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Abstract
Electronic health records (EHRs) contain valuable patient data for health-related prediction tasks, such as disease
prediction. Traditional approaches rely on supervised learning methods that require large labeled datasets, which
can be expensive and challenging to obtain. In this study, we investigate the feasibility of applying Large Language
Models (LLMs) to convert structured patient visit data (e.g., diagnoses, labs, prescriptions) into natural language
narratives. We evaluate the zero-shot and few-shot performance of LLMs using various EHR-prediction-oriented
prompting strategies. Furthermore, we propose a novel approach that utilizes LLM agents with different roles: a
predictor agent that makes predictions and generates reasoning processes and a critic agent that analyzes incorrect
predictions and provides guidance for improving the reasoning of the predictor agent. Our results demonstrate that
with the proposed approach, LLMs can achieve decent few-shot performance compared to traditional supervised
learning methods in EHR-based disease predictions, suggesting its potential for health-oriented applications.

Introduction
Large Language Models (LLMs) have emerged as a powerful tool in various domains, including healthcare. These
models, such as GPT family1 and PaLM,2 are trained on vast amounts of text data, allowing them to encode exten-
sive knowledge across multiple fields. In the medical domain, the ability of LLMs to leverage their encoded medical
knowledge has been showcased in recent studies,3, 4, 5 with impressive performance on tasks such as medical ques-
tion answering,6 clinical text summarization,7 and clinical decision support.8 Certain very large language models
demonstrate an emerging ability for few-shot learning, where the model can draw upon their existing understanding to
quickly adapt to new tasks with limited examples.9 This raises the question of whether LLMs can be directly applied
to perform few-shot disease predictions using Electronic Health Record (EHR) data.

EHRs contain a wealth of patient data for predictive modeling tasks such as disease prediction, readmission risk assess-
ment, and mortality prediction.10 Existing approaches to EHR-based prediction primarily rely on supervised learning
methods, including traditional machine learning models, representation learning,11, 12, 13 and graph-based models.14, 15

While effective, these supervised approaches require training on large labeled datasets, which can be computationally
expensive and challenging to obtain due to the high cost and difficulty of acquiring high-quality labeled EHR data.16

In contrast, the capacity for few-shot learning enables LLMs to adapt to new tasks with minimal data, without any
finetuning.9 This adaptability raises the possibility of employing LLMs for few-shot disease prediction using EHR, a
step forward in making healthcare more precise and efficient.17

In this study, we investigate the efficacy of LLMs-based few-shot disease prediction using the EHRs generated from
clinical encounters that include three types of medical codes: disease, medications, and procedures. We convert the
structured patient visit records into unstructured language narratives by mapping the ICD codes to their names and
connecting them with proper conjunctives. This conversion process allows LLMs to better understand clinical records
and retrieve related internal knowledge. We assess the zero-shot and few-shot diagnostic performance of LLMs using
various prompting strategies, such as considering factor interactions and providing prevalence statistics and exemplars.
The results of this evaluation provide insights into the potential of LLMs as a tool for EHR-based disease prediction
and highlight the influence of prompting strategies on their performance.



Patient Visit in 
EHR: 
'snomed313436004’, 
'snomed59621000’, 
'snomed80313002’, 
'atc5C10BX’, 
'atc5C09DB’,
'atc5C08CA’, 
'cpt93000’, 
…

Predictor 
LLM Agent

User: You are an assistant good at self-reflection, …. 
Your task is to observe on these provided 
predictions, compare them against the ground truth, 
and formulate criteria and guidelines to enhance the 
accuracy of future predictions. 
[[input data]]

LLM: 
1. Essential hypertension alone, without evidence of 

poor management or additional cardiovascular risk 
factors, does not necessarily lead to a cardiovascular 
disease (CVD) endpoint …

2. ...

Natural Language Narratives: 
User: You are a medical expert with a specialization in type 2 diabetes 
and cardiovascular disease. Your task is to predict whether … You are 
presented with the following …
- Diagnoses made: Essential hypertension, …
- Medications prescribed: Lipid modifying agents in combination with …
- Procedures performed: Electrocardiogram, routine ECG with at least …

LLM: Diagnoses: No, reasoning: 
1. Monitoring and Procedures: The patient has undergone outpatient visits 

for evaluation and management, …
2. Management of Type 2 Diabetes and Hypertension: The patient is on a 

regimen that includes …

Critic LLM Agent

Figure 1: The framework of EHR-CoAgent employs two LLM agents: a predictor agent that makes predictions
and generates reasoning processes and a critic agent that analyzes incorrect predictions and provides guidance for
improvement. The critic agent’s feedback is used to update the prompts given to the predictor agent, enabling the
system to learn from its mistakes and adapt to the specific challenges of the EHR-based disease prediction task.

Building upon the findings of our initial evaluation, we propose an innovative approach to further improve the few-
shot diagnostic performance of LLMs on EHR data. Studies have shown the promise of specialized LLM agents
working collaboratively,18 leveraging their diverse functionalities through few-shot learning. Our approach combines
the strengths of predictive agent reasoning and critical agent instruction to create a more robust and accurate prediction
system. The overall framework is shown in Figure 1. Specifically, we employ two LLM agents with different roles: a
predictor agent and a critic agent. The predictor agent makes few-shot predictions given the unstructured narratives,
which are converted from structured records, and generates a reasoning process to support its predictions. The critic
agent then takes the predictor’s output alongside the ground-truth disease labels as input and identifies issues or biases
in the predictor agent’s reasoning process. Based on the analysis, the critic agent generates a set of instructions that
draw the predictor agent’s attention to potentially overlooked factors and offer specific recommendations for refining
its reasoning process. These instructions are subsequently appended to the prompts used for the predictor agent,
serving to inform its predictions. Our results show that by refining the prompts based on the critic agent’s feedback,
the overall accuracy of the LLM-based few-shot prediction system improves significantly. This approach leverages the
complementary strengths of predictive reasoning and critical analysis, enabling the system to learn from its mistakes
and adapt to the specific challenges of EHR-based disease prediction. In summary, our main contributions are:

• We investigate the application of LLMs to EHR-based disease prediction tasks by converting structured data into
natural language narratives and evaluating zero-shot and few-shot performance using various prompting strategies.

• We propose a novel approach combining two LLM agents with different roles: a predictor agent that makes predic-
tions and provides reasoning processes, and a critic agent that analyzes incorrect predictions and provides feedback
for improvement. The critic agent’s feedback is used to update the predictor agent’s prompts, enabling the system
to learn from its mistakes and adapt to EHR-based disease prediction challenges.

• We summarize a set of insights into the performance of LLMs under various settings and share practical guidance on
leveraging LLMs for diagnostic tasks with limited labeled data. We hope this can contribute to developing efficient
and effective clinical decision support systems in the era of LLMs.

Related Work
Large Language Models for Healthcare LLMs have demonstrated remarkable capabilities in various application sce-
narios. Recently, there has been a growing interest in applying LLMs to the medical domain,19, 20, 21, 22 particularly
for tasks such as clinical note analysis,23, 24 medical question answering,25 disease prediction,26, 27 clinical trial match-
ing,28 medical report generation.29 For example, Yang et al.30 introduced GatorTron, an LLM specifically designed for
EHRs. They demonstrated the effectiveness of GatorTron in various clinical natural language processing (NLP) tasks,
such as named entity recognition and relation extraction, showcasing the potential of LLMs to extract valuable infor-
mation from unstructured EHR data. Peng et al.21 investigated the use of generative LLMs for medical research and



healthcare. They explored the capabilities of LLMs in tasks such as medical question answering, disease prediction,
and clinical trial matching, highlighting their potential to support clinical decision-making and assist research.

However, applying LLMs to EHR-based disease prediction tasks remains under-explored. While some studies have
investigated the use of LLMs for clinical NLP tasks on EHR,30, 31 there is still a lack of research on leveraging the
reasoning and instruction-following capabilities of LLMs for few-shot EHR-based prediction. Our research addresses
this gap by exploring the use of LLMs for EHR-based disease prediction and proposes new methods to enable accurate
prediction with minimal training data.

Method
In this study, we expand our investigations on two levels: (1) evaluating the zero-shot and few-shot performance of
LLMs on EHR-based disease prediction tasks, and (2) proposing a novel approach that leverages collaborative LLM
agents to enhance the predictive performance.

LLM Performance on Disease Prediction with EHR The structured patient visit data are typically stored in tabular for-
mats, where each row represents an individual patient visit record generated from clinical encounters, and columns
correspond to different medical codes. In this study, we utilize EHR data that includes three types of medical codes C:
(1) diseases CD, (2) medications CM , and (3) procedures CP . Each patient visit sample vi in the record V is represented
by a set of medical codes {c1, c2, . . . , cn}, where cj ∈ C. We convert the structured EHR records into unstructured
language narratives, denoted as H, by mapping the medical codes to their names to enable the application of LLMs.

⋄ Zero-Shot: Leveraging Pre-existing Knowledge Prompt engineering has emerged as a powerful technique for guiding
the behavior of LLMs and improving their performance on various healthcare-related tasks, such as clinical named
entity recognition32 and clinical text classification.33, 34 We develop a set of prompting strategies tailored to EHR-based
prediction tasks to provide additional context and guide the reasoning process of LLMs, including:

• Chain-of-thought (CoT) reasoning:35 prompt the LLMs to generate step-by-step explanations;
• Incorporation of factor interactions: encourage LLMs to consider the interactions and dependencies among different

medical factors (e.g., diseases, medications, and procedures);
• Prevalence information: integrate information about the prevalence statistics to provide additional context.

⋄ Few-Shot: Enhancing Performance with Limited Examples We randomly select a small number of positive and negative
samples (e.g., 3 positive and 3 negative) from the training data to serve as exemplars for each prediction category.
These exemplars are incorporated into the prompts to provide the LLMs with a limited set of task-specific examples to
learn from. This leverages the LLMs’ vast pre-existing knowledge while allowing them to adapt quickly to the specific
characteristics of the EHR prediction task. By this, we aim to guide LLMs’ attention toward the most relevant patterns
associated with each prediction category.

EHR-CoAgent: Collaborative LLM Agents for Enhanced Prediction Recently, the potential of LLMs has extended be-
yond single-agent applications. By leveraging the power of multiple LLMs with different roles working together in
a collaborative framework, new possibilities have been unlocked for tackling complex problems and enhancing the
performance of language models.? In this study, we propose a novel approach called EHR-CoAgent (as demonstrated
in Figure 1), which harnesses the potential of collaborative LLM agents for enhanced prediction of EHR. Our frame-
work consists of two components: a predictor agent PLLM and a critic agent KLLM. The predictor agent focuses on
generating predictions and providing explanatory reasoning, while the critic agent observes the predictor’s outputs and
provides instructional feedback to refine the prediction process. By integrating the feedback from the critic agent into
the prompts used by the predictor agent, we aim to create an in-context learning process with feedback to continuously
enhance disease prediction accuracy.

⋄ Predictor Agent: Generating Predictions and Reasoning The predictor agent PLLM is an LLM that performs few-
shot disease predictions and provides explanatory reasoning based on the input EHR data. Given a patient’s medical
history Hi, the predictor LLM analyzes the relevant information and generates the most likely prediction D̂i and
provides a step-by-step explanation of its reasoning process Ri. Such explanatory reasoning is crucial for enhancing
the interpretability of the generated predictions. By highlighting the key factors and evidence influencing the LLM
agent’s decision-making process, the reasoning serves as a transparent and informative basis for further analysis and



validation. The detailed prompt we used for the predictor agent in EHR-CoAgent is shown in Figure 3.

⋄ Critic Agent: Providing Instructional Feedback The critic agent Kagent is another LLM that plays a different role in
the EHR-CoAgent framework by observing a set of sampled wrong predictions from the predictor agent. Each set,
denoted as Bj = {(D̂ji,Rji)}bi=1, contains generated prediction D̂ji and the corresponding explanatory reasoning Rji

for b instances. The critic agent analyzes the inconsistency of the generated prediction and reasoning to the ground
truth label Dji for each batch Bj and identifies error patterns for improvement. Based on this analysis, we let the critic
agent generate a set of instructional feedback {Fj} for batch Bj and repeat this process for m times. The detailed
prompt we used for the critic agent in EHR-CoAgent is shown in Figure 4.

To provide concise and coherent guidance, we employ GPT-4 to process the set of instructional feedback {Fj}mj=1.
GPT-4 analyzes the feedback across multiple batches and generates a consolidated set of instructions Fconsolidated that
captures the most important and recurring insights. This consolidated feedback highlights common biases or errors in
the reasoning process, offers suggestions for considering additional factors, and provides insights into the relationships
between different medical concepts.

⋄ Instruction Enhancement: Integrating Critic Agent Feedback to the Predictor Agent To effectively incorporate the feed-
back generated by the critic LLM, we introduce an instruction enhancement mechanism by integrating the critic LLM’s
instructional feedback Fconsolidated directly into the prompts P used by the predictor LLM to guide the prediction. By
augmenting the prompts with feedback instructions and guidance, we aim to steer the predictor LLM’s attention to-
ward the most relevant aspects of the input data and encourage it to consider the insights provided by the critic LLM.
This iterative process of making predictions, receiving feedback, and refining the prompts allows the predictor LLM
to continuously improve its performance and adapt to the specific challenges of EHR-based disease prediction.

Experimental Settings
Datasets We conducted experiments on two datasets: the publicly accessible MIMIC-III dataset and the privately-
owned CRADLE dataset. MIMIC-III36 is a large, publicly accessible dataset comprising de-identified health-related
data associated with over forty thousand patients who stayed in critical care units of the Beth Israel Deaconess Med-
ical Center between 2001 and 2012. Our task is to predict whether acute care conditions will be present during a
patient’s next visit, given their current ICU stay records. We focus on a specific chronic phenotype, Disorders of Lipid
Metabolism, which is identified using Clinical Classifications Software (CCS) from the Healthcare Cost and Utiliza-
tion Project (HCUP)1. During preprocessing, we extract patients with more than one hospital visit and create pairs of
adjacent visits for each patient. For each pair, the former visit serves as the input, and the phenotypes in the latter visit
are used as labels. This process yields 12,353 records with labels. For budget consideration, we randomly sample
1,000 records based on the data distribution of the prediction target as our testing set.

Project CRADLE (Emory Clinical Research Analytics Data Lake Environment) is a privately-owned database that
contains de-identified electronic health records at Emory Healthcare from 2013 to 2017. In this study, we focus on
the patients with type 2 diabetes and predict whether those patients will experience cardiovascular disease (CVD)
endpoints within a year after the initial diabetes diagnosis. The CVD endpoints include coronary heart disease (CHD),
congestive heart failure (CHF), myocardial infarction (MI), or stroke, which are identified by their ICD-9 and ICD-10
clinical codes. For patients who developed CVD complications within a year (positive cases), we select the earliest
recorded encounter within a year of the CVD endpoint presence as the input. For patients without CVD complications
(negative cases), we randomly select one encounter as the input from all encounters that occurred at least one year
before the last recorded encounter. Patients are excluded if they (1) have less than two encounters at Emory Healthcare,
(2) the time interval between their first and last encounter is less than one year, or (3) have a history of CVD conditions.
After applying these exclusion criteria, 35,404 patients remain in the dataset. Similar to MIMIC-III, we randomly
sample 1,000 records based on the data distribution of the prediction target

Evaluation Metrics Both the MIMIC-III and CRADLE datasets exhibit class imbalance, with the prevalence of Disor-
ders of Lipid Metabolism in MIMIC-III being 27.6% and the prevalence of cardiovascular disease (CVD) endpoints in
CRADLE being 21.4%. To account for the imbalanced data distributions, we employ accuracy, sensitivity, specificity,
and F1 score as evaluation metrics.14 When evaluating LLM methods, we identify the presence of “Yes” or “No” to-

1https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.txt

https://www.hcup-us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.txt


kens in the LLM responses and extract the top 5 probabilities associated with the predicting token. These probabilities
are then normalized over both answers. We observed that GPT family models tend to provide highly confident answers
(a confirmed prediction of either “Yes” or “No”, with almost 0.0 probability for the other choice), often resulting in a
majority probability of either 0.0 or 1.0.

Baselines We compare the performance of EHR-CoAgent with traditional machine learning (ML), including Decision
Trees, Logistic Regression, and Random Forests, which are widely used in EHR-based prediction tasks,37 and single-
agent LLM approaches using GPT-4 (gpt-4-0125-preview) and GPT-3.5 (gpt-35-turbo-16k-0613). The
ML models are trained in both fully supervised and few-shot settings, while the LLM approaches are evaluated in pure
zero-shot, zero-shot with additional prompt information as mentioned in section , and few-shot learning settings. By
comparing EHR-CoAgent with these baselines, we aim to evaluate the effectiveness of diverse LLM agent frameworks
in EHR-based disease prediction tasks.

Implementation Details We implemented the empirical study methods in Python. The baseline machine learning
models were trained and evaluated using the popular sklearn package, which provides a comprehensive set of tools
for machine learning tasks. To access the various GPT models securely, we utilized the Azure OpenAI Service, a
trusted and compliant cloud platform. Azure OpenAI offers a secure API interface that allows seamless integration of
the GPT capabilities into our research pipeline while maintaining strict privacy and security controls. By leveraging
Azure OpenAI, we ensured that the sensitive patient dataset was processed in a protected environment, adhering to
necessary regulations and standards, such as HIPAA and GDPR.

Experimental Results
Table 1: Performance (%) of different models under the zero-shot, few-shot, and fully-supervised settings on MIMIC-
III and CRADLE datasets. The proposed method is colored in green . The reference results under the supervised
training setting (trained on 11,353 samples for MIMIC-III and 34,404 samples for CRADLE) are colored in gray .

Model Approach
MIMIC-III (Pos : Neg = 27.6% : 72.4%) CRADLE (Pos : Neg = 21.4% : 78.6%)
ACC Sensitivity Specificity F1 ACC Sensitivity Specificity F1

Decision Tree Fully-Supervised 81.30 76.97 84.31 76.20 80.30 53.87 88.27 52.15
Logistic Regression Fully-Supervised 79.70 70.48 83.56 73.18 80.90 58.34 86.15 59.74
Random Forest Fully-Supervised 78.60 66.12 83.16 70.58 80.20 56.49 86.14 57.34

Decision Tree Few-Shot (N=6) 71.10 53.14 77.62 51.16 31.90 54.81 25.99 31.71
Logistic Regression Few-Shot (N=6) 58.70 73.40 53.44 56.78 53.30 53.95 53.13 48.16
Random Forest Few-Shot (N=6) 69.70 62.88 72.18 63.61 65.00 51.50 68.43 51.04

GPT-4

Zero-Shot 51.90 76.15 42.56 51.89 24.10 51.81 16.82 22.33
Zero-Shot+ 62.90 59.30 64.29 58.58 30.00 53.25 23.76 29.67
Few-Shot (N=6) 65.70 79.35 59.89 64.72 41.20 59.05 36.33 40.88
EHR-CoAgent 79.10 73.11 81.43 73.88 70.00 62.88 71.72 60.21

GPT-3.5

Zero-Shot 78.00 66.87 82.37 68.56 56.50 59.88 55.45 52.29
Zero-Shot+ 72.40 50.00 80.37 42.00 62.60 57.62 63.96 54.40
Few-Shot (N=6) 76.30 63.73 80.93 63.84 40.80 54.56 36.96 40.32
EHR-CoAgent 79.30 74.49 80.98 71.59 66.60 58.31 68.83 55.83

Table 1 presents the experimental results on the two datasets. The findings highlight several key observations:

⋄ Traditional machine learning models achieve respectable performance when trained on full datasets (11,353 for
MIMIC-III and 34,404 for CRADLE). However, the performance of simpler models, e.g., Decision Trees and Logistic
Regression, substantially deteriorates in the few-shot setting, emphasizing limitations when labeled data is scarce.
⋄ When comparing the performance of zero-shot or few-shot LLMs with ML methods under few-shot settings, we
observe that LLMs exhibit higher sensitivity but lower specificity. This finding suggests that LLMs excel at correctly
identifying positive cases (i.e., patients with the condition of interest) but at the cost of a higher false positive rate.
In other words, LLMs are more prone to classifying a patient as having the condition, even when they do not. This
tendency implies that LLMs, particularly GPT-4, adopt a more conservative mindset, possibly due to their alignment
to err on the side of caution to mitigate the risk of potentially missing true positive cases.
⋄ Zero-shot with additional prompting strategies (Zero-Shot+) can improve based on pure zero-shot, with occasionally



Instructional Feedback Examples from the Critic LLM Agent for the CRADLE dataset (GPT-4)
Avoid bias towards predicting a positive CVD endpoint based on conservative thinking when the patient is actively monitored and managed for 
known risk factors. Evaluate the effectiveness of the interventions in place.

The presence of type 2 diabetes mellitus without complication does not necessarily lead to a cardiovascular disease (CVD) endpoint within a year 
of the initial diagnosis.

The presence of symptoms such as chest pain, dyspnea, and edema, especially when combined with diagnoses like hypertension and
hyperlipidemia, increases the likelihood of developing a cardiovascular disease (CVD) endpoint within a year of the initial diagnosis. 

Essential hypertension alone, without evidence of poor management or additional cardiovascular risk factors, does not necessarily lead to a 
cardiovascular disease (CVD) endpoint within a year of the initial diagnosis.

Instructional Feedback Examples from the Critic LLM Agent for the MIMIC dataset (GPT-4)
The diagnosis of conditions directly related to lipid metabolism, such as "Disorders of lipoid metabolism," in the patient's medical history, requires 
ongoing management and monitoring rather than assumptions of worsening or new diagnoses without recent lipid profile assessments.

Risk factors and underlying conditions: Consider the presence of risk factors and underlying conditions that are commonly associated with 
disorders of lipid metabolism disease, such as diabetes mellitus, obesity, hypertension, and cardiovascular diseases.

The performance of procedures related to cardiovascular health, such as hemodialysis or cardiac catheterization, without direct evidence of 
unmanaged lipid metabolism issues, should not be solely used to predict future disorders of lipid metabolism disease.

Pharmacological interventions consideration: Incorporate an evaluation of prescribed drugs, focusing on their relevance to managing the risk 
factors of the disorders of lipoid metabolism. 

Figure 2: Examples of instructional feedback generated by the GPT-4-based critic agent, which aims to refine the
predictor agent’s reasoning process and improve the accuracy of its prediction.

produced errors. This observation underscores the importance of carefully crafting prompts to optimize the perfor-
mance of LLMs in EHR-based disease prediction tasks.
⋄ Most of the time, adding few-shot demonstrations enhance prediction performance compared to their respective
Zero-Shot+ counterparts. This finding emphasizes providing even a limited number of labeled examples can poten-
tially steer language models toward more precise predictions. By leveraging a small set of representative samples,
LLMs can quickly adapt to the specific characteristics of the EHR-based disease prediction task.
⋄ Our proposed approach EHR-CoAgent demonstrates remarkable performance, surpassing other methods and even
fully supervised ML models in certain scenarios, with GPT-4 generally outperforming GPT-3.5. On the CRADLE
dataset, EHR-CoAgent achieves an F1 score of 60.21%, outperforming all fully trained ML models. Similarly, on
the MIMIC-III dataset, EHR-CoAgent obtains an F1 score of 73.88%, comparable to the fully trained Decision Tree
model and superior to Logistic Regression and Random Forest.
⋄ Compared with the few-shot setting with a single LLM predictor, EHR-CoAgent improves significantly on all four
metrics. This can be attributed to the feedback instructions provided by the critic agent, which analyzes the outputs and
identifies issues and biases in LLM’s reasoning process, such as overly relying on conservative thinking or neglecting
certain key factors. The feedback instructions generated by the critic agent help to correct these issues, dynamically
refining the predictor agent’s reasoning process, thus improving the accuracy of the prediction.

Generated Instructions
Figure 2 showcases examples of the criteria and instructions generated by the critic agent. These examples demonstrate
the critic agent’s ability to identify potential issues in the predictor agent’s prediction and reasoning process and
provide targeted instructions to address them. For instance, the first instruction for the CRADLE dataset, “Avoid bias
towards predicting a positive CVD endpoint based on conservative thinking when the patient is actively monitored
and managed for known risk factors. Evaluate the effectiveness of the interventions in place” highlights a possible
prediction bias of the predictor agent. This instruction encourages the predictor agent to avoid relying on conservative
assumptions when making predictions, as such assumptions may be a result of the over-alignment of advanced AI
models. By explicitly addressing this issue, the critic agent aims to guide the predictor agent toward more objective and
comprehensive reasoning. Another example for the MIMIC dataset, “Pharmacological Interventions Consideration:
Incorporate an evaluation of prescribed drugs, focusing on their relevance to managing the risk factors of the disorders
of lipoid metabolism” suggests that the predictor agent should take into account the role of prescribed medications in
managing the patient’s condition. By analyzing the relevance and potential impact of these drugs on the risk factors
associated with disorders of lipoid metabolism, the predictor agent can make more informed predictions. These
examples illustrate how the critic agent’s feedback can guide the predictor agent towards more comprehensive and



nuanced reasoning, ultimately leading to improved disease prediction performance.

Conclusions
In this study, we investigated the application of Large Language Models (LLMs) to Electronic Health Record (EHR)
based disease prediction tasks. We evaluated the zero-shot and few-shot diagnostic performance of LLMs using various
prompting strategies and proposed a novel collaborative approach combining a predictor agent and a critic agent. This
approach enables the system to learn from its mistakes and adapt to the challenges of EHR-based disease prediction.
Our work highlights the potential of LLMs as a tool for clinical decision support and contributes to the development
of efficient disease prediction systems that can operate with minimal training data.
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Prompt for the Predictor LLM Agent
content: 
You are a medical expert with a specialization in type 2 diabetes and cardiovascular disease. Your task is to predict whether a patient 
with type 2 diabetes will develop a cardiovascular disease (CVD) endpoint within a year of their initial diagnosis.

role: system

content: 
Task: Your task is to predict whether a patient with type 2 diabetes will develop a cardiovascular disease (CVD) endpoint within a 
year of their initial diagnosis based on the provided patient's medical history. You will be presented with a patient's medical history 
and various resources to aid in your prediction. Please provide your reasoning and make your prediction by learning from the 
resources. 

You are presented with the following: 
1. [CVD Endpoint Definition] The definition of the prediction target: cardiovascular disease (CVD) endpoint. 
2. [Past Medical History] Patient's past medical history, which captures specific diagnoses made, medications prescribed, and
procedures performed. 
3. [Instructions] Guidelines on how to analyze the patient's medical history, provide reasoning, and make predictions. This includes 
referring to the demonstration cases and exploring the interaction of various factors and the interplay between diseases, medications, 
and procedures that the patient has undergone. The reasoning process should support and aid in the final prediction for a CVD
endpoint.
4. [Demonstration Cases] Some real and typical cases, including the patient's medical history (diseases, medications, and procedures) 
and the ground truth result of whether the patients with type 2 diabetes experience cardiovascular disease (CVD) endpoint within a 
year after the initial diagnosis. 
5. [Output Format] The required format for your response. Please ensure that you strictly adhere to the format requirements. You
must provide a confirmed prediction by choosing between "Yes" or "No".

[CVD Endpoint Definition]
A CVD endpoint is identified by the presence of coronary heart disease (CHD), congestive heart failure (CHF), myocardial infarction 
(MI), or stroke.

[Past Medical History]
{info_generate(code_1_list)}

[Instructions]
Based on the patient's past medical history, provide reasoning on whether a patient with type 2 diabetes will develop a 
cardiovascular disease (CVD) endpoint within a year of their initial diagnosis. 
You should know that: globally, cardiovascular disease (CVD) affects about 32.2% of people with type 2 diabetes (T2D). CVD is the 
most common cause of morbidity and mortality in people with T2D. In this specific training set, 20% of the patients develop CVD 
within a year of their initial diagnosis.
Please: (1) use your knowledge; (2) learn from the provided demonstration cases; (3) perform a comprehensive analysis of the 
patient's medical history; (4) consider the interplay of diseases, medications, and procedures, make sure to: 
Identify and weigh both risk factors and protective factors evident in the patient's medical history;
Consider the presence of any comorbid conditions that may independently increase or decrease the risk of CVD;
Examine the patient's medication profile to discern any pharmacological interventions that may alter the course of disease 
progression;
Evaluate any medical or surgical procedures the patient has undergone that could impact their cardiovascular health;
(5) Utilize a multihop and step-by-step reasoning approach to systematically analyze the data.

[Demonstration Cases]
{few_shots_generate(few_shots_label_0, few_shots_label_1)}

[Output Format]
Your final response should include:
1. Prediction: Conclude your analysis with a clear and concise prediction. This prediction must be a single word, either "Yes" or "No", 
indicating whether you believe the patient is likely to develop a CVD endpoint within a year of their initial diabetes diagnosis. This 
prediction should be the first line of your response, to facilitate easy parsing.
2. Reasoning: Provide a detailed reasoning process.
Ensure that your analysis is thorough and based on the information provided, leading logically to your final prediction.

role: user

Figure 3: Prompt for Predictor Agent in EHR-CoAgent for the CRADLE dataset.



Prompt for the Critic LLM Agent
content: 
You are an assistant who is good at self-reflection, gaining experience, and summarizing criteria. By reflecting on failure predictions that 
are given below, your task is to reflect on these incorrect predictions, compare them against the ground truth, and formulate criteria and 
guidelines to enhance the accuracy of future predictions.

role: system

content: 
Task: You will be given a batch of input data samples, where each sample is composed of three parts: the patient's medical history, the 
ground-truth result for whether the patient will develop a cardiovascular disease (CVD) endpoint within a year of their initial diagnosis of 
type 2 diabetes, and a wrong prediction. 
Please always remember that the predictions above are all incorrect. You should always use the ground truth as the final basis to discover 
many unreasonable aspects in the predictions and then summarize them into instructions and criteria.

You are presented with the following: 
1. [Input Data] A batch of input data samples. Each data in the batch includes three parts: 
(a) the patient's medical history, including diseases that the patient has been diagnosed with, medications that the patient has taken, and 
procedures the patient has undergone;
(b) the ground-truth result for each patient's medical history on whether the patient will develop a cardiovascular disease (CVD) endpoint 
within a year of their initial diagnosis of type 2 diabetes;
(c) a wrong prediction. 
2. [Instructions] Instructions on suggesting criteria.

[Input Data]
{batch_generate(input_data_batch)}

[Instructions]
1. Please always remember that the predictions above are all incorrect. You should always use the ground truth as the final basis to 
discover many unreasonable aspects in the predictions and then summarize them into experience and criteria. 
2. Identify why the wrong predictions deviated from the ground truth by examining discrepancies in the medical history analysis.
3. Determine key and potential influencing factors, reasoning methods, and relevant feature combinations that could better align
predictions with the ground truth.
4. The instructions should be listed in distinct rows, each representing a criteria or guideline.
5. The instructions should be generalizable to multiple samples, rather than specific to individual samples. 
6. Conduct detailed analysis and write criteria based on the input samples, rather than writing some criteria without foundation.
7. Please note that the criteria you wrote should not include the word "ground truth".

role: user

Figure 4: Prompt for Critic Agent in EHR-CoAgent for the CRADLE dataset.


