding
towards how the graph statistics reflect the global network
structure captured by the models, we also provide results of
two recent deep network generation methods, i.e., NetGAN
[Bojchevski et al., 2018] and GraphRNN [You et al., 2018],
with default parameter settings and no DP constraints at all.

Due to space limitation, detailed settings of the neural ar-
chitectures and hyper-parameters of our models as well as
runtime comparison among algorithms are put into Appendix
C. In Appendix E, we also provide graph visualizations for
qualitative visual inspections.
Preserving global structures. To show that DPGGAN ef-
fectively captures global network structures, we compare it
and DPGVAE under different privacy budgets (controlled by
ε in Eq. (6)), regarding a suite of graph statistics commonly
used to evaluate the performance of graph generation models,
especially from a global perspective [Bojchevski et al., 2018;
You et al., 2018; Yang et al., 2019]. 1 In particular, we train
all models from scratch to convergence on each graph in the
datasets. Each time, the trained model is used to generate
one graph, which is compared with the original one regarding
the suite of graph statistics. Then we average the absolute
differences between generated and original graphs, ensuring
that the positive and negative differences do not cancel out.

Beyond the single value statistics, we also compare the gen-
erated graph regarding degree distribution and motif counts.
For degree distribution, we convert each graph into a 50-dim
vector (all nodes with degree larger than 50 are binned to-
gether); for motif counts, we enumerate all 29 undirected
motifs with 3-5 nodes and convert each graph into a 29-dim
vector by motif matching. We compute the average cosine sim-
ilarity between pairs of original graphs and generated graphs.
Furthermore, we use graph classification, the most widely
studied graph-level downstream task, to evaluate the global
utilities of generated graphs. Particularly, we evaluate the
accuracy of GIN [Xu et al., 2019], the state-of-the-art graph
classification model, with the default parameter setting.

1Statistics we use including LCC (size of the largest connected
component), TC (triangle count), CPL (characteristic path length),
GINI (gini index) and REDE (relative edge distribution entropy).



DBLP Networks IMDB Networks
Models LCC TC CPL GINI REDE LCC TC CPL GINI REDE
Original 107.5 59.90 3.6943 0.3248 0.9385 13.001 305.9 1.2275 0.1222 0.9894
GVAE (no DP) 7.51 66.93 0.1330 0.0213 0.0084 0.0145 25.83 0.0121 0.0030 0.0016
GGAN (no DP) 7.23 56.29 0.1293 0.0201 0.0057 0.0040 21.71 0.0109 0.0010 0.0012
NetGAN (no DP) 9.66 39.87 0.1943 0.0105 0.0022 0.0083 27.54 0.0192 0.0042 0.0011
GraphRNN (no DP) 10.27 57.43 0.2043 0.0415 0.0052 0.0594 27.26 0.0214 0.0155 0.0094
DPGVAE(ε=10) 21.96 175.29 0.2471 0.0339 0.0153 0.0147 43.63 0.0367 0.0036 0.0030
DPGVAE(ε=1) 23.80 187.20 0.3059 0.0343 0.0156 0.0253 43.73 0.0373 0.0038 0.0031
DPGVAE(ε=0.1) 26.07 215.13 0.3342 0.0344 0.0158 0.0320 44.12 0.0392 0.0042 0.0032
DPGGAN(ε=10) 9.24 64.75 0.2035 0.0224 0.0093 0.0040 22.89 0.0164 0.0010 0.0017
DPGGAN(ε=1) 12.38 70.97 0.2643 0.0353 0.0117 0.0053 23.81 0.0168 0.0029 0.0023
DPGGAN(ε=0.1) 24.62 77.41 0.2713 0.0485 0.0191 0.0113 24.91 0.0168 0.0029 0.0025

Table 1: Performance evaluation over compared models regarding a suite of important graph structural statistics. The Original rows include the
values of original networks, while the rest rows are the average absolute difference between generated networks by different models and the
original networks. Therefore, smaller values indicate better capturing of global network structure and thus better global data utility. Bold font
is used to highlight the top-3 models with edge-DP constraints.

DBLP Networks IMDB Networks
Models Degree dist. Motif ct. GIN acc. Degree dist. Motif ct. GIN acc.
GVAE (no DP) 0.6171 0.4093 0.3029 0.5132 0.4129 0.4698
GGAN (no DP) 0.6258 0.4231 0.3374 0.5493 0.4279 0.4800
NetGAN (no DP) 0.5754 0.4109 0.3471 0.4921 0.3891 0.4350
GraphRNN (no DP) 0.5454 0.3672 0.3210 0.4635 0.3721 0.3875
DPGVAE(ε=1) 0.5476 0.4038 0.3043 0.5081 0.4021 0.4625
DPGGAN(ε=1) 0.6092 0.4150 0.3261 0.5486 0.4150 0.4725

Table 2: Performance evaluation regarding degree distribution, motif counts and GIN accuracy. Larger values for both cosine similarity and
GIN accuracy indicate better graph utility. Note that the GIN model trained on the original networks achieves 0.3578 and 0.5163 accuracy on
the two datasets, which provides the upper bounds for all compared graph generation models. Bold font is used for values ranked top-3.

In Table 1, our strictly DP-constrained models constantly
yield highly competitive and even better results compared with
the non-private baselines of NetGAN and GraphRNN regard-
ing global graph structural similarity between generated and
original networks on both datasets. As we gradually increase
the privacy budget ε, our both models apparently perform bet-
ter, showing the effectiveness of our privacy constraints and a
clear trade-off between privacy and utility. DPGGAN consis-
tently outperforms DPGVAE under the same privacy budgets,
supporting our novel design of the GAN framework. More-
over, as shown in Table 2, the graphs generated by DPG-
GAN are competitively similar to the original graphs regarding
both degree distributions and motif counts, while achieving
satisfactory graph classification accuracy. All these results con-
sistently demonstrate the global structure preservation ability
of DPGGAN.
Protecting individual links. To show that DPGGAN effec-
tively guarantees individual link privacy, we train models
shown in Figure 3 for another K times on each dataset. In-
stead of complete networks, we randomly sample 80% of the
original networks’ links to train the models. After training
and generation, we use degree distribution to align the nodes
in the generated networks with those in the original networks.
Then we evaluate the individual link prediction accuracy by
comparing links predicted in the generated networks and links
hidden during training in the original networks.

As shown in Figure 3, for both datasets, links predicted
on the networks generated by DPGGAN models are much
less accurate than those predicted on the original networks
(13.0%-16.9% and 27.3%-28.6% accuracy drops on DBLP
and IMDB, respectively) as well as the networks generated
by most non-private models (11.1%-15% and 18.1%-19.5%

accuracy drops compared with GGAN on DBLP and IMDB,
respectively). This means even if the attackers identify nodes
in the generated (released) networks of DPGGAN, they cannot
leverage the information there to accurately infer the existence
or absence of links between particular pairs of nodes on the
original networks. This directly corroborates our claim that
DPGGAN is effective in protecting individual link privacy.
Due to space limit, more details and discussions regarding the
experimental results are put into Appendix D.

Figure 3: Accuracy of links predicted on networks generated by
DPGGAN with varying ε values compared with baselines. Lower
accuracy means better individual link privacy.

5 Conclusion
Due to the recent development of deep graph generation mod-
els, synthetic networks are generated and released for granted,
without the concern about possible privacy leakage over the
original networks used for model training. In this work, for the
first time, we provide a compelling system for secure graph
generation through the appropriate integration of deep graph
generation models and differential privacy. Comprehensive
experiments show our model to be effective in both preserving
global graph structure and protecting individual link privacy.
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PANG, and Stéphane Bressan. L-opacity: linkage-aware graph
anonymization. 2014.

[Papernot et al., 2018] Nicolas Papernot, Shuang Song, Ilya
Mironov, Ananth Raghunathan, Kunal Talwar, and Úlfar Erlings-
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