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ABSTRACT

Large language models (LLMs) have demonstrated exceptional capabilities in
planning and tool utilization as autonomous agents, but few have been developed
for medical problem-solving. We propose EHRAgent, an LLM agent empowered
with a code interface, to autonomously generate and execute code for complex
clinical tasks within electronic health records (EHRs). First, we formulate an EHR
question-answering task into a tool-use planning process, efficiently decomposing a
complicated task into a sequence of manageable actions. By integrating interactive
coding and execution feedback, EHRAgent learns from error messages and im-
proves the originally generated code through iterations. Furthermore, we enhance
the LLM agent by incorporating long-term memory, which allows EHRAgent
to effectively select and build upon the most relevant successful cases from past
experiences. Experiments on three real-world multi-tabular EHR datasets show that
EHRAgent outperforms the strongest baseline by up to 29.60%. EHRAgent lever-
ages the emerging few-shot learning capabilities of LLMs, enabling autonomous
code generation and execution to tackle complex clinical tasks.

1 INTRODUCTION
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Figure 1: Simple and efficient interactions between
clinicians and EHR systems with the assistance of
LLM agents. Clinicians specify tasks in natural lan-
guage, and the LLM agent autonomously generates
and executes code to interact with EHRs (right) for
answers. It eliminates the need for specialized ex-
pertise or extra effort from data engineers, which
is typically required when dealing with EHRs in
clinical settings (left).

An electronic health record (EHR) is a digital
version of a patient’s medical history maintained
by healthcare providers over time (Gunter &
Terry, 2005). In clinical research and practice,
clinicians actively interact with EHR systems to
access and retrieve patient data, ranging from de-
tailed individual-level records to comprehensive
population-level insights (Cowie et al., 2017).

Since most EHRs use pre-defined rule-based
conversation systems (e.g., Epic), clinicians
may take additional training or seek help from
data engineers to obtain information beyond
rules (Mandel et al., 2016). Alternatively,
an autonomous agent could facilitate clini-
cians to communicate with EHRs in natural
languages, translating clinical questions into
machine-interpretable queries (Lee et al., 2022),
planning a sequence of actions, and ultimately
delivering the final responses, which holds great
potential to simplify workflows and reduce workloads for clinicians (Figure 1).

∗Equal contribution.
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Large language models (LLMs) (OpenAI, 2023; Anil et al., 2023) bring us one step closer to
autonomous agents, with extensive knowledge and substantial instruction-following abilities from
diverse corpora during pretraining. LLM-based autonomous agents have demonstrated remarkable
capabilities in problem-solving, such as reasoning (Wei et al., 2022; Wang et al., 2023e; Zhou
et al., 2023), planning (Yao et al., 2023b; Liu et al., 2023; Sun et al., 2023; Hao et al., 2023),
and memorizing (Wang et al., 2023b). One particularly notable capability of LLM agents is tool-
usage (Schick et al., 2023; Qin et al., 2023a), where they can utilize external tools (e.g., calculators,
APIs, etc.), interact with environments, and generate action plans with intermediate reasoning steps
that can be executed sequentially towards a valid solution (Wu et al., 2023; Zhang et al., 2023).

Despite their success in general-domain tasks, LLMs have encountered unique but significant chal-
lenges when it comes to real-world clinical research and practice (Jiang et al., 2023; Yang et al.,
2022; Moor et al., 2023), especially for EHRs that have complex structures and require additional
information and expertise beyond their pre-trained data. First, given the constraints in both the
volume and specificity of training data within the medical field, LLMs still struggle with medical
reasoning due to insufficient knowledge and understanding of EHRs (Thapa & Adhikari, 2023).
Second, EHRs are typically relational databases containing vast amounts of tables (e.g., 26 tables in
MIMIC-III (Johnson et al., 2016)) with heterogeneous patient data, including both administrative and
clinical information. Moreover, unlike standardized questions (e.g., multi-choice) found in medical
licensing exams (Jin et al., 2021), real-world clinical tasks are highly diverse and complex (Lee et al.,
2022). These questions often arise from the unique circumstances of individual patients or specific
groups, necessitating multi-step or complicated operations.

To address these limitations, we propose EHRAgent, an autonomous LLM agent with external
tools and code interface for improved multi-tabular reasoning across EHRs. We transform the EHR
question-answering problem into a tool-use planning process - generating, executing, debugging,
and optimizing a sequence of code-based actions. To overcome the lack of domain knowledge,
we integrate additional information (e.g., detailed descriptions of each table in EHRs) and clinical
knowledge by instructing the LLM agent to retrieve the most relevant knowledge. We then establish
an interactive coding mechanism, which involves a multi-turn dialogue between the code planner and
executor, iteratively refining the generated code-based plan. Specifically, EHRAgent optimizes the
execution plan by incorporating environment feedback and delving further into error information to
enhance debugging proficiency. In addition, we take advantage of long-term memory to continuously
maintain a set of successful cases and dynamically select the most relevant few-shot examples, in
order to effectively learn from and improve upon past experiences.

We conducted extensive experiments on three widely used real-world EHR datasets, MIMIC-III (John-
son et al., 2016), eICU (Pollard et al., 2018), and TREQS (Wang et al., 2020), to validate the empirical
effectiveness of EHRAgent, with a particular focus on challenging tasks that align with real-world
application scenarios. In contrast to traditional supervised learning methods that require extensive
training samples with fine-grained annotations (e.g., text-to-SQL (Lee et al., 2022)), EHRAgent
demonstrates its efficiency by necessitating only four demonstrations. Our findings suggest that
EHRAgent enables multi-tabular reasoning on EHRs by autonomous code generation and execution
with environmental feedback. To the best of our knowledge, EHRAgent represents one of the first
LLM agents for complex medical reasoning on EHRs with external tools and code interface.

Our main contributions are as follows:

• We propose EHRAgent, an LLM agent augmented with tools and medical knowledge, to solve
multi-tabular reasoning derived from EHRs;

• Planning with a code interface, EHRAgent enables the LLM agent to formulate a clinical problem-
solving process as an executable code plan of action sequences, along with a code executor;

• We introduce interactive coding between the LLM agent and code executor, iteratively refining plan
generation and optimizing code execution by examining environment feedback in depth.

2 PRELIMINARIES

Problem Formulation. In this work, we focus on addressing health-related queries by leveraging
information from structured EHRs. The reference EHR, denoted as R = {R0, R1, · · · }, comprises
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Question: What is the maximum total hospital 
cost that involves a diagnosis named comp-
oth vasc dev/graft since 1 year ago?Clinician
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+
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select max(t1.c1) from ( 
select sum(cost.cost) as 
c1 from cost where 
cost.hadm_id in …

EHRAgent (Ours)

LLM Agent

Assume you have knowledge of following 
medical records: [record_description]. 
Write a Python code to solve the given 
question. You can use the following 
functions: [api_name, api_description]. 
Here are some examples: [examples]. The 
related knowledge to the question is 
given: [knowledge]. Question: [question]. 
Solution: 

Medical 
Records

(1) Charted events are stored in a series of 
‘events’ tables…

(2) Tables prefixed with ‘d_’ are dictionary…
(3) Four databases are used to define and 

track patient stays…

Tool Set

def LoadDB(DBName): 
# Load the database DBName …

def FilterDB(CONDITIONS): 
# Filter the data with CONDITIONS …

def GetValue(ARGUMENT): 
# Get the values of the selected columns …

- As comp-oth vasc dev/graft is a diagnose, 
the corresponding ICD9_CODE can be found in 
the d_icd_diagnoses database.
- The ICD9_CODE can be used to find the 
corresponding HADM_ID in the diagnoses_icd
database.
- The HADM_ID can be used to find the 
corresponding COST in the cost database.

Medical 
Knowledge

...
icd_code = GetValue("ICD9_CODE")
diagnoses_icd_db = LoadDB("diagnoses_icd")
filtered_icd_db = FilterDB("ICD9_CODE={icd_code}")
hadm_id_list = GetValue("HADM_ID")
max_cost = 0
for hadm_id in hadm_id_list:

cost_db = LoadDB("cost")
filtered_cost_db = FilterDB("HADM_ID={hadm_id}")
cost = GetValue("COST", sum)
if cost > max_cost:

max_cost = cost
answer = max_cost LLM Agent

date = Calendar("-1 year")
diagnosis_db = LoadDB("d_icd_diagnoses")
filtered_diagnosis_db = FilterDB("SHORT_TITLE=comp
-oth vasc dev/graft")
icd_code = GetValue("ICD9_CODE") 
max_cost = 0
for hadm_id in hadm_id_list:

cost_db = LoadDB("cost")
filtered_cost_db = FilterDB(”ICD9_CODE={icd_code}")
...

LLM Agent

Runtime Error: There is not column named 
"ICD9_CODE" in the "cost" database. Please 
debug the planning program accordingly.

Executor

Figure 2: Overview of our proposed LLM agent, EHRAgent, for complex tabular reasoning tasks on
EHRs. Given an input clinical question based on EHRs, EHRAgent initially incorporates relevant
medical knowledge. Subsequently, EHRAgent decomposes the task and generates a plan (i.e., code)
based on EHR descriptions, tool function definitions, few-shot examples, and integrated medical
knowledge. Upon execution, EHRAgent iteratively debugs the code following the environmental
feedback and ultimately generates the final solution.

multiple tables, while C = {C0, C1, · · · } corresponds to the column descriptions within R. For each
given query in natural language, denoted as q, our goal is to extract the final answer by utilizing the
information within both R and C.

LLM Agent Setup. We further formulate the planning process for LLMs as autonomous agents
in EHR question answering. For initialization, the LLM agent is equipped with a set of pre-built
tools M = {M0,M1, · · · } to interact with and address queries derived from EHRs R. Given an
input query q ∈ Q from the task space Q, the objective of the LLM agent is to design a T -step
execution plan P = (a1, a2, · · · , aT ), with each action at selected from the tool set at ∈ M.
Specifically, we generate the action sequences (i.e., plan) by prompting the LLM agent following
a policy pq ∼ π(a1, · · · , aTq |q;R,M) : Q × R × M → ∆(M)Tq , where ∆(·) is a probability
simplex function. The final output is obtained by executing the entire plan y ∼ ρ(y|q, a1, · · · , aTq ),
where ρ is a plan executor interacting with EHRs.

Planning with Code Interface. To mitigate ambiguities and misinterpretations in plan generation,
an increasing number of LLM agents (Gao et al., 2023; Sun et al., 2023; Chen et al., 2023a) employ
code prompts as planner interface instead of natural language prompts. The code interface enables
LLM agents to formulate an executable code plan as action sequences, intuitively transforming
natural language question-answering into iterative coding (Yang et al., 2023). Consequently, the
planning policy π(·) turns into a code generation process, with a code execution as the executor
ρ(·). We then track the outcome of each interaction back to the LLM agent, which can be either a
successful execution result or an error message, to iteratively refine the generated code-based plan.
This interactive process, a multi-turn dialogue between the planner and executor, takes advantage of
the advanced reasoning capabilities of LLMs to optimize plan refinement and execution.

3 EHRAGENT : LLMS AS MEDICAL AGENTS

In this section, we present EHRAgent (Figure 2), an LLM agent that enables multi-turn interactive
coding to address multi-hop reasoning tasks on EHRs. EHRAgent comprises four key compo-
nents: (1) Medical Knowledge Integration: EHRAgent summarizes the most important relevant
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information to facilitate a comprehensive understanding of EHRs. (2) Interactive Coding with
Execution Feedback: EHRAgent harnesses LLMs as assistant agents in a multi-turn conversation
with a code executor. (3) Debugging via Error Tracing: Rather than simply sending back infor-
mation from the code executor, EHRAgent thoroughly analyzes error messages to identify the root
causes through iterations until a final solution. (4) Plan Refinement with Long-Term Memory:
Using long-term memory, EHRAgent selects the most relevant successful cases as demonstrations
from past experiences for effective plan refinement. We summarize the workflow of EHRAgent in
Algorithm 1.

3.1 MEDICAL KNOWLEDGE INTEGRATION

Algorithm 1: The procedure of EHRAgent.
Input: q: input question;R: reference EHRs; Ci:

column description of EHR Ri; D:
descriptions of EHRsR; T : the maximum
number of steps; T : definitions of tool
function.

Initialize t← 0, C(0)(q)← ∅, O(0)(q)← ∅
// Medical Knowledge Integration
I = [D; C0; C1; · · · ]
B(q) = LLM([I; q])
// Examples Retrieval from Long-Term Memory
E(q) = argTopKmax(sim(q, qi|qi ∈ L))
// Plan Generation
C(0)(q) = LLM([I; T ; E(q); q;B(q)])

while t < T & TERMINATE /∈ O(t)(q) do
// Code Execution
O(t)(q) = EXECUTE(C(t)(q))
// Debugging and Plan Modification
C(t+1)(q) = LLM(DEBUG(O(t)(q)))
t← t+ 1

Output: Final answer (solved) or error message
(unsolved) from O(t)(q).

We first incorporate medical knowledge into
EHRAgent for a comprehensive understanding
of EHRs within a limited context length. Given
an EHR-based clinical question q and the ref-
erence EHRs R = {R0, R1, · · · }, the objective
of knowledge integration is to generate descrip-
tions of knowledge most relevant to q, thereby
facilitating the identification and location of po-
tential useful references within R. For example,
given a query related to ‘Aspirin’, we expect
LLMs to locate the drug ‘Aspirin’ at the PRE-
SCRIPTION table, under the prescription name
column in the EHR.

To achieve this, we initially maintain a thorough
introduction I of all the reference EHRs, in-
cluding overall data descriptions D and the de-
tailed columnar descriptions Ci for each individ-
ual EHR Ri, expressed as I = [D; C0; C1; · · · ].
To further extract additional background knowl-
edge essential for addressing the complex query
q, we then distill key information from the de-
tailed introduction I. Specifically, we directly
prompt LLMs to generate the relevant knowl-
edge B(q) based on demonstrations, denoted as
B(q) = LLM([I; q]).

3.2 INTERACTIVE CODING WITH EXECUTION

We then introduce interactive coding between the LLM agent (i.e., code generator) and code executor
to facilitate iterative plan refinement. EHRAgent integrates LLMs as an assistant agent with a code
executor within a multi-turn conversation. The code executor retrieves and executes the generated
code and then provides the execution results back to the LLM. Within the conversation, EHRAgent
navigates the subsequent phase of the dialogue, where the LLM agent is expected to either (1)
continue to iteratively adjust its original code in response to any errors encountered or (2) finally
deliver a conclusive answer based on the successful execution outcomes.

LLM Agent. To generate accurate code snippets C(q) as solution plans for the query q, we prompt
the LLM agent with a combination of the EHR introduction I, tool function definitions T , a set of
K-shot examples E1, · · · , EK , the input query q, and the integrated medical knowledge relevant to
the query B(q):

C(q) = LLM([I; T ;E1, · · · , EK ; q;B(q)]). (1)

Leveraging the AutoGen infrastructure (Wu et al., 2023) of automated multi-agent conversation, we
develop the LLM agent to (1) generate code within a designated coding block as required, (2) modify
the code according to the outcomes of its execution, and (3) insert a specific code “TERMINATE” at
the end of its response to indicate the conclusion of the conversation.
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Code Executor. The code executor automatically extracts the code from the LLM agent’s output and
executes it within the local environment: O(q) = EXECUTE(C(q)). After execution, it sends back
the execution results to the LLM agent for potential plan refinement and further processing.

3.3 ERROR TRACING VIA RUBBER DUCK DEBUGGING

Our empirical observations indicate that LLM agents tend to make slight modifications to the code
snippets based on the error message without further debugging. In contrast, human programmers often
delve deeper, identifying bugs or underlying causes by analyzing the code implementation against
the error descriptions (Chen et al., 2023b). Inspired by this, we apply a ‘rubber duck debugging’
pipeline for plan refinement with the LLM agent. Specifically, we provide detailed trace feedback,
including error type, message, and location, all parsed from the error information by the code executor.
Subsequently, this error context is presented to a ‘rubber duck’ LLM, prompting it to generate the
most probable causes of the error. The generated explanations are then fed back into the conversation
flow, aiding in the debugging process. For the t-th interaction between the LLM agent and the code
executor, the process is as follows:

O(t)(q) = EXECUTE(C(t)(q)),

C(t+1)(q) = LLM(DEBUG(O(t)(q))).
(2)

The interaction ends either when a ‘TERMINATE’ signal appears in the generated messages or when
t reaches a pre-defined threshold T .

3.4 PLAN REFINEMENT WITH LONG-TERM MEMORY

Due to the vast volume of information within EHRs and the complexity of the clinical questions,
there exists a conflict between limited input context length and the number of few-shot examples.
Specifically, K-shot examples may not adequately cover the entire question types as well as the
EHR information. To address this, we maintain a long-term memory L for storing past successful
code snippets and reorganizing few-shot examples by retrieving the most relevant samples from L.
Consequently, the LLM agent can learn from and apply patterns observed in past successes to current
queries. The selection of K-shot demonstrations E(q) is defined as follows:

E(q) = argTopKmax(sim(q, qi|qi ∈ L)), (3)

where arg TopKmax(·) identifies the indices of the top K elements with the highest values from
L, and sim(·, ·) calculates the similarity between two questions, employing negative Levenshtein
distance as the similarity metric. Subsequent to this retrieval process, the newly acquired K-shot
examples E(q) replace the originally predefined examples E1, · · · , EK in Eq. (1). This updated set
of examples serves to reformulate the prompt, guiding the LLM agent in plan refinement:

C(q) = LLM([I; T ; E(q); q;B(q)]). (4)

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Tasks and Datasets. We evaluate EHRAgent on three publicly available struc-
tured EHR datasets, MIMIC-III (Johnson et al., 2016), eICU (Pollard et al., 2018),
and TREQS (Wang et al., 2020) for multi-hop question and answering on EHRs.

Table 1: Dataset statistics.
Dataset # Examples # Table # Row/Table # Table/Q

MIMIC-III 580 17 81k 2.52
eICU 580 10 152k 1.74

TREQS 996 5 498k 1.48
Average 718.7 10.7 243.7k 1.91

These questions originate from real-
world clinical needs and cover a wide
range of tabular queries commonly
posed within EHRs. During the data
pre-processing stage, we create EHR
question-answering pairs by considering
text queries as questions and executing
SQL commands in the database to au-
tomatically generate the corresponding
ground-truth answers. Throughout this
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Table 2: Main results of success rate (i.e., SR.) and completion rate (i.e., CR.) on MIMIC-III and
eICU datasets. The complexity of questions increases from Level I (the simplest) to Level IV (the
most difficult).
Dataset (→) MIMIC-III eICU TREQS

Complexity Level (→) I II III IV All I II III All I II III All

Methods (↓) /Metrics (→) SR. SR. CR. SR. SR. CR. SR. SR. CR.

w/o Code Interface

CoT (Wei et al., 2022) 29.33 12.88 3.08 2.11 9.58 38.23 26.73 33.00 8.33 27.34 65.65 11.22 9.15 0.00 9.84 54.02
Self-Consistency (Wang et al., 2023e) 33.33 16.56 4.62 1.05 10.17 40.34 27.11 34.67 6.25 31.72 70.69 12.60 11.16 0.00 11.45 57.83
Chameleon (Lu et al., 2023) 38.67 14.11 4.62 4.21 12.77 42.76 31.09 34.68 16.67 35.06 83.41 13.58 12.72 4.55 12.25 60.34
ReAct (Yao et al., 2023b) 34.67 12.27 3.85 2.11 10.38 25.92 27.82 34.24 15.38 33.33 73.68 33.86 26.12 9.09 29.22 78.31
Reflexion (Shinn et al., 2023) 41.05 19.31 12.57 11.96 19.48 57.07 38.08 33.33 15.38 36.72 80.00 35.04 29.91 9.09 31.53 80.02

w/ Code Interface

LLM2SQL (Nan et al., 2023) 23.68 10.64 6.98 4.83 13.10 44.83 20.48 25.13 12.50 23.28 51.72 39.61 36.43 12.73 37.89 79.22
Self-Debugging (Chen et al., 2023b) 50.00 46.93 30.12 27.61 39.05 71.24 32.53 21.86 25.00 30.52 66.90 43.54 36.65 18.18 40.10 84.44
AutoGen (Wu et al., 2023) 36.00 28.13 15.33 11.11 22.49 61.47 42.77 40.70 18.75 40.69 86.21 46.65 19.42 0.00 33.13 85.38
EHRAgent (Ours) 71.58 66.34 49.70 49.14 58.97 85.86 54.82 53.52 25.00 53.10 91.72 78.94 61.16 27.27 69.70 88.02

process, we filter out samples containing unexecutable SQL commands or yielding empty results. In
total, the final dataset involves 10.7 tables and 718.7 examples per dataset, with an average of 1.91
tables required to answer each question. Dataset statistics are available in Table 1. More details can
be found in Appendix B.

Tool Sets. To enable LLMs in complex operations such as calculations and information retrieval, we
integrate external tools in EHRAgent during the interaction with EHRs. Our toolkit can be easily
expanded with natural language tool function definitions in a plug-and-play manner. Toolset details
are available in Appendix C.

Baselines. We compare EHRAgent with the following LLMs-based planning, tool use, and coding
baselines. We summarize and compare their key designs with EHRAgent in Table 4 in Appendix D.

⋄ CoT (Wei et al., 2022): It enhances the complex reasoning capabilities of original LLMs by
generating a series of intermediate reasoning steps.

⋄ Self-Consistency (Wang et al., 2023e): It improves CoT by sampling diverse reasoning paths to
replace the native greedy decoding and select the most consistent answer.

⋄ Chameleon (Lu et al., 2023): It employs LLMs as controllers and integrates a set of plug-and-play
modules, enabling enhanced reasoning and problem-solving across diverse tasks.

⋄ ReAct (Yao et al., 2023b): It integrates reasoning with tool-use by guiding LLMs to generate
intermediate verbal reasoning traces and tool commands.

⋄ Reflexion (Shinn et al., 2023): It leverages verbal reinforcement to teach LLM-based agents to
learn from linguistic feedback from past mistakes.

⋄ LLM2SQL (Nan et al., 2023): It augments LLMs with a code interface to generate SQL queries
for retrieving information from EHRs for question answering.

⋄ Self-Debugging (Chen et al., 2023b): It teaches LLMs to debug by investigating execution results
and explaining the generated code in natural language.

⋄ AutoGen (Wu et al., 2023): It unifies LLM-based agent workflows as multi-agent conversations
and uses the code interface to encode interactions between agents and environments.

Evaluation Protocol. Our primary evaluation metric is the success rate, quantifying the percentage
of queries that the model successfully handles. Furthermore, we assess the completion rate, which
represents the percentage of queries that the model is able to generate executable plans (even not
yield correct results). We categorize input queries into various complexity levels (I-IV) based on the
number of tables involved in solution generation (see details in Appendix B.2).

Implementation Details. We employ GPT-4 (OpenAI, 2023) as the base LLM model for all ex-
periments. We set the temperature parameter (t) to 0 when making API calls to GPT-4 to eliminate
randomness and set the pre-defined threshold (T ) to 10. Due to the maximum length limitations of in-
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put context in baselines (e.g., ReAct and Chameleon), we use the same initial four-shot demonstrations
(K = 4) for all baselines and EHRAgent to ensure a fair comparison. Additional implementation
details with prompt templates are available in Appendix E.

4.2 MAIN RESULTS

Table 2 summarizes the experimental results of EHRAgent and baselines on multi-tabular reasoning
within EHRs. From the results, we have the following observations:

⋄ EHRAgent significantly outperforms all the baselines on all three datasets with a performance gain
of 19.92%, 12.41%, and 29.60%, respectively. This indicates the efficacy of our key designs, namely
interactive coding with environment feedback and domain knowledge injection, as they gradually
refine the generated code and provide sufficient background knowledge during the planning process.
Experimental results with additional base LLMs are available in Appendix F.1.

⋄ CoT, Self-Consistency, and Chameleon all neglect environmental feedback and cannot adaptively re-
fine their planning processes. Such deficiencies hinder their performance in EHR question-answering
scenarios, as the success rate for these methods on three datasets is all below 40%.

⋄ ReAct and Reflexion both consider environment feedback but are restricted to tool-generated error
messages. Consequently, it potentially overlooks the overall planning process. Moreover, it lacks
a code interface, which prevents it from efficient action planning, and results in lengthy context
execution and lower completion rates.

⋄ LLM2SQL leverages LLM to directly generate SQL queries for EHR question-answering tasks.
However, the gain is rather limited, as the LLM still struggles to generate high-quality SQL codes for
execution. Besides, the absence of a dedicated code debugging module further impedes its overall
performance for this challenging task.

⋄ Self-Debugging and AutoGen present a notable performance gain over other baselines, as they
leverage code interfaces and consider the errors from the coding environment, leading to a large
improvement in the completion rate. However, as they fail to model medical knowledge or identify
inherent error patterns in the current code, the performance is still sub-optimal.

4.3 QUANTITATIVE ANALYSIS

Ablation Studies. Our ablation studies on MIMIC-III (Table 3) demonstrate the effectiveness
of all four components in EHRAgent. Interactive coding is the most significant contributor

Table 3: Ablation studies on success rate (i.e., SR.) and com-
pletion rate (i.e., CR.) under different question complexity
(I-IV) on MIMIC-III dataset.

Complexity level I II III IV All

Metrics SR. SR. CR.

EHRAgent 71.58 66.34 49.70 49.14 58.97 85.86
w/o medical knowledge 68.42 33.33 29.63 20.00 33.66 69.22
w/o interactive coding 45.33 23.90 20.97 13.33 24.55 62.14
w/o debugging 55.00 38.46 41.67 35.71 42.86 77.19
w/o long-term memory 65.96 54.46 37.13 42.74 51.73 83.42

across all complexity levels, which
highlights the importance of code
generation in planning and environ-
mental interaction for refinement. In
addition, more challenging tasks ben-
efits more from knowledge integra-
tion, indicating that comprehensive
understanding of EHRs facilitates the
complex multi-tabular reasoning in
effective schema linking and refer-
ence (e.g., tables, columns, and con-
dition values) identification. Detailed
analysis with additional results on
eICU is available in Appendix F.2.

Effect of Question Complexity. We take a closer look at the model performance by considering multi-
dimensional measurements of question complexity, exhibited in Figure 3. Although the performances
of both EHRAgent and the baselines generally decrease with an increase in task complexity (either
quantified as more elements in queries or more columns in solutions), EHRAgent consistently
outperforms all the baselines at various levels of difficulty. Appendix G.1 includes additional analysis
on the effect of various question complexities.
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Figure 3: Success rate and completion rate under different question complexity, measured by the
number of elements (i.e., slots) in each question and the number of columns involved in each solution.
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Figure 4: Success rate and completion rate under
different numbers of demonstrations.

Sample Efficiency. Figure 4 illustrates the
model performance w.r.t. number of demonstra-
tions for EHRAgent and the two strongest base-
lines, AutoGen and Self-Debugging. Compared
to supervised learning (e.g., text-to-SQL (Wang
et al., 2020; Raghavan et al., 2021; Lee et al.,
2022)) that requires extensive training on over
10K samples with detailed annotations (e.g.,
SQL code), LLM agents enable complex tab-
ular reasoning using a few demonstrations only.
One interesting finding is that as the number of
examples increases, both the success and com-
pletion rate of AutoGen tend to decrease, mainly
due to the context limitation of LLMs. On the contrary, the performance of EHRAgent remains
stable with more demonstrations, which may benefit from its integration of a ‘rubber duck’ debugging
module and the adaptive mechanism for selecting the most relevant demonstrations.

4.4 ERROR ANALYSIS

13.59%  Date/Time
14.56%  Context Length 
20.39%  Incorrect Logic 
16.02%  Incorrect SQL Command
8.74%  Fail to Follow Instructions 
26.70%  Fail to Debug 

Figure 5: Percentage of mistake examples in dif-
ferent categories on MIMIC-III dataset.

Figure 5 presents a summary of error types
identified in the solution generation process of
EHRAgent based on the MIMIC-III dataset, as
determined through manual examinations and
analysis. The majority of errors occur because
the LLM agent consistently fails to identify the
root cause of these errors within T -step trails,
resulting in plans that are either incomplete or
inexcusable. Additional analysis of each error
type is available in Appendix G.2.

4.5 CASE STUDY

Figure 6 showcases a comparative case study of the interactive coding process between AutoGen and
EHRAgent for the same given query. When executed with error feedback, AutoGen directly sends
back the original error messages, making slight modifications (e.g., changing the surface string of the
arguments) without reasoning the root cause of the error. In contrast, EHRAgent can identify the
underlying causes of the errors through interactive coding and debugging processes. It successfully
discovers the underlying error causes (taking into account case sensitivity), facilitating accurate
code refinement. Extensive case studies showcasing the effectiveness of different components in
EHRAgent are available in Appendix H.

5 RELATED WORK

Augmenting LLMs with External Tools. LLMs have rapidly evolved from text generators into
core computational engines of autonomous agents, with advanced planning and tool-use capabili-
ties (Schick et al., 2023; Shen et al., 2023; Wang et al., 2023d; Yuan et al., 2024a;b). LLM agents
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Question: Was the rdw value of patient 273 second measured greater than that first measured on the last hospital visit?
AutoGen

Error: The filtering query LABEL=RDW is incorrect.

...
# As RDW is a laboratory test, we can find the corresponding 
ITEMID in the d_labitems database.
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=RDW')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

... 
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=Red cell 
distribution width (RDW)')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

Error: The filtering query LABEL=Red cell distribution 
width (RDW) is incorrect.

... 
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=RDW')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

EHRAgent
...
# As RDW is a laboratory test, we can find the corresponding 
ITEMID in the d_labitems database.
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=RDW')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

Error: The filtering query LABEL=RDW is incorrect.

There is no RDW value in the column. Five example values in 
the column are rbc, cd7, i, cd8, rdw. 
Potential Reasons: The most possible reason for the error is 
that the filter condition for the 'LABEL' column in the 
'd_labitems' database is case-sensitive. The error message 
indicates that there is a 'rdw' value in the column, but not 
'RDW'. Therefore, the filter condition 'LABEL="RDW"' does not 
match any records. The filter condition should be changed to 
'LABEL="rdw"'.

... 
d_labitems_db = LoadDB('d_labitems')
filtered_d_labitems_db = FilterDB(d_labitems_db, 'LABEL=rdw')
item_id = GetValue(filtered_d_labitems_db, 'ITEMID')
...

Figure 6: A case study of the interactive coding process between AutoGen (left) and EHRAgent
(right), where EHRAgent delves deeper into environmental feedback to achieve plan refinement.

equip LLMs with planning capabilities (Wei et al., 2022; Yao et al., 2023a) to decompose a large and
hard task into multiple smaller and simpler steps for efficiently navigating complex real-world scenar-
ios. By integrating with external tools, LLM agents access external APIs for additional knowledge
beyond training data (Shen et al., 2023; Huang et al., 2022; Sun et al., 2023; Lu et al., 2023; Patil
et al., 2023; Qin et al., 2023b; Li et al., 2023), such as real-time information (Nakano et al., 2022;
Parisi et al., 2022), computational capability (Schick et al., 2023), and coding proficiency (Wu et al.,
2023; Zhang et al., 2023; Gao et al., 2023; Chen et al., 2023a; Nan et al., 2023). The disconnection
between plan generation and execution, however, prevents LLM agents from effectively and efficiently
preventing error propagation and learning from environmental feedback (Yao et al., 2023b; Shinn
et al., 2023; Yang et al., 2023). To this end, we leverage interactive coding to learn from dynamic
interactions between the planner and executor, iteratively refining generated code by incorporating
insights from error messages. Furthermore, EHRAgent extends beyond the limitation of short-term
memory obtained from in-context learning, leveraging long-term memory (Wang et al., 2023b; Chen
et al., 2023a) by rapid retrieval of highly relevant and successful experiences accumulated over time.

LLM Agents for Scientific Discovery. Augmenting LLMs with domain-specific tools, LLM agents
have demonstrated capabilities of autonomous design, planning, and execution in accelerating
scientific discovery (Wang et al., 2023a;c; Xi et al., 2023; Zhao et al., 2023), including organic
synthesis (Bran et al., 2023), material design (Boiko et al., 2023), and gene prioritization (Jin et al.,
2023). In the medical field, MedAgents (Tang et al., 2023), the first multi-agent collaboration
framework in medical domain, leverages role-playing LLM-based agents in a task-oriented multi-
round discussion for multi-choice questions in medical entrance examinations. Similarly, Abbasian
et al. (2023) develop a conversational agent to enhance LLMs using Langchain tools for general
medical question and answering tasks. Different from existing LLM agents in medical and scientific
domains, EHRAgent integrates LLMs with interactive code interface, targeting complex tabular
tasks derived from real-world EHRs through autonomous code generation and execution.

6 CONCLUSION

In this study, we developed EHRAgent, an LLM agent equipped with an interactive code interface
for multi-tabular reasoning on real-world EHRs. By leveraging the emergent few-shot learning
capabilities of LLMs, EHRAgent enables autonomous code generation and execution to address
complicated clinical tasks, including database operations on EHRs with minimal demonstrations.
Furthermore, we improve EHRAgent by interactive coding with execution feedback, along with
a long-term memory mechanism, thereby effectively facilitating plan optimization for multi-step
problem-solving. Our experiments on real-world EHR datasets demonstrate the advantages of
EHRAgent over baseline LLM agents in autonomous coding and improved medical reasoning.
EHRAgent holds considerable potential for positive social impact in a wide range of clinical tasks
and applications, including but not limited to patient cohort definition, clinical trial recruitment, case
review selection, and treatment decision-making support.
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A LIMITATION

One potential limitation is that while the framework of our proposed EHRAgent is broadly applica-
ble to various scenarios, it currently relies on code generation for tool usage and problem-solving.
Furthermore, the adaptation and generalization of EHRAgent in low-resource languages is con-
strained by the availability of relevant resources and training data. Additionally, given the demands
for privacy, safety, and ethical considerations in real-world clinical settings, our goal is to further
advance EHRAgent by mitigating biases and addressing ethical implications, thereby contributing
to the development of responsible artificial intelligence for healthcare and medicine.

B DATASET DETAILS

B.1 TASK DETAILS

We evaluate EHRAgent on two text-to-SQL medical question answering (QA) benchmarks (Lee
et al., 2022), EHRSQL1 and TREQS2, built upon structured EHRs from MIMIC-III and eICU.

1https://github.com/glee4810/EHRSQL
2https://github.com/wangpinggl/TREQS
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EHRSQL serves as a text-to-SQL benchmark for assessing the performance of medical QA models,
specifically focusing on generating SQL queries for addressing a wide range of real-world questions
gathered from over 200 hospital staff. Questions within EHRSQL, ranging from simple data retrieval
to complex operations such as calculations, reflect the diverse and complex clinical tasks encountered
by front-line healthcare professionals.

B.2 QUESTION COMPLEXITY LEVEL

We categorize input queries into various complexity levels (levels I-IV for MIMIC-III and levels I-III
for eICU and TREQS) based on the number of tables involved in solution generation. For example,
given the question ‘How many patients were given temporary tracheostomy?’, the complexity level
is categorized as II, indicating that we need to extract information from two tables (admission and
procedure) to generate the solution. Furthermore, we also conduct a performance analysis (see
Figure 3) based on additional evaluation metrics related to question complexity, including (1) the
number of elements (i.e., slots) in each question and (2) the number of columns involved in each
solution. Specifically, elements refer to the slots within each template that can be populated with
pre-defined values or database records.

B.3 MIMIC-III

MIMIC-III (Johnson et al., 2016)3 covers 38,597 patients and 49,785 hospital admissions information
in critical care units at the Beth Israel Deaconess Medical Center ranging from 2001 to 2012. It
includes deidentified administrative information such as demographics and highly granular clinical
information, including vital signs, laboratory results, procedures, medications, caregiver notes,
imaging reports, and mortality.

B.4 EICU

Similar to MIMIC-III, eICU (Pollard et al., 2018)4 includes over 200,000 admissions from multiple
critical care units across the United States in 2014 and 2015. It contains deidentified administrative
information following the US Health Insurance Portability and Accountability Act (HIPAA) standard
and structured clinical data, including vital signs, laboratory measurements, medications, treatment
plans, admission diagnoses, and medical histories.

B.5 TREQS

TREQS (Wang et al., 2020) is a healthcare question and answering dataset that is built upon the
MIMIC-III (Johnson et al., 2016) dataset. In TREQS, questions are generated automatically using
pre-defined templates with the text-to-SQL task. Compared to the MIMIC-III dataset within the
EHRSQL (Lee et al., 2022) benchmark, TREQS has a narrower focus in terms of the types of
questions and the complexity of SQL queries. Specifically, it is restricted to only five tables but
includes a larger number of records (498k) within each table.

C TOOL SET DETAILS

To obtain relevant information from EHRs and enhance the problem-solving capabilities of LLM-
based agents, we augment LLMs with the following tools:

⋄ Database Loader loads a specific table from the database.

⋄ Data Filter applies specific filtering condition to the selected table. These conditions are defined by
a column name and a relational operator. The relational operator may take the form of a comparison
(e.g., ”<” or ”>”) with a specific value, either with the column’s values or the count of values
grouped by another column. Alternatively, it could be operations such as identifying the minimum or
maximum values within the column.

3https://physionet.org/content/mimiciii/1.4/
4https://physionet.org/content/eicu-crd/2.0/
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⋄ Get Value retrieves either all the values within a specific column or performs basic operations on
all the values, including calculations for the mean, maximum, minimum, sum, and count.

⋄ Calculator calculates the results from input strings. We leverage the WolframAlpha API portal5,
which can handle both straightforward calculations such as addition, subtraction, and multiplication
and more complex operations like averaging and identifying maximum values.

⋄ Date Calculator calculates the target date based on the input date and the provided time interval
information.

⋄ SQL Interpreter interprets and executes SQL code written by LLMs.

D COMPARISON OF BASELINES

We compare baselines and EHRAgent on the inclusion of different components in Table 4.

Table 4: Comparison of baselines and EHRAgent on the inclusion of different components.
Baselines Tool Use Code

Interface
Environment

Feedback Debugging Error
Exploration

Medical
Knowledge

Long-term
Memory

w/o Code Interface

CoT (Wei et al., 2022) ✓ ✗ ✗ ✗ ✗ ✗ ✗
Self-Consistency (Wang et al., 2023e) ✓ ✗ ✗ ✗ ✗ ✗ ✗
Chameleon (Lu et al., 2023) ✓ ✗ ✗ ✗ ✗ ✗ ✗
ReAct (Yao et al., 2023b) ✓ ✗ ✓ ✗ ✗ ✗ ✗
Reflexion (Shinn et al., 2023) ✓ ✗ ✓ ✓ ✗ ✗ ✗

w/ Code Interface

LLM2SQL (Nan et al., 2023) ✗ ✓ ✗ ✗ ✗ ✗ ✗
Self-Debugging (Chen et al., 2023b) ✗ ✓ ✓ ✓ ✗ ✗ ✗
AutoGen (Wu et al., 2023) ✓ ✓ ✓ ✓ ✗ ✗ ✗
EHRAgent (Ours) ✓ ✓ ✓ ✓ ✓ ✓ ✓

E ADDITIONAL IMPLEMENTATION DETAILS

E.1 HARDWARE AND SOFTWARE DETAILS

All experiments are conducted on CPU: Intel(R) Core(TM) i7-5930K CPU @ 3.50GHz and GPU:
NVIDIA GeForce RTX A5000 GPUs, using Python 3.9 and AutoGen 0.2.06.

E.2 CODE GENERATION DETAILS

Given that the majority of LLMs have been pre-trained on Python code snippets (Gao et al., 2023),
and Python’s inherent modularity aligns well with tool functions, we choose Python 3.9 as the primary
language for interaction coding between the LLM agent and the code executor.

E.3 PROMPT DETAILS

In the subsequent subsections, we detail the prompt templates employed in EHRAgent. The complete
version of the prompts is available at our code repository due to space limitations.

⋄ Prompt for Code Generation. We first present the prompt template for EHRAgent in code
generation as follows:

<LLM Agent> Prompt

Assume you have knowledge of several tables:
{OVERALL_EHR_DESCRIPTIONS}
Write a python code to solve the given question.

You can use the following functions:

5https://products.wolframalpha.com/api
6https://github.com/microsoft/autogen
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{TOOL_DEFINITIONS}
Use the variable ’answer’ to store the answer

of the code. Here are some examples:
{4-SHOT_EXAMPLES}
(END OF EXAMPLES)
Knowledge:
{KNOWLEDGE}
Question: {QUESTION}
Solution:

⋄ Prompt for Knowledge Integration. We then present the prompt template for knowledge
integration in EHRAgent as follows:

<Medical Knowledge> Prompt

Read the following data descriptions, generate
the background knowledge as the context
information that could be helpful for
answering the question.

{OVERALL_EHR_DESCRIPTIONS}
For different tables, they contain the

following information:
{COLUMNAR_DESCRIPTIONS}

{4-SHOT_EXAMPLES}

Question: {QUESTION}
Knowledge:

⋄ Prompt for ‘Rubber Duck’ Debugging. The prompt template used for debugging module in
EHRAgent is shown as follows:

<Error Exploration> Prompt

Given a question:
{QUESTION}
The user has written code with the following

functions:
{TOOL_DEFINITIONS}

The code is as follows:
{CODE}

The execution result is:
{ERROR_INFO}

Please check the code and point out the most
possible reason to the error.

⋄ Prompt for Few-Shot Examples. The prompt template used for few-shot examples in EHRAgent
is shown as follows:

<Few Shot Examples> Prompt

Question: {QUESTION_I}
Knowledge:
{KNOWLEDGE_I}
Solution: {CODE_I}

Question: {QUESTION_II}
Knowledge:
{KNOWLEDGE_II}
Solution: {CODE_II}
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Question: {QUESTION_III}
Knowledge:
{KNOWLEDGE_III}
Solution: {CODE_III}

Question: {QUESTION_IV}
Knowledge:
{KNOWLEDGE_IV}
Solution: {CODE_IV}

F ADDITIONAL EXPERIMENTAL RESULTS

F.1 EFFECT OF BASE LLMS

Table 5 presents a summary of the experimental results obtained from EHRAgent and all base-
lines using a different base LLM, GPT-3.5-turbo. The results clearly demonstrate that EHRAgent
continues to outperform all the baselines, achieving a performance gain of 6.72%. This highlights
the ability of EHRAgent to generalize across different base LLMs as backbone models. When
comparing the experiments conducted with GPT-4 (Table 2), it is evident that the performance of both
the baselines and EHRAgent decreases. This can primarily be attributed to the weaker capabilities
of instruction-following and reasoning in GPT-3.5-turbo.

Table 5: Experimental results of success rate (i.e., SR.) and completion rate (i.e., CR.) on MIMIC-III
based on GPT-3.5-turbo as the base LLM. The complexity of questions increases from Level I (the
simplest) to Level IV (the most difficult).

Dataset (→) MIMIC-III

Complexity Level (→) I II III IV All

Methods (↓) /Metrics (→) SR. SR. CR.

w/o Code Interface

CoT (Wei et al., 2022) 23.16 10.40 2.99 1.71 8.62 41.55
Self-Consistency (Wang et al., 2023e) 25.26 11.88 4.19 2.56 10.52 47.59
Chameleon (Lu et al., 2023) 27.37 11.88 3.59 2.56 11.21 47.59
ReAct (Yao et al., 2023b) 26.32 10.89 3.59 3.42 9.66 61.21
Reflexion (Shinn et al., 2023) 30.53 12.38 9.58 8.55 13.28 66.72

w/ Code Interface

LLM2SQL (Nan et al., 2023) 21.05 15.84 4.19 2.56 10.69 59.49
Self-Debugging (Chen et al., 2023b) 36.84 33.66 22.75 16.24 27.59 72.93
AutoGen (Wu et al., 2023) 28.42 25.74 13.17 10.26 19.48 52.42
EHRAgent (Ours) 43.16 42.57 29.94 18.80 34.31 78.80

F.2 ADDITIONAL ABLATION STUDIES

We conduct additional ablation studies to evaluate the effectiveness of each module in EHRAgent
on eICU in Table 6 and obtain consistent results. From the results from both MIMIC-III and eICU,
we observe that all four components contribute significantly to the performance gain.

⋄ Medical Knowledge Integration. Out of all the components, the medical knowledge injection
module mainly exhibits its benefits in challenging tasks. These tasks often involve more tables and
require a deeper understanding of domain knowledge to associate items with their corresponding
tables.

⋄ Interactive Coding. The interactive coding interface is the most significant contributor to the
performance gain across all complexity levels. This verifies the importance of utilizing the code
interface for planning instead of natural languages, which enables the model to avoid overly complex
contexts and thus leads to a substantial increase in the completion rate. Additionally, the code
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interface also allows the debugging module to refine the planning with execution feedback, improving
the efficacy of the planning process.

⋄ Debugging Module. The ‘rubber duck’ debugging module enhances the performance by guiding
the LLM agent to figure out the underlying reasons for the error messages. This enables EHRAgent
to address the intrinsic error that occurs in the original reasoning steps.

⋄ Long-term Memory. Following the reinforcement learning setting (Sun et al., 2023; Shinn et al.,
2023), the long-term memory mechanism improves performance by justifying the necessity of
selecting the most relevant demonstrations for planning. In order to simulate the scenario where the
ground truth annotations (i.e., rewards) are unavailable, we further evaluate the effectiveness of the
long-term memory on the completed cases in Table 7, regardless of whether they are successful or
not. The results indicate that the inclusion of long-term memory with completed cases increases
the completion rate but tends to reduce the success rate across most difficulty levels, as some
incorrect cases might be included as the few-shot demonstrations. Nonetheless, it still outperforms
the performance without long-term memory, confirming the effectiveness of the memory mechanism.

Table 6: Additional ablation studies on success rate (i.e., SR.) and completion rate (i.e., CR.) under
different question complexity (I-III) on eICU dataset.

Complexity level I II III All

Metrics SR. SR. CR.

EHRAgent 54.82 53.52 25.00 53.10 91.72
w/o medical knowledge 36.75 28.39 6.25 30.17 47.24
w/o interactive coding 46.39 44.97 6.25 44.31 65.34
w/o debugging 50.60 46.98 12.50 47.07 70.86
w/o long-term memory 52.41 44.22 18.75 45.69 78.97

Table 7: Comparison on long-term memory (i.e., LTM) design under different question complexity
(I-IV) on MIMIC-III dataset.

Complexity level I II III IV All

Metrics SR. SR. CR.

EHRAgent (LTM w/ Success) 71.58 66.34 49.70 49.14 58.97 85.86
LTM w/ Completion 76.84 60.89 41.92 34.48 53.24 90.05
w/o LTM 65.96 54.46 37.13 42.74 51.73 83.42

G ADDITIONAL EMPIRICAL ANALYSIS

G.1 ADDITIONAL QUESTION COMPLEXITY ANALYSIS

We further analyze the model performance by considering various measures of question complexity
based on the number of elements in questions, and the number of columns involved in solutions, as
shown in Figure 3. Incorporating more elements requires the model to either perform calculations or
utilize domain knowledge to establish connections between elements and specific columns. Similarly,
involving more columns also presents a challenge for the model in accurately locating and associating
the relevant columns. We notice that both EHRAgent and baselines generally exhibit lower perfor-
mance on more challenging tasks7. Notably, our model consistently outperforms all the baseline
models across all levels of difficulty. Specifically, for those questions with more than 10 columns, the
completion rate of those open-loop baselines is very low (less than 20%), whereas EHRAgent can
still correctly answer around 50% of queries, indicating the robustness of EHRAgent in handling
complex queries with multiple elements.

7Exceptions may exist when considering questions of seven elements in Figures 3(a) and 3(b), as it comprises
only eight samples and may not be as representative.
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G.2 ADDITIONAL ERROR ANALYSIS

We conducted a manual examination to analyze all incorrect cases generated by EHRAgent in
MIMIC-III. Figure 5 illustrates the percentage of each type of error frequently encountered during
solution generation:

⋄ Date/Time. When addressing queries related to dates and times, it is important for the LLM agent
to use the ‘Calendar’ tool, which bases its calculations on the system time of the database. This
approach is typically reliable, but there are situations where the agent defaults to calculating dates
based on real-world time. Such instances may lead to potential inaccuracies.

⋄ Context Length. This type of error occurs when the input queries or dialog histories are excessively
long, exceeding the context length limit.

⋄ Incorrect Logic. When solving multi-hop reasoning questions across multiple databases, the LLM
agent may generate executable plans that contain logical errors in the intermediate reasoning steps.
For instance, in computing the total cost of a hospital visit, the LLM agent might erroneously generate
a plan that filters the database using patient id instead of the correct admission id.

⋄ Incorrect SQL Command. This error type arises when the LLM agent attempts to integrate the
SQLInterpreter into a Python-based plan to derive intermediate results. Typically, incorrect SQL
commands result in empty responses from SQLInterpreter, leading to the failure of subsequent
parts of the plan.

⋄ Fail to Follow Instructions. The LLM agent often fails to follow the instructions provided in the
initial prompt or during the interactive debugging process.

⋄ Fail to Debug. Despite undertaking all T -step trials, the LLM agent consistently fails to identify
the root cause of errors, resulting in plans that are either incomplete or inexcusable.

H ADDITIONAL CASE STUDIES

We present additional case studies to showcase the effectiveness of each module in EHRAgent,
including medical knowledge integration (Figure 7), code interface (Figures 8 and 9), and long-term
memory (Figure 10).

Question: count the number of patients who were prescribed 
aspirin ec within 2 month after having received a venous 
cath nec procedure until 4 year ago.

EHRAgent

Knowledge:
- As aspirin ec is a drug, we can find the corresponding 
information in the prescriptions database.
- As venous cath nec is a procedure, we can find the 
corresponding ICD9_CODE in the d_icd_procedures database.
- The ICD9_CODE can be used to find the corresponding HADM_ID in 
the procedures_icd database.
- The HADM_ID can be used to find the corresponding SUBJECT_ID in 
the admissions database.
- We can then count the number of unique SUBJECT_IDs in the 
prescriptions database who were prescribed aspirin ec within 2 
months after having received a venous cath nec procedure until 4 
years ago.

Figure 7: Case study of medical knowledge injection in EHRAgent on MIMIC-III dataset. Given a
question related to ‘aspirin ec’ and ‘venous cath nec’, EHRAgent effectively integrates knowledge
about their potential location in the database and the identifiers required to associate them.

19



Published as a workshop paper at ICLR 2024

Question: what was the amount of pioglitazone that patient 16992 were prescribed in total?

ReAct
...
Observation 3: The corresponding HADM_ID are 155667, 107483.
Thought 4: We need to find the related information from 
prescriptions database.
Action 4: LoadDB[prescriptions]
Observation 4: We have successfully loaded the prescriptions 
database, including the following columns: Please modify it. 
ROW_ID, SUBJECT_ID, HADM_ID, STARTDATE, ENDDATE, DRUG, 
DOSE_VAL_RX, DOSE_UNIT_RX, ROUTE
Thought 5: Then, we need to filter information related to 
HADM_ID=155667 and DRUG=pioglitazone.
Action 5: FilterDB[HADM_ID=155667, DRUG=pioglitazone]
Observation 5: We have successfully filtered the data (1 rows).
Thought 6: Then we need to get the DOSE_VAL_RX value.
Action 6: FilterDB[DOSE_VAL_RX, sum]
Observation 6: The corresponding DOSE_VAL_RX value is 6.0.
Thought 7: We need to find the related information from 
prescriptions database.
Action 7: LoadDB[prescriptions]
Observation 7: We have successfully loaded the prescriptions 
database, including the following columns: Please modify it. 
ROW_ID, SUBJECT_ID, HADM_ID, STARTDATE, ENDDATE, DRUG, 
DOSE_VAL_RX, DOSE_UNIT_RX, ROUTE
Thought 8: Then, we need to filter information related to 
HADM_ID=155667 and DRUG=pioglitazone.
Action 8: FilterDB[HADM_ID=107483, DRUG=pioglitazone]
Observation 8: We have successfully filtered the data (1 rows).
Thought 9: Then we need to get the DOSE_VAL_RX value.
Action 9: FilterDB[DOSE_VAL_RX, sum]
Observation 9: The corresponding DOSE_VAL_RX value is 9.0.
...

EHRAgent
# We can find the visiting information of patient 16992 in the 
admissions database.
patient_db = LoadDB('admissions')
filtered_patient_db = FilterDB(patient_db, 'SUBJECT_ID=16992')
print(len(filtered_patient_db))
hadm_id_list = GetValue(filtered_patient_db, 'HADM_ID, list')
print(hadm_id_list)

# As pioglitazone is a drug, we can find the corresponding 
information in the prescriptions database.
prescriptions_db = LoadDB('prescriptions')

# We can find the total amount of dose of pioglitazone that 
patient 16992 were prescribed by summing up the DOSE_VAL_RX in 
the prescriptions database.
total_dose = 0
for hadm_id in hadm_id_list:
    filtered_prescriptions_db = FilterDB(prescriptions_db, 
'HADM_ID={}||DRUG=pioglitazone'.format(hadm_id))
    dose_list = GetValue(filtered_prescriptions_db, 'DOSE_VAL_RX, 
list')
    print(dose_list)
    for dose in dose_list:
        total_dose += float(dose)

answer = total_dose

Figure 8: Case study 1 of code interface in EHRAgent on MIMIC-III Dataset. The baseline approach,
ReAct, lacks a code interface and encounters limitations when performing identical operations on
multiple sets of data. It resorts to generating repetitive action steps iteratively, leading to an extended
solution trajectory that may exceed the context limitations. In contrast, EHRAgent leverages the
advantages of code structures, such as the use of ‘for loops’, to address these challenges more
efficiently and effectively. The steps marked in red on the left side indicate the repeated actions by
ReAct, while the steps marked in green are the corresponding code snippets by EHRAgent. By
comparing the length and number of steps, the code interface can help EHRAgent save much context
space.

Question: Show me patient 28020's length of stay of the last hospital stay.

ReAct
Thought 1: First, we need to find the last hospital stay of 
patient 28020.
Action 1: LoadDB[admissions]
Observation 1: We have successfully loaded the admissions 
database, including the following columns: ROW_ID, SUBJECT_ID, 
HADM_ID, ADMITTIME, DISCHTIME, ADMISSION_TYPE, 
ADMISSION_LOCATION, DISCHARGE_LOCATION, INSURANCE, LANGUAGE, 
MARITAL_STATUS, ETHNICITY, AGE.
Thought 2: Next, we need to filter the data to only include 
records for patient 28020.
Action 2: FilterDB[SUBJECT_ID=28020, max(DISCHTIME)]
Observation 2: We have successfully filtered the data (1 rows).
Thought 3: Now we have the last hospital stay record for patient 
28020. We need to find the length of stay for this stay.
Action 3: GetValue[DISCHTIME-ADMITTIME, duration]
Observation 3: The value you are querying does not exist. Please 
modify it.
Thought 4: It seems there was an error in step 3. Let's correct 
the mistake and try again.
Action 4: GetValue[DISCHTIME - ADMITTIME, Calendar]
Observation 4: The value you are querying does not exist. Please 
modify it.
Thought 5: It seems that the calculation of the length of stay 
is not possible using the given steps. I apologize for the 
inconvenience.
Action 5: Finish[None]
Observation 5: Answer is INCORRECT

EHRAgent
# Import the datetime module
import datetime

# Load the admissions 
databaseadmissions_db = LoadDB('admissions')

# Filter the database for patient 28020
filtered_admissions_db = FilterDB(admissions_db, 
'SUBJECT_ID=28020')

# Get the ADMITTIME and DISCHTIME of the last hospital 
stayadmit_disch_tuple = SQLInterpreter('SELECT ADMITTIME, 
DISCHTIME FROM admissions WHERE SUBJECT_ID=28020 ORDER BY 
ADMITTIME DESC LIMIT 1')

# Extract the ADMITTIME and DISCHTIME from the tuple
admit_time, disch_time = admit_disch_tuple[0]

# Convert the ADMITTIME and DISCHTIME to datetime 
objectsadmit_time = datetime.datetime.strptime(admit_time, '%Y-
%m-%d %H:%M:%S')
disch_time = datetime.datetime.strptime(disch_time, '%Y-%m-%d 
%H:%M:%S')

# Calculate the length of hospital stay
length_of_stay = disch_time - admit_time

# Store the answer
answer = length_of_stay.days

Figure 9: Case study 2 of code interface in EHRAgent on MIMIC-III Dataset. When encountering
challenges in tool use, ReAct will keep making trials and can be stuck in the modification process.
On the other hand, with code interface, EHRAgent can take advantage of Python built-in functions
to help with debugging and code modification.
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Question: count the number of times that patient 85895 received a ph lab test last month.

Original Examples
Question: What is the maximum total hospital cost that involves 
a diagnosis named comp-oth vasc dev/graft since 1 year ago?
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: Had any tpn w/lipids been given to patient 2238 in 
their last hospital visit?
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: What was the name of the procedure that was given two 
or more times to patient 58730?
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: What was the last time patient 4718 had a peripheral 
blood lymphocytes microbiology test in the last hospital visit?
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Examples from Long-Term Memory
Question: Count the number of times that patient 52898 were 
prescribed ns this month.
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: Count the number of times that patient 14035 had a d10w 
intake.
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: Count the number of times that patient 99791 received a 
op red-int fix rad/ulna procedure.
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Question: Count the number of times that patient 54825 received a 
rt/left heart card cath procedure last year.
Knowledge: {KNOWLEDGE}
Solution: {SOLUTION}

Figure 10: Due to the constraints of limited context length, we are able to provide only a limited
number of examples to guide EHRAgent in generating solution code. For a given question, the
initial set of examples is pre-defined and fixed, which may not cover the specific reasoning logic or
knowledge required to solve it. From the original examples on the left, none of the questions related to
either ‘count the number’ scenarios or procedure knowledge. In contrast, when we retrieve examples
from the long-term memory, the new set is exclusively related to ‘count the number’ questions, thus
providing a similar solution logic for reference.
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