GC4NC: A Benchmark Framework for Graph
Condensation on Node Classification with New Insights

Shengbo Gong*!, Juntong Ni*!, Noveen Sachdeva?, Carl Yang!, Wei Jin!
"Emory University, 2Google Deepmind
{shengbo.gong, juntong.ni}@emory.edu noveen@google.com
{j.carlyang, wei.jin}@emory.edu

Abstract

Graph condensation (GC) is an emerging technique designed to learn a significantly
smaller graph that retains the essential information of the original graph. This
condensed graph has shown promise in accelerating graph neural networks while
preserving performance comparable to those achieved with the original, larger
graphs. Additionally, this technique facilitates downstream applications like neural
architecture search and deepens our understanding of redundancies in large graphs.
Despite the rapid development of GC methods, particularly for node classification, a
unified evaluation framework is still lacking to systematically compare different GC
methods or clarify key design choices for improving their effectiveness. To bridge
these gaps, we introduce GC4NC, a comprehensive framework for evaluating
diverse GC methods on node classification across multiple dimensions including
performance, efficiency, privacy preservation, denoising ability, NAS effectiveness,
and transferability. Our systematic evaluation offers novel insights into how con-
densed graphs behave and the critical design choices that drive their success. These
findings pave the way for future advancements in GC methods, enhancing both
performance and expanding their real-world applications. The code is available at
https://github.com/Emory-Melody/GraphSlim/tree/main/benchmark

1 Introduction

Graphs are ubiquitous data structures describing relations of entities and have found applications in
various domains such as chemistry [} 2], bioinformatics [3! 4], neuroscience [3l], epidemiology [6],
and e-commerce [[7, [§]. To harness the wealth of information in graphs, graph neural networks
(GNN) have emerged as powerful tools for exploiting structural information to handle diverse graph-
related tasks [9} 10, [11}[7,[12]]. However, the proliferation of large-scale graph datasets in practical
applications introduce significant computational difficulties for GNN utilization [13|[14}[15]]. These
large datasets complicate GNN training, as time complexity escalates with the increase of nodes
and edges. Furthermore, the extensive sizes of graphs also strain GPU memory, disk storage, and
communication bandwidth [[15]].

Inspired by dataset distillation (or dataset condensation) [16} [17, [18] in the image domain, graph
condensation (GC) [14,[19} 20, 21] has been proposed to learn a significantly smaller (e.g., 1,000 x
smaller number of nodes) graph that retains essential information of the original large graph. This
condensed graph is expected to train downstream GNNs in a highly efficient manner with minimal
performance degradation. As a data-centric technique, GC is considered to be orthogonal to existing
model-centric efforts on GNN acceleration [22| 23], since using condensed graph datasets as input
can further speed up existing models. Remarkably, GC not only excels at compressing graph data

*Equal contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Emory-Melody/GraphSlim/tree/main/benchmark

but also shows promise for various other applications, such as federated learning [24] and neural
architecture search (NAS) [25]].

Despite the rapid advancements in this field, the lack of a unified and comprehensive evaluation
protocol for GC significantly hinders progress in evaluating, understanding and improving these
methods. First, existing GC methods adopt different approaches to select the best condensed graphs,
including variations in validation models, reliance on test set results rather than validation ones, and
conducting overly frequent intermediate validations, which could introduce unfairness in evaluation.
Second, while most GC methods are evaluated primarily on performance and transferability, they
often neglect critical aspects such as the effectiveness of NAS. Furthermore, intuitive benefits of
GC like privacy preservation and denoising ability are frequently mentioned but remain under-
explored [26| [19]. Third, the impact of design choices during the condensation process including
the condensation objectives, how condensed graphs are initialized, whether to generate a condensed
graph structure, and which graph properties to preserve, are still poorly understood. By systematically
addressing these limitations, we aim to shed light on the successes and pitfalls in current GC research
and guide future directions in this evolving area. Given that most GC methods are developed for node
classification (NC), we will focus on this task and propose a new benchmark framework, GC4NC,
with the following contributions:

* A Fair Evaluation Protocol. We establish a graph condensation benchmark by introducing a
fair and consistent evaluation protocol that facilitates comparison across methods. This unified
evaluation approach properly utilizes validation data to select the most effective condensed graphs.
In addition, we provide an open-source, well-structured, and user-friendly codebase specifically
designed to facilitate easy integration and evaluation of different GC approaches.

* Comprehensive Comparison through Multiple Dimensions. Using the fair evaluation protocol,
we conduct comprehensive comparisons of various GC methods across multiple dimensions
including (a) performance and scalability, (b) privacy preservation, (c) denoising ability, (d) NAS
effectiveness, and (e) transferability. To our knowledge, we are the first to systematically benchmark
privacy preservation and denoising ability across various GC methods.

* In-Depth Analysis of Design Choices. We further conduct a thorough analysis of how key
design choices impact condensation performance, including data initialization, structure-free vs.
structure-based methods, and graph property preservation. Our results provide valuable guidance
for optimizing and exploring these critical choices in future research.

* Novel Insights. Through a comprehensive comparison of these methods, our experimental results
provide key insights into the behavior of graph condensation such as:

(a) Among varied condensation objectives, methods based on trajectory matching generally deliver
the best condensation performance but fall short in efficiency. Furthermore, graph condensation
achieves better performance than image dataset condensation at the same reduction rates, but it
struggles to scale to larger reduction rates, where reduction rate r is defined as (#nodes in
synthetic set)/(#nodes in training set.

(b) Certain GC methods can preserve privacy by reducing the success of membership inference
attacks while still maintaining high condensation performance.

(¢) GC methods exhibit a certain level of denoising ability against structural noise (both adver-
sarial and random noise), yet they are less effective against node feature noise.

(d) Trajectory matching or inner optimization through gradient matching is essential for reliable
NAS performance and enhanced transferability.

(e) Compared to structure-based methods, structure-free methods exhibit strong condensation
performance and favorable efficiency but poorer denoising ability.

Note that two concurrent works [27, 28] on GC benchmarks have emerged alongside this paper.
While all studies contribute uniquely to the field of graph condensation, GC4NC stands out by
offering deeper insights. First, it covers a wider range of GC methods for NC. Second, it pioneers the
exploration of GC methods in terms of privacy preservation and denoising ability. Third, it provides a
more in-depth analysis of graph property preservation to enhance the understanding of GC methods.
For further details, please refer to the Appendix

2 Related Work

2.1 Graph Condensation

Graph condensation (GC) is an emerging technique designed to create a significantly smaller graph
that preserves the maximum amount of information from the original graph [14, |19} 29, (30} 31} 32].
The goal is to ensure that GNNs trained on this condensed graph exhibit comparable performance to
those trained on the original one. Based on certain condensation objectives, existing GC methods
employ the following matching strategies to bridge the gap between condensed and real graphs:

Gradient Matching (GM). GCond [14] matches gradients between the original graph 7 and
the condensed graph S via ming Eg,~ p,, [ZtT:*Ol D (VoLr, Vgﬁg)] , where D(-,-) is a distance
function. This involves inner optimization, where the GNN is trained on S during matching. This
nested optimization limits scalability. DosCond [29]] improves efficiency by matching only the first

epoch. MSGC [31] uses multiple sparse graphs to better capture structural diversity. SGDD [32]]
injects original structural information into the synthetic graph via optimal transport.

Trajectory Matching (TM). SFGC [33]], inspired by [34]], matches GNN training trajectories using
offline expert parameters: ming £ = |04 n — 07, 1r1|3, where 0 and 6* are student and expert
parameters, respectively. GEOM [30] introduces an expanding window to adapt the matching range
based on node difficulty. These methods achieve strong performance but involve high cost.

Others. Distribution Matching (DM) was adapted to graphs as GCDM [33]], which matches average
embeddings across layers between original and condensed graphs. We use its structure-free variant,
GCDMLX, due to its better performance. To reduce the cost of GM, GCSNTK [36] replaces inner
optimization with the Graph Neural Tangent Kernel (GNTK) in a Kernel Ridge Regression (KRR)
framework: Lxrr = 3[ly7 — K75(Kss + €l) 'ys||% where K is the kernel matrix and y are
graph labels. This is known as meta-model matching (MM) [26]. GDEM [37] uses eigenbasis
matching (EM), a GM variant that avoids model-induced bias. Bonsai [38] proposes computation
trees matching to enable efficient and reusable training across architectures.

2.2 Coreset Selection and Graph Coarsening

We stress the importance of considering graph reduction methods beyond GC. First, recent core-
set [39] and coarsening methods [40] have shown strong potential in preserving GNN performance
and are essential baselines for comparison. Second, these methods can also serve as data initializa-
tion strategies for GC (see Section[4.6). Studying GC in isolation may overlook these important
connections.

Coreset. Coreset selection [41] finds representative samples using specific criteria. In graphs, it
selects nodes or edges to form a smaller graph. We use the following baselines: Random, which
selects nodes uniformly at random. KCenter [41] [42] selects nodes to minimize the maximum
distance to the nearest center in embedding space. Herding [43]] selects nodes to minimize the gap
between the mean embedding and the selected set.

Graph Coarsening. Graph coarsening groups nodes into supernodes to retain node information.
We use the following baselines: Averaging (MSGC [31]]) averages features of training nodes per
class to form supernodes. Virtual Node Graph (VNG) [44] uses weighted k-means to minimize
forward error and computes the adjacency via optimization. Variation Neighbors (VN) [45] 46]
merges nodes with similar neighborhoods. Some of the above methods are not included in the main
content due to page limit.

3 Benchmark Design

Our benchmark design is founded on the typical workflow for Graph Condensation (GC), which we
then extend to assess performance on a broader range of applications. The core workflow comprises
three key stages: 1) the initialization of synthetic nodes, 2) the condensation training process, and 3)
the evaluation of the resulting synthetic graph on downstream tasks. Building upon this foundation,
we further evaluate the condensed graphs on advanced applications, including NAS, robustness and
privacy preservation.

Table 1: Performance of graph reduction methods under three reduction rates. We report test accuracy
(%) for all datasets, except for Yelp, where we use Fl-macro (%). The best and the second-best
results, excluding the whole graph training, are marked in bold and underlined. Structure-free and
structure-based condensation methods are marked in blue and red, respectively.

. . ondensation
Reduction Coreset Coarsening ¢ Whole

rate (%) ™ DM GM
Cent-D Cent-P Random Herding K-Center Averaging VNG GEOM SFGC GCDM GCondX GCond DosCond MSGC SGDD

0.36 42.86 37.78 3537 43.73 4143 69.75 66.14 67.61 6627 70.65 6779 7005 6941 60.24 71.87
Citeseer 0.90 5877 52.83 50.71 59.24 5115 69.59 66.07 70.70 7027 7127 69.69 69.15 70.83 72.08 7052 72.6
1.80 62.89 6337 6262 66.66 59.04 69.50 65.34 73.03 7236 7208 6838 6935 7218 7221 69.65

0.50 57.79 5844 35114 51.68 44.64 7594 7040 78.14 75.11 7921 7974 80.17 80.65 80.54 80.15
Cora 1.30 66.45 6638 63.63 68.99 63.28 75.87 7448 8229 7955 8026 7867 80.81 80.85 80.98 8029 81.5
2.60 7579 7564 7224 7377 70.55 7576 76.03 82.82 80.54 80.68 7860 80.54 8I.I5 80.94 81.04

0.02 56.16 57.28 4946 6291 62.91 75.60 75.60 69.64 67.61 77.62 72.03 7736 58.13 7525 78.11
Pubmed 0.03 55.61 6250 56.10 69.28 65.59 75.60 75772 7621 66.89 76.63 72.05 78.05 5270 7826 78.07 78.6
0.15 71.95 7335 71.84 7553 74.00 75.60 7753 78.49 67.61 7748 7197 7646 7645 7820 7595

0.05 32.88 3648 5039 5149 50.52 59.62 5489 6491 6491 60.04 5940 6049 5570 57.66 58.50
Arxiv 0.25 48.85 4790 5892 58.00 55.28 59.96 59.66 68.78 66.58 60.59 6246 6388 57.39 64.85 59.18 714
0.50 52.01 5565 60.19 57.70 58.66 59.94 6093 69.59 67.03 60.71 5993 6423 61.06 6573 63.76

0.10 40.70 4097 4294 42.80 43.01 3793 4433 47.15 4638 4375 46.66 4675 4587 46.21 46.69
Flickr 0.50 4290 4406 4454 43.86 43.46 3776 4330 46.71 4638 4505 46.69 47.01 4589 46.77 4639 474
1.00 42.62 4451 4468 4512 43.53 37.66 43.84 46.13 46.61 4588 46.58 4699 4581 46.12 4624

0.05 40.00 4583 40.13 46.88 40.24 8823 69.96 90.63 90.18 8728 86.56 8539 86.56 87.62 87.37
Reddit 0.10 50.47 5122 5573 59.34 48.28 8832 7695 91.33 89.84 8996 8825 8982 8832 88.15 8873 944
0.20 5531 61.56 5839 73.46 56.81 88.33 81.52 91.03 90.71 89.08 8873 90.42 88.84 87.03 90.65

0.05 48.67 46.81 46.08 46.08 46.07 55.04 49.24 5280 4620 50.75 5244 5230 5110 52.94 52.02
Yelp 0.10 51.03 46.08 46.28 52.23 46.22 5351 4733 4756 4796 5249 49770 5322 5254 5097 5413 582
0.20 46.08 46.08 49.31 47.49 46.85 5442 48.63 49.48 46.70 55.89 4877 51.76 52.19 51.35 52.86

Dataset

3.1 Evaluation Protocol

A Unified Evaluation Approach. Existing GC methods vary in their evaluation strategies to identify

optimal condensed graphs throughout the condensation process. First, some approaches utilize the
GNTK as the validation model, while others employ GNNs. Second, some select graphs based on
the best test results rather than validation results. Third, some assess the condensed graph at every
condensation epoch, whereas others opt for periodic evaluations to conserve computational resources.
Thus, a unified evaluation approach is crucial for ensuring a fair comparison. We achieve this by
unifying the validation model and restricting the validation frequency, as detailed in Appendix [A.3]

Multi-Dimensional Evaluation. Many methods overlook critical evaluation dimensions such as
scalability, privacy preservation, NAS performance, and transferability. Our benchmark aims to
address this gap by enabling a comprehensive comparison of GC methods across these key aspects.

(a) Performance and Scalability. We first attempt to reproduce and measure the basic results of
all graph reduction methods within our scope. In addition to evaluating the performance of GCN
in node classification, we assess their efficiency and highlight the trade-off between performance
and efficiency to assist users in selecting the appropriate method based on their hardware resources.
Our efficiency reports include preprocessing time, running time per epoch, total running time,
peak memory, GPU memory and disk memory usage. By examining the resource consumption
across various dataset sizes and reduction rates, we can also illustrate the scalability of different
methods. Additionally, we also examine the condensation performance across broader reduction rates.
Summary: A good GC method should achieve good performance while also ensure high efficiency.

(b) Privacy Preservation. As the downstream model is trained on a synthetic graph that differs from
the original, GC may preserve a certain level of privacy by obscuring sensitive information. To
evaluate this capability, we assess the resilience of GC against privacy attacks. Specifically, we apply
the method from [47] to measure privacy leakage across different GC techniques. This approach
employs Membership Inference Attack (MIA) to assess privacy risks, where MIA accuracy reflects
the probability that an adversary can correctly identify whether a node belongs to the training or
test set. For a detailed explanation of why MIA is chosen over other attack methods, please refer
to Appendix Summary: We anticipate that the condensed graph will mitigate the exposure of
sensitive training information, such as membership, thereby reducing privacy risks.

(c) Denoising ability. Since GC preserves the essential information of the original graph, it can
potentially reduce noise present in the original graph, even though it is not specifically designed for
this purpose. We hypothesize that this capability may provide GC with denoising ability against

various types of noise. To study this, we inject three types of noise to the original graph before
feeding it into the GC algorithms: (1) Feature noise, which randomly changes features for all nodes,
(2) Structural noise, which randomly modifies edges, and (3) Adversarial structural noise, which
learns corrupt graph structure to degrade the performance of the GNN model. Furthermore, to
examine the denoising ability of GC in two settings, transductive and inductive, we apply poisoning
plus evasion corruption (i.e., corrupting both the training and test graphs) on transductive datasets,
and poisoning corruption (i.e., only corrupting the training graph) on inductive datasets. Summary:
We expect GC process can mitigate noise without specific denoising design.

(d) Neural Architecture Search (NAS). NAS [48], 149] is one of the most promising applications
of GC. It focuses on identifying the best-performing architecture from a vast pool of models but
is computationally expensive, which requires the training of numerous architectures on the full
dataset. Since the condensed graph is much smaller than the whole graph, GC methods are utilized
to accelerate NAS [25]]. In practical situations, preserving the rank of validation results between
models trained on the condensed graph and the whole graph is important because we select the best
architectures based on top validation results. We argue that all the graph condensation methods should
be evaluated on the NAS task because it can effectively evaluate the practical value of a condensation
method. Summary: We expect a reliable correlation in validation performance between training on
the condensed graph and the whole graph to be observed.

(e) Transferability. The most critical aspect of evaluating GC methods is determining whether the
condensed data can be effectively used to train diverse GNNs, adhering to a data-centric perspective.
Usually, condensed graphs are closely tied to the backbone GNN used during the condensation
process such as GCN and SGC, potentially embedding the inductive biases of that particular GNN,
which might impair their performance on other GNNs. To address this concern, we aim for condensed
graphs to exhibit consistent performance across different GNNs. Some previous studies [29,31] don’t
include experiments evaluating transferability across GNNs. Additionally, evaluations of various
methods are often performed on different datasets or reduction rates, hindering fair comparison. Thus,
we assess the performance of condensed graphs on multiple widely-used GNN models with a unified
evaluation setting. Summary: A high-quality condensed graph, like a graph in the real world, should
be versatile enough to train different models.

3.2 Impact of design choices

Current GC methods follow similar procedural frameworks, with multiple choices available at each
intermediate stage of the process. However, the effects of these internal mechanisms, such as how
different configurations or choices influence the performance and effectiveness of graph condensation,
remain largely underexplored. In this benchmark, we aim to go beyond just the matching strategies
discussed in Section [2.1] by thoroughly investigating the following key design choices.

Data Initialization. As a crucial stage in the standard procedure of GC, data initialization helps
accelerate convergence and enhances final results [18]. Besides, the initialization of the condensed
graph can naturally integrated with coreset selection and graph coarsening methods. Previous work
primarily relies on random selection for data initialization, with only a few studies employing
alternative methods such as KCenter and Averaging 30} [31]]. Therefore, we aim to conduct a
comprehensive study on whether different data initialization can impact the performance of GC.
Structure-Free vs. Structure-Based Methods. Another important choice is whether to synthesize
the structure. Structure-based methods including GCond, DosCond, and MSGC, utilize separate
multilayer perceptrons (MLP) to generate links between nodes based on the synthetic node features.
Other structure-based methods adopt different strategies, e.g, SGDD employs a structure broadcasting
strategy, while GDEM aligns the eigenbasis to recover the adjacency matrix. To assist future research
in making this decision, we discuss it in Section and as this choice shows significant
differences in these two aspects.

Graph Property Preservation. Graph data comprises features, structures, and labels, which can
be characterized by various established metrics, also known as graph properties. We aim to explore
what graph properties are preserved by condensed graphs and understand the reasons behind the
success of current GC methods. We select the following metrics from different aspects of a graph:
Density (structure), Max Eigenvalue of Laplacian matrix (spectra), Davies-Bouldin Index (DBI) [50]
(feature) and Homophily [S1](structure and label) . To further incorporate structural information into
DBI, we developed a new metric named DBI-AGG (structure and feature), which calculates DBI
based on node embeddings after two rounds of GCN-like aggregation.

N GPU Memory (MB)
70 * GEOM S Total Time (s) 8
* %08 Preprocess Time (s) =
68 H g Disk Memory (MB) 6 S
{ 0.6 X
#(SFGC N g
66| VS Sos ‘5
< w ®_ GCond 202 28
564 - 2
[0
= GCondX 0.0
3 62 ; GEOM &G0 oDM condX geond ccondsGC 5GP
3] i
< GCDM: g . . .
3 Figure 2: Comparison of GPU memory, disk memory,
601 & ¢ preprocess time, and total time on Arxiv (r = 0.5%).
.70 90| SF=—3— —8—9—3
58 g F ==
; 360 .0 A
/ g 70 /
56 ®DosCond § 50 60 p e
0 10000 20000 30000 < | o] f o Rendom e GOonax
i S P Herding —e— GCond
Total Time (s) ? 40 4ol 3 o Keenter MSGC
. A = —e— GEOM Whole
Figure 1: Test accuracy vs. total time for NN TRy 530 55 3 3
structure-free and structure-based conden- Reduction Rate (%) Reduction Rate (%)
(a) Arxiv (b) Reddit

sation methods on Arxiv. TM is repre-

sented by %, GM by e, and DM by A. Figure 3: Varying reduction rates on Arxiv and Reddit.

Marker sizes increase with reduction rates No mark represents OOM when the reduction rate is
Of 005%, 025%, and 050% too la_rge for a method_

4 Empirical Studies

4.1 Performance, Efficiency and Scalability

We provide detailed experimental setup in Appendix [A.3] We report the performance of graph
reduction methods in Table[T|and the efficiency in Figure|l}

Obs. 1: TM-based methods show the best condensation performance but not the best efficiency.
From Table[T} we observe that GC methods significantly outperform coreset selection and coarsening
methods and the margin is larger at low reduction rates. Among all, TM-based methods, GEOM and
SFGC, lead across most datasets and reduction rates, showing the highest performance is achieved by
trajectory methods. However, when we consider the efficiency and resource consumption in Figure[2]
we find that though achieving state-of-the-art performance in Table [T} both GEOM and SFGC require
additional preprocess time and large disk memory to produce and store the trajectory of experts.
In addition, some learning-free methods, such as Averaging, exhibit high performance on certain
datasets like Yelp, while being more efficient than all GC methods. Finally, the performance gap
between the best GC methods and whole dataset training varies across datasets. Some datasets, like
Arxiv and Reddit, still exhibit significant room for improvement for future GC methods.

Obs. 2: Compared to structure-based methods, structure-free methods are more efficient while
still performing well. When comparing structure-free methods to their structure-based counterparts,
such as GCondX and GCond, e.g., comparing GCondX and GCond in Figure 2] & [3] and Table [T}
the following key insights emerge: (1) the absence of structure synthesis negatively impacts the
performance of structure-free methods. (2) structure-based methods require significantly more
memory and GPU resources, especially when applied to large graphs. (3) structure-free methods
exhibit superior scalability w.r.t. reduction rates, as their computational resource usage remains
relatively stable, even with increasing reduction rates. The increased complexity of structure-based
methods stems from the time- and resource-intensive nature of structure synthesis, which must be
repeated each time the synthetic features are updated. To fully harness the benefits of structure-based
approaches, a more efficient structure generation method is needed. This is crucial as the structure
provides valuable information beyond the features and has the potential to enhance the denoising
ability, as discussed in Section [4.3]

Obs. 3: GC outperforms image dataset condensation at the same reduction rate but struggles
to scale effectively at larger reduction rates, where image dataset condensation excels. We adjust

Table 2: Privacy preservation evaluation. "MIA Acc" measures how well an attacker can infer whether
a node is in the training or test set. We also report node classification accuracy ("Acc"), aiming to
emphasize the balance between model performance and privacy preservation.

Cora, r = 2.6% Citeseer, r = 1.8% Arxiv, r = 0.5%
MIA Acc () Acc () MIA Acc(]) Acc(?) MIA Acc({) Acc (1)
Whole 74.87 +1.16 81.50 £0.50 81.76 = 1.01 72.61 £0.27 54.26 £0.11 71.43 £0.11

GCond 72.10 £ 0.96 80.54 + 0.67 74.11 £ 0.61 69.35 + 0.82 53.04 + 0.18 64.23 £ 0.16
GCondX 66.83 +0.81 78.60 £ 0.31 71.97 + 0.58 68.38 £ 0.45 54.64 +£ 0.17 59.93 + 0.54
DosCond 69.70 + 0.50 81.15 + 0.50 74.33 + 0.34 72.18 £ 0.61 54.04 £ 0.79 61.06 + 0.59

SGDD 70.43 +1.63 81.04 +£0.54 77.07 + 4.32 69.65 + 1.68 53.29 + 0.46 63.76 + 0.22

GDEM 60.66 + 1.26 81.76 + 0.53 70.01 £ 2.94 71.74 + 0.90 - -

GEOM 67.90 + 0.55 82.82 + 0.17 67.55 + 0.62 73.03 + 0.31 53.80 + 0.19 69.59 + 0.24
SFGC 67.29 +£1.02 80.54 +0.45 72.12 £ 0.44 72.36 + 0.53 54.49 + 0.53 67.03 £ 0.48

Methods

Table 3: Denoising ability evaluation. "Perf. Drop" shows the relative loss of accuracy compared to
the original results before corruption. The best results are in bold and results that outperform whole
dataset training are underlined. Structure-free and Structure-based methods are colored blue and red.

Feature Noise Structural Noise Adversarial Structural Noise

Dataset Method Test Acc. 1 Perf. Drop | Test Acc. 1 Perf. Drop | Test Acc. 1 Perf. Drop |
Whole 64.07 11.75% 57.63 20.62% 53.90 25.76%
Citeseer 1.5 CCond — 64.06 7.63% 65.64 5.35% 66.19 4.55%
teseer 1.7 GoondX 61.27 10.40% 60.42 11.65% 60.75 11.15%
GEOM 58.77 19.53% 51.41 29.60% 57.94 20.67%
Whole 74.77 8.26% 72.13 11.49% 66.63 18.24%
Cora2.69 GCond 6762 16.04% 63.14 21.61% 68.90 14.45%
ora 0% GCondX 67.72 13.85% 63.95 18.63% 69.24 11.91%
GEOM 49.68 40.01% 53.59 35.29% 66.32 19.93%
Whole 46.68 1.51% 42.60 10.13% 44.44 6.24%
Flickr 19, GCond 4629 1.49% 46.97 0.04% 43.90 6.58%
IRrE% GCondX 45.60 2.11% 46.19 0.83% 42.00 9.83%
GEOM 4538 1.63% 4552 1.32% 44.72 3.06%

the reduction rate from values corresponding to only one node per class to values that cause OOM
on large datasets and present the results in Figure[3] We use the image condensation benchmark
DC-bench [[18] as an analogue to our work in the graph domain. The image condensation is also
trying to synthesize a much smaller number of images from original dataset while maintain the
downstream task performance like image classification. While Figure [3] generally shows a positive
correlation between performance and the reduction rate, we have two unique findings that are not
observed in vision dataset condensation [18]]: (1) GC can perform well even when condensing the
graph to a single instance per class (IPC=1), whereas image condensation techniques can suffer
a performance drop of 50% under similar reduction rates [18]. (2) Unlike in the image domain,
GC methods cannot scale to larger IPC values due to OOM issues. We foresee the need for more
scalable GC techniques, particularly those structure-based ones. In addition, our results indicate some
instability of structure-free GC, as shown by 7=0.5% on Reddit for GEOM and r=1.25% on Arxiv for
GCondX.

4.2 Privacy Preservation

This attack reveals which samples were used in training, leading to privacy leakage of training set. It
leverages confidence scores, i.e., the probability of the true label, to identify if a sample was part of
the training set. The optimal threshold is determined by analyzing all confidence scores to maximize
the attack’s success in distinguishing between training and non-training samples.

Obs. 4: Certain GC Methods such as TM and eigen-decomposition -based ones can achieve
a strong balance between privacy preservation and condensation performance. The results in
Table 2] suggest the following: (1) compared to non-protected whole dataset training, GC methods
enhance membership privacy by around 5%-10% on Cora and Citeseer. Notably, GDEM achieves
significant preservation performance on Cora, with an improvement up to 14.21%, while still maintain
a good performance (Acc). Also, certain method such as GEOM achieve both lowest MIA Acc and

Table 4: NAS evaluation. Best result is in bold. Runner-up is underlined. Worst is colored red.
Random K-Center | GCondX SFGC GEOM GCond DosCond MSGC | Whole

Top 1 (%) 81.88 81.74 81.49 82.42 82.19 81.82 81.91 82.40 82.51
Acc. Corr. 0.56 0.47 0.40 0.72 0.65 0.70 0.14 0.71 -
Rank Corr. 0.64 0.60 0.57 0.71 0.74 0.66 0.20 0.78 -

highest Acc on Citeseer, highlight the nature of GC in reducing the risk of privacy leakage. These
improvements stem from the fact that no real training nodes are used when we apply GC, ensuring
the membership information remains protected. In addition, the gain in Arxiv is not as significant, and
we conjecture that it’s close to the lower bound of 50%, resulting in a smaller margin of improvement.
(2) Different reduction methods vary in their effectiveness. For example, GEOM and GDEM exhibit a
strong balance between mitigating MIA accuracy and maintaining model performance. This suggests
the potential to design improved GC methods that do not compromise privacy. In other words, the
typical tradeoff between utility and privacy preservation could potentially be eliminated through the
use of GC techniques.

4.3 Denoising ability

To explore the denoising ability of GC methods, specifically their ability to mitigate noise from the
original graph via the condensation process, we inject three types of representative noise as outlined
in Section These include: (1) Feature Noise: We simulate feature noise by masking node
features to zero. (2) Structural Noise: This is introduced by randomly adding edges to the graph.
(3) Adversarial Structural Noise: We employ PR-BCD [52], a scalable adversarial noise using
Projected Gradient Descent (PGD). In transductive settings, we apply both poisoning and evasion
corruptions, which affects both the training and test phases of the graph. The perturbation rates are
set to 50% for feature and structural noise and 25% for adversarial structural noise, respectively. Each
corruption is repeated three times, producing three distinct corrupted graphs. We then evaluate and
report the average performance across these graphs.

Obs. 5: GC methods exhibit a certain level of denoising ability against structural noise, with
structure-based approaches offering superior denoising compared to structure-free ones. As
shown in Table 3] GC methods outperform GCN trained on the whole corrupted graph in the two
structural noises, but GC does not show denoising ability against feature noise. For example, GC
methods achieve the highest Test Acc. across three datasets under structural noise but fall short
when dealing with feature noise. This suggests that GC methods are more effective at handling
structural denoising than feature denoising. Additionally, the state-of-the-art methods GEOM and the
structure-free version of GCond, GCondX show lower performance compared to GCond after being
corrupted, indicating that structure-free methods lose some denoising ability if they do not synthesize
the structure. While GC can mitigate some noise, it still lacks specialized denoising mechanisms to
achieve stronger denoising capabilities.

4.4 Neural Architecture Search

As a key application of GC, we evaluate the performance of NAS using three commonly-used
metrics: Top 1 test accuracy, correlation between validation set accuracies, and correlation between
ranks of validation set accuracies of the condensed graph and the whole graph. We use the Pearson
coefficient [53] to quantify the correlation. We conduct NAS with APPNP, a flexible GNN model
whose structure can vary by using a different number of propagation layers, residual coefficients, etc.
More details are provided in the Appendix [A.9]

Obs. 6: Trajectory matching or inner optimization is essential for reliable NAS effectiveness.
The results in Table] demonstrate that: (1) GC methods demonstrate a strong potential to identify
the best architectures, sometimes even outperforming the results obtained from the original dataset.
(2) Methods utilizing trajectory matching demonstrate strong results in NAS. (3) Models without
inner optimization during the condensation process, such as DosCond, yield poor NAS performance,
with a Pearson correlation coefficient below 0.6. Given that methods employing trajectory matching
or inner optimization tend to achieve better NAS results, we hypothesize that explicitly mimicking
the training trajectory of GNNS is critical for effective NAS.

(b) Arxiv r=0.5%

GCN m SGC @ APPNP A GCheby v GraphSage b GAT
105 100
1) 33
100 . .: $4 o !' ‘90 i,;!".‘
< »> Y
S > > o Ll e Ix x g XX
N AT I i
< % I s L] 70
'r‘zi 85 s ; 85 ! M ' > X >
K] y 60
g |4 $1x I ¥ T
801 " A 80 > 50 |
x ‘
75 'S 75 » 40 X
e TN E L P S CTFNE L LS C e FNE L LS
@@O@@& S & 7 0&"0%@ & Qf’o@“& s L L F£F &‘“10“& 5 & & & &
& S

" (c) Reddit r=0.1%

Figure 4: Condensed graph performance evaluated by different GNNs. The relative accuracy refers
to the accuracy preserved compared to training on the whole dataset.

® Random Averaging ® KCenter ® Herding
< [] ® 70 [])
* 725 L] W)
82 {] e 8 s s 8 8 "]
8] [J @ ' 9 9 .
@ ' 70.0 @ 85 D
3 pe : ° 65 $ 8 44
L8o0jg ® 67.5 80]
°© ® L ® 9 42
£ s 65.0 60/@ 75 o
278 (] 62.5 40 °
N R C VG L N I P C VRGN SR SR PC VPRGN SRR R SR A R PR I SRPC
g W (o (TG W T (o (T W T o (T W T o (T W

(a) Cora r=2.6% (b) Citeseer r=1.8% (c) Arxiv r=0.5% (d) Flickr r=1% (e) Reddit r=0.1%

Figure 5: Test accuracy for different methods with different initialization.

4.5 Transferability

We conduct extensive experiments assessing the performance of condensed graphs on six widely-used
GNN models: GCN [9], SGC [22], APPNP [54], Cheby [55]], GraphSage [13]] and GAT [10]. We
tune hyperparameters for these evaluation GNN models, with the search space for hyperparameters
and sensitivity analysis listed in Appendix [A.8] To simplify, we fix the reduction ratios at 2.6%, 0.5%,
and 0.1% for Cora, Arxiv and Reddit, respectively.

Obs. 7: Different GC methods exhibit varying degrees of transferability across datasets, leaving
considerable room for improvement in this area. From Figure |§| we can observe that (1) there
is no significant performance loss for the majority of cases when condensed graphs are transferred
to various GNNs. This highlights the success of GC methods, which typically only use GCN or
SGC for condensation. (2) However, for some methods such as DosCond and SGDD, GAT performs
much worse than other GNNs. We conjecture this is because GAT is more structure-sensitive and
can only leverage the connection information instead of the edge weights. (3) We also investigate
the transferability to Graph Transformer [56] in Appendix [A.8] However, the performance of Graph
Transformer drops a lot compared to message-passing GNNs, which suggests that future research
should explore the transferability to non-message-passing graph learning architectures.

Obs. 8: Trajectory matching or inner optimization facilitates transferability. GEOM and SFGC
achieve significantly better performance than GCondX. Similarly, GCond outperforms DosCond.
These two phenomena indicate that trajectory matching or inner optimization is key to improving
transferability. We conjecture these two designs introduce additional inductive biases related to the
backbone models used in the condensation process, which likely benefit all message-passing GNNS.

4.6 Data Initialization

To study the impact of different data initialization strategies, we equip 5 GC methods with 5 ini-
tialization strategies across all datasets. Obs. 9: Current initialization strategies do not have a
consistent impact across all datasets or GC methods. Figure [3]illustrates that there is no single
best data initialization method for every GC method or dataset. Notably, KCenter is the average best
initialization method for most datasets. Averaging is a very unstable strategy, especially for large
datasets, and it only works in rare cases. We conclude that GC methods do not need to be consistently
good with different initialization strategies. Therefore, we recommend treating initialization strategies

Table 5: Graph properties of condensed graphs on Cora from different structure-based GC methods.
The "Corr." row shows the correlation of certain property between the condensed graph and the
whole graph across five datasets. The "Whole" column of the "Corr." row displays the average
correlation value of the four methods.

Graph Property VNG GCond MSGC SGDD Avg. | Whole
Density% Cora 5217 82.28 22.00 100.00 64.11 | 0.14
(Struc.) Corr. -0.81 0.07 0.55 0.13 -0.02 -
Max Eigenvalue Cora 3.73 34.90 1.69 14.09 13.60 | 169.01
(Spectra) Corr. 0.85 0.25 0.95 0.28 0.58 -
DBI Cora 3.69 1.84 0.70 4.34 2.64 9.28
(Label & Feature) Corr. 0.81 0.93 0.94 0.97 091 -
DBI-AGG Cora 3.59 0.38 0.57 0.18 1.18 ‘ 4.67
(Label & Feat. & Stru.) Corr. 0.99 0.93 0.95 0.89 0.94 -
Homophily Cora 0.14 0.16 0.19 0.13 0.16 ‘ 0.81
(Label & Struc.) Corr. -0.83 -0.68 -0.46 -0.80 -0.69 -

as hyperparameters in future studies. Obs. 10: Better coreset selection methods do not guarantee
better GC initialization. When we compare Figure 5| with coreset and coarsening columns in Table
we find that the best one, Herding, is not necessarily the best data initialization method for GC. This
finding cautions that future research should carefully combine different graph reduction methods.

4.7 Graph Property Preservation

We explore the relationship between graph property preservation and structure-based GC methods.
We calculate the metrics related to different graph properties for the condensed graph.

Obs. 11: Only the properties related to node features and aggregated features, i.e., DBI and DBI-
AGG, are relatively preserved in condensed graphs. Despite examining various graph-size-agnostic
graph properties, our results in Table[5|show that none of the absolute values tend to be preserved.
Consequently, we resort to the Pearson correlation between metrics in the original and condensed
graphs. From the results, we can conclude that only DBI and DBI-AGG are relatively preserved, as
they have average correlation coefficients of 0.91 and 0.94. Therefore, we suggest that researchers
explicitly preserve these two properties to potentially bolster performance. Notably, we observed
that MSGC preserves the maximum eigenvalue up to 0.94. As further evidence, the latest method,
GDEM [37], focuses on learning to preserve eigenvectors, supporting the idea that maintaining
spectral properties may be beneficial. In contrast, Density appears to be the least important property
to preserve among these GC methods. Additionally, we observe that a homophilous graph is often
condensed into a heterophilous graph while still achieving high performance. This finding suggests
that the relationship between GNN performance and homophily [57, 58] need to be reconsidered.
Obs. 12: Preserving Density %, DBI, and Homophily tends to be beneficial for downstream
tasks. As shown in Table|17} the Correlation column reports the Pearson correlation between average
test accuracy and each property metric. Density%, DBI, and Homophily exhibit stronger correlations
with downstream performance, while Max Eigen and DBI-AGG show weaker associations.

5 Conclusion and Outlook

This paper establishes the first benchmark for GC methods with multi-dimension evaluation, providing
novel insights on privacy preservation, denoising ability, and design choices of current GC methods.
The findings from our experimental results inspire the following future directions:

(1) Better performance and scalability. Future work can focus on closing the gap between GC
methods and whole dataset training, and scaling to larger datasets and higher reduction rates.

(2) Comprehensive Privacy Preservation. Future work can exploit the privacy preservation advan-
tage of GC methods to synthesize graphs that safeguard additional types of privacy.

(3) Stronger Denoising Ability. Future work can further explore the denoising ability of graph
condensation methods under diverse settings, such as feature attacks and out-of-distribution
(OOD) and develop techniques to enhance their robustness. Furthermore, it would also be of
interest to incorporate GNN defense methods to enhance the denoising ability of GC methods.

(4) Leveraging coreset selection or coarsening. Future work can combine powerful coreset selec-
tion and graph coarsening methods, making GC competitive in both efficiency and performance.

10

Acknowledgement

This research was supported by the U.S. National Science Foundation under Award No. 2504088.
The first authors, Shengbo Gong and Juntong Ni, gratefully acknowledge Tingting Qi and Nan Li for
their valuable support and encouragement during the preparation of this paper.

References

[1] Patrick Reiser, Marlen Neubert, André Eberhard, Luca Torresi, Chen Zhou, Chen Shao, Hous-
sam Metni, Clint van Hoesel, Henrik Schopmans, Timo Sommer, et al. Graph neural networks
for materials science and chemistry. Communications Materials, 3(1):93, 2022.

[2] Zhichun Guo, Bozhao Nan, Yijun Tian, Olaf Wiest, Chuxu Zhang, and Nitesh V Chawla.
Graph-based molecular representation learning. International Joint Conference on Artificial
Intelligence, 2023.

[3] Hao Wang, Jiaxin Yang, and Jianrong Wang. Leverage large-scale biological networks to
decipher the genetic basis of human diseases using machine learning. Artificial Neural Networks,
pages 229-248, 2021.

[4] Racha Gouareb, Alban Bornet, Dimitrios Proios, S6nia Gongalves Pereira, and Douglas Teodoro.
Detection of patients at risk of multidrug-resistant enterobacteriaceae infection using graph
neural networks: A retrospective study. Health Data Science, 3:0099, 2023.

[5] Chenfei Ye, Yixuan Zhang, Chen Ran, and Ting Ma. Recent progress in brain network models
for medical applications: a review. Health Data Science, 4:0157, 2024.

[6] Zewen Liu, Guancheng Wan, B Aditya Prakash, Max SY Lau, and Wei Jin. A review of graph
neural networks in epidemic modeling. Proceedings of the 30th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2024.

[7] Yu Wang, Yuying Zhao, Yi Zhang, and Tyler Derr. Collaboration-aware graph convolutional
network for recommender systems. In Proceedings of the ACM Web Conference 2023, 2023.

[8] Kaize Ding, Albert Jiongqgian Liang, Bryan Perozzi, Ting Chen, Ruoxi Wang, Lichan Hong,
Ed H Chi, Huan Liu, and Derek Zhiyuan Cheng. Hyperformer: Learning expressive sparse
feature representations via hypergraph transformer. In Proceedings of the 46th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 2062—
2066, 2023.

[9] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907, 2016.

[10] Petar Velickovié, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Li0, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018.

[11] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and Philip S Yu. A
comprehensive survey on graph neural networks. arXiv preprint arXiv:1901.00596, 2019.

[12] Jiajun Zhou, Zhi Chen, Min Du, Lihong Chen, Shanqging Yu, Guanrong Chen, and Qi Xuan. Ro-
bustecd: Enhancement of network structure for robust community detection. /[EEE Transactions
on Knowledge and Data Engineering, 35(1):842-856, 2021.

[13] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. Advances in neural information processing systems, 30, 2017.

[14] Wei Jin, Lingxiao Zhao, Shichang Zhang, Yozen Liu, Jiliang Tang, and Neil Shah. Graph con-
densation for graph neural networks. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=WLEx3Jo4QaB.

[15] Shichang Zhang, Atefeh Sohrabizadeh, Cheng Wan, Zijie Huang, Ziniu Hu, Yewen Wang, Jason
Cong, Yizhou Sun, et al. A survey on graph neural network acceleration: Algorithms, systems,
and customized hardware. arXiv preprint arXiv:2306.14052, 2023.

[16] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and Alexei A Efros. Dataset distillation.
arXiv preprint arXiv:1811.10959, 2018.

[17] Ruonan Yu, Songhua Liu, and Xinchao Wang. Dataset distillation: A comprehensive review.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

11

https://openreview.net/forum?id=WLEx3Jo4QaB

[18] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Dc-bench: Dataset condensation bench-
mark. Advances in Neural Information Processing Systems, 35:810-822, 2022.

[19] Mohammad Hashemi, Shengbo Gong, Juntong Ni, Wenqi Fan, B Aditya Prakash, and Wei
Jin. A comprehensive survey on graph reduction: Sparsification, coarsening, and condensation.
International Joint Conference on Artificial Intelligence (IJCAI), 2024.

[20] Xinyi Gao, Junliang Yu, Wei Jiang, Tong Chen, Wentao Zhang, and Hongzhi Yin. Graph
condensation: A survey. arXiv preprint arXiv:2401.11720, 2024.

[21] Hongjia Xu, Liangliang Zhang, Yao Ma, Sheng Zhou, Zhuonan Zheng, and Bu Jiajun. A survey
on graph condensation. arXiv preprint arXiv:2402.02000, 2024.

[22] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger.
Simplifying graph convolutional networks. In International conference on machine learning,
pages 6861-6871. PMLR, 2019.

[23] Fabrizio Frasca, Emanuele Rossi, Davide Eynard, Ben Chamberlain, Michael Bronstein,
and Federico Monti. Sign: Scalable inception graph neural networks. arXiv preprint
arXiv:2004.11198, 2020.

[24] Qiying Pan, Ruofan Wu, LIU Tengfei, Tianyi Zhang, Yifei Zhu, and Weigiang Wang. Fedgkd:
Unleashing the power of collaboration in federated graph neural networks. In NeurIPS 2023
Workshop: New Frontiers in Graph Learning, 2023.

[25] Mucong Ding, Xiaoyu Liu, Tahseen Rabbani, and Furong Huang. Faster hyperparameter search
on graphs via calibrated dataset condensation. In NeurIPS 2022 Workshop: New Frontiers in
Graph Learning, 2022.

[26] Noveen Sachdeva and Julian McAuley. Data distillation: A survey. Transactions on Machine
Learning Research, 2023.

[27] Yilun Liu, Ruihong Qiu, and Zi Huang. Geondenser: Benchmarking graph condensation. arXiv
preprint arXiv:2405.14246, 2024.

[28] Qingyun Sun, Ziying Chen, Beining Yang, Cheng Ji, Xingcheng Fu, Sheng Zhou, Hao Peng,
Jianxin Li, and Philip S Yu. Gce-bench: An open and unified benchmark for graph condensation.
arXiv preprint arXiv:2407.00615, 2024.

[29] Wei Jin, Xianfeng Tang, Haoming Jiang, Zheng Li, Danqing Zhang, Jiliang Tang, and Bing Yin.
Condensing graphs via one-step gradient matching. In Proceedings of the 28th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 720-730, 2022.

[30] Yuchen Zhang, Tianle Zhang, Kai Wang, Ziyao Guo, Yuxuan Liang, Xavier Bresson, Wei Jin,
and Yang You. Navigating complexity: Toward lossless graph condensation via expanding
window matching. arXiv preprint arXiv:2402.05011, 2024.

[31] Jian Gao and Jianshe Wu. Multiple sparse graphs condensation. Knowledge-Based Systems,
278:110904, 2023.

[32] Beining Yang, Kai Wang, Qingyun Sun, Cheng Ji, Xingcheng Fu, Hao Tang, Yang You, and
Jianxin Li. Does graph distillation see like vision dataset counterpart? Advances in Neural
Information Processing Systems, 36, 2024.

[33] Xin Zheng, Miao Zhang, Chunyang Chen, Quoc Viet Hung Nguyen, Xingquan Zhu, and Shirui
Pan. Structure-free graph condensation: From large-scale graphs to condensed graph-free data.
Advances in Neural Information Processing Systems, 36, 2024.

[34] George Cazenavette, Tongzhou Wang, Antonio Torralba, Alexei A Efros, and Jun-Yan Zhu.
Dataset distillation by matching training trajectories. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages 4750—4759, 2022.

[35] Mengyang Liu, Shanchuan Li, Xinshi Chen, and Le Song. Graph condensation via receptive
field distribution matching. arXiv preprint arXiv:2206.13697, 2022.

[36] Lin Wang, Wengqi Fan, Jiatong Li, Yao Ma, and Qing Li. Fast graph condensation with
structure-based neural tangent kernel. arXiv preprint arXiv:2310.11046, 2023.

[37] Yang Liu, Deyu Bo, and Chuan Shi. Graph condensation via eigenbasis matching. arXiv
preprint arXiv:2310.09202, 2023.

[38] Mridul Gupta, Samyak Jain, Vansh Ramani, Hariprasad Kodamana, and Sayan Ranu. Bonsai:
Gradient-free graph distillation for node classification. 2025.

12

[39] Mucong Ding, Yinhan He, Jundong Li, and Furong Huang. Spectral greedy coresets for graph
neural networks. arXiv preprint arXiv:2405.17404, 2024.

[40] Linfeng Cao, Haoran Deng, Chunping Wang, Lei Chen, and Yang Yang. Graph-skeleton:™ 1%
nodes are sufficient to represent billion-scale graph. arXiv preprint arXiv:2402.09565, 2024.

[41] Sariel Har-Peled and Akash Kushal. Smaller coresets for k-median and k-means clustering. In
Proceedings of the twenty-first annual symposium on Computational geometry, pages 126—134,
2005.

[42] Ozan Sener and Silvio Savarese. Active learning for convolutional neural networks: A core-set
approach. arXiv preprint arXiv:1708.00489, 2017.

[43] Max Welling. Herding dynamical weights to learn. In Proceedings of the 26th annual interna-
tional conference on machine learning, pages 1121-1128, 2009.

[44] Si Si, Felix Yu, Ankit Singh Rawat, Cho-Jui Hsieh, and Sanjiv Kumar. Serving graph com-
pression for graph neural networks. In The Eleventh International Conference on Learning
Representations, 2022.

[45] Andreas Loukas. Graph reduction with spectral and cut guarantees. Journal of Machine
Learning Research, 20(116):1-42, 2019.

[46] Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph
neural networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining, pages 675-684, 2021.

[47] Vasisht Duddu, Antoine Boutet, and Virat Shejwalkar. Quantifying privacy leakage in graph
embedding. In MobiQuitous 2020-17th EAI International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, pages 76-85, 2020.

[48] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey.
Journal of Machine Learning Research, 20(55):1-21, 2019.

[49] Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin
Wang. A comprehensive survey of neural architecture search: Challenges and solutions. ACM
Computing Surveys (CSUR), 54(4):1-34, 2021.

[50] David L Davies and Donald W Bouldin. A cluster separation measure. /EEE transactions on
pattern analysis and machine intelligence, (2):224-227, 1979.

[51] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in neural information processing systems, 33:7793-7804, 2020.

[52] Simon Geisler, Tobias Schmidt, Hakan Sirin, Daniel Ziigner, Aleksandar Bojchevski, and
Stephan Giinnemann. Robustness of graph neural networks at scale. Advances in Neural
Information Processing Systems, 34:7637-7649, 2021.

[53] Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jingdong Chen,
Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. Noise reduction in speech
processing, pages 1—4, 2009.

[54] Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Giinnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. In International Conference on Learning
Representations, 2018.

[55] Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks

on graphs with fast localized spectral filtering. Advances in neural information processing
systems, 29, 2016.

[56] Qitian Wu, Wentao Zhao, Chenxiao Yang, Hengrui Zhang, Fan Nie, Haitian Jiang, Yatao
Bian, and Junchi Yan. Sgformer: Simplifying and empowering transformers for large-graph
representations. In Advances in Neural Information Processing Systems, 2023.

[57] Xin Zheng, Yi Wang, Yixin Liu, Ming Li, Miao Zhang, Di Jin, Philip S Yu, and Shirui Pan.
Graph neural networks for graphs with heterophily: A survey. arXiv preprint arXiv:2202.07082,
2022.

[58] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Be-
yond homophily in graph neural networks: Current limitations and effective designs. Advances
in neural information processing systems, 33:7793-7804, 2020.

13

[59] Zhe Xu, Yuzhong Chen, Menghai Pan, Huiyuan Chen, Mahashweta Das, Hao Yang, and
Hanghang Tong. Kernel ridge regression-based graph dataset distillation. In Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages 28502861,
2023.

[60] Natalia Ponomareva, Hussein Hazimeh, Alex Kurakin, Zheng Xu, Carson Denison, H Brendan
McMabhan, Sergei Vassilvitskii, Steve Chien, and Abhradeep Guha Thakurta. How to dp-fy ml:
A practical guide to machine learning with differential privacy. Journal of Artificial Intelligence
Research, 77:1113-1201, 2023.

[61] Jiaxuan You, Zhitao Ying, and Jure Leskovec. Design space for graph neural networks. Advances
in Neural Information Processing Systems, 33:17009-17021, 2020.

[62] Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active
surveying for collective classification. In 10th international workshop on mining and learning
with graphs, volume 8, page 1, 2012.

[63] Weihua Hu, Matthias Fey, Hongyu Ren, Maho Nakata, Yuxiao Dong, and Jure Leskovec. Ogb-
Isc: A large-scale challenge for machine learning on graphs. arXiv preprint arXiv:2103.09430,
2021.

[64] Hanqging Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna.
Graphsaint: Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931,
2019.

[65] Shebuti Rayana and Leman Akoglu. Collective opinion spam detection: Bridging review
networks and metadata. In Proceedings of the 21th acm sigkdd international conference on
knowledge discovery and data mining, pages 985-994, 2015.

[66] Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric.
In ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

[67] Amy N Langville and Carl D Meyer. Deeper inside pagerank. Internet Mathematics, 1(3):
335-380, 2004.

[68] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: Bring order to the web. In Proc. of the 7th International World Wide Web Conf, 1998.

[69] Arthur L Liestman and Thomas C Shermer. Additive graph spanners. Networks, 23(4):343-363,
1993.

[70] Yilun Liu, Ruihong Qiu, and Zi Huang. Cat: Balanced continual graph learning with graph
condensation. In 2023 IEEE International Conference on Data Mining (ICDM), pages 1157—
1162. IEEE, 2023.

[71] Yi Zhang, Yuying Zhao, Zhaoqing Li, Xueqi Cheng, Yu Wang, Olivera Kotevska, S Yu Philip,
and Tyler Derr. A survey on privacy in graph neural networks: Attacks, preservation, and
applications. IEEE Transactions on Knowledge and Data Engineering, 2024.

[72] Zaixi Zhang, Qi Liu, Zhenya Huang, Hao Wang, Chee-Kong Lee, and Enhong Chen. Model
inversion attacks against graph neural networks. IEEE Transactions on Knowledge and Data
Engineering, 35(9):8729-8741, 2022.

[73] Neil Zhengiang Gong and Bin Liu. Attribute inference attacks in online social networks. ACM
Transactions on Privacy and Security (TOPS), 21(1):1-30, 2018.

[74] Sitao Luan, Chenqing Hua, Qincheng Lu, Jiagi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Is heterophily a real nightmare for graph neural networks to do node
classification? arXiv preprint arXiv:2109.05641, 2021.

[75] Yaxin Li, Wei Jin, Han Xu, and Jiliang Tang. Deeprobust: A pytorch library for adversarial
attacks and defenses. arXiv preprint arXiv:2005.06149, 2020.

[76] Junfeng Fang, Xinglin Li, Yongduo Sui, Yuan Gao, Guibin Zhang, Kun Wang, Xiang Wang,
and Xiangnan He. Exgc: Bridging efficiency and explainability in graph condensation. In
Proceedings of the ACM on Web Conference 2024, pages 721-732, 2024.

[77] Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? arXiv preprint arXiv:2106.06134, 2021.

14

NeurlIPS Paper Checklist

1.

Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We highlight the efficiency problem in current graph condensation method,
which also prohibit the evolving ability in real world use.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: See Section 5.

. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See the Appendix [A.5]

. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See the provided repository link.

. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Appendix[A.5]

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The experimental part reports standard error.

. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix [A.5]

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

15

https://neurips.cc/public/EthicsGuidelines

10.

11.

12.

13.

14.

15.

16.

Answer: [Yes]
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:

Justification: The positive could be save the energy and negative could be generating data
which is not explainable as original data.

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]
Justification: We discuss the traceability, which mitigate the misuse of synthetic data.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: Credited and the license is CC BY 4.0.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: In the README.md in the provided repository.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: We do not have crowdsourcing experiments.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: We do not have subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
Justification: LLM is used only for writing.

16

A Appendix

A.1 Comparison with concurrent benchmarks

To better illustrate the differences of scope and details of our benchmark and others, we create the

table below:

Table 6: Comparison between our GC4NC and two concurrent works. "OOM" means if the benchmark
explore when the GC methods report out-of-memory error. In "Impact of Initialization".

Benchmark Scope

GCondenser [27

GC-Bench [28

GC4NC

Methods
Coreset & Sparsification

Coarsening

Condensation |
Gradient Matching
Trajectory Matching
Others

Random, KCenter

GCond, DosCond, SGDD
SFGC
GCDM, DM, GDEM

Random, KCenter, Herding

GCond, DosCond, SGDD
SFGC, GEOM
GCDM, DM, KiDD, Mirage

Cent-D, Cent-P, Random,
KCenter, Herding, TSpanner
Averaging, VNG, Clustering, VN

GCond, DosCond, SGDD, MSGC
SFGC, GEOM
GCDM, GDEM, GCSNTK

Tasks

Node classification

Node classification, link prediction,
node clustering, graph classification

Node classification

Evaluation Protocols

Performance on standard condensation rate v/ ' v

Efficiency & Scalability Time Time, Memory, OOM Time, Memory, Disk Space, OOM
Transferability Cross-model Cross-model (include GraphTransformer) Cross-model (include GraphTransformer)
Privacy preservation - - v

Denoising Ability v

Neural Architecture Search - v

Continual learning v -

Impact of inner mechanism

Impact of if synthesizing the structure v v v

Impact of Initialization 3 strategies 5 strategies 5 coreset and coarsening strategies
Impact of validators v - -

Graph properties Homophily Density, Eigenvalue, DBI, DBI-AGG and Homophily

From this table, our contributions are evident. First, we incorporate a broader range of traditional
coreset and coarsening methods, along with additional condensation methods focused on node
classification (NC). Second, we provide a more comprehensive analysis of efficiency and scalability,
including disk space considerations. Third, we explore the application of GC methods in terms of
privacy preservation and denoising effects. Finally, our data initialization aligns with the coreset and
coarsening methods, resulting in elegant, reusable code and enabling a preliminary trial of multi-layer
condensation.

Table[6|may also show some limitations of our benchmark, though most of these stem from differences
in opinion and focus.

* As our title suggests, GC4NC is primarily a benchmark for NC, since the majority (ap-
proximately 90%) of condensation papers have concentrated on this task. That’s why we
do not include graph classification method such as KiDD [59] and we have fewer datasets
compared to GC-Bench.

* We argue that the condensation model and validator can be viewed as hyperparameters,
similar to how methods like GEOM approach it. Therefore, we do not study the impact of
them as they are just selected by datasets.

» With regard to another important application, Continual Learning (CL), GCondenser [27]
points out that many existing methods, including GDEM, SFGC, and GEOM, are incompat-
ible with graph continual learning frameworks. This somewhat lowers the priority of CL as
they are most competitive ones.

A.2 Limitations and Future Directions

We anticipate that our benchmark and insights will contribute to progress in the field and encourage
the development of more practical GC methods going forward. However, GC4NC is not without
limitations and some areas of benchmarking can be further explored. These include examining the
effectiveness of other privacy techniques such as Differential Privacy [60], evaluating denoising ability
against other types of attacks, measuring NAS effectiveness in larger architecture spaces such as
Graph Design Space [61]], examining the transferability of condensed knowledge to various domains
and downstream tasks, and identifying and preserving certain graph properties. Our heterophily
analysis was performed on a single dataset due to the well-known scarcity of publicly available,

17

Table 7: Datasets Statistics

Dataset ~ #Nodes #Edges #Classes #Features #Training/Validation/Test
Citeseer 3,327 4,732 6 3,703 120/500/1000
Cora 2,708 5,429 7 1,433 140/500/1000
Pubmed 19,717 88,648 3 500 60/500/1000
Arxiv 169,343 1,166,243 40 128 90,941/29,799/48,603
Flickr 89,250 899,756 7 500 44,625/22,312/22,313
Reddit 232,965 57,307,946 210 602 15,3932/23,699/55,334
Yelp 45,954 3,846,979 2 32 36,762/4,596/4,596

large-scale heterophilous graphs. Additional areas for exploration based on our benchmark include
assessing the impact of data augmentation at various stages of GC and examining the influence of
different evaluation models.

A.3 Experiments Setup

In an attempt to address unfairness in this area, we unify some of the settings in GC papers while
leaving other hyperparameters as reported in their papers or source code. First, we restrict one set
of hyperparameters for each dataset, ensuring that they do not vary across different reduction rates.
For methods that do not follow this setting, we use the set of hyperparameters from the highest
reduction rate. This setting is more practical because tuning for every reduction rate can be very
expensive. Second, we set the evaluation interval to the number of epochs divided by 10 to balance
the frequency of intermediate evaluations and total epochs for each method. This strategy will benefit
fast-converging and stable methods while penalizing those that rely on long epochs and frequent
validation. Third, we adopt GCN in all evaluation parts, training a 2-layer GCN with 256 hidden
units on the reduced graph. We then evaluate it on the validation and test sets of the original graph,
using 300 epochs without early stopping. We select condensed graphs with best validation accuracy
for final evaluation. To mitigate the effect of randomness, we run each evaluation 10 times and
report the average performance. The above GNN training settings are applied across intermediate,
final evaluations, and all other experiments. Additionally, sparsification is only applied to the final
evaluation, with the threshold adhering to the reported results in the original paper. Specifically,
for structure-free methods, an identity matrix is used as the adjacency matrix during training stage.
Then, in inference stage, the original graph is input into the trained model. To benchmark methods
under both transductive and inductive settings, we use the former for Citeseer, Cora [9]|, Pubmed [62]]
and Arxiv [63], and the latter for Flickr, Reddit [64] and Yelp [65]. All data preprocessing and
training/validation/test set splits follow the GCond paper [14]]. For datasets not used in GCond paper,
we follow the settings of SGDD paper [32]]. More details about datasets and implementation are in

Appendix and

A.4 Datasets

We evaluate all the methods on four transductive datasets: Cora, Citeseer, Pubmed and Arxiv, and
three inductive datasets: Flickr, Reddit and Yelp. The reduction rate is calculated by (number of
nodes in condensed graph) / (number of nodes in training graph). Specifically, the training graph is
defined as the whole graph in transductive datasets, and only the training set for inductive datasets.
Dataset statistics are shown in Table

For the choices of reduction rate r, we divide the discussion into two parts: for transductive datasets
(i.e. Citeseer, Cora and Arxiv), their training graph is the whole graph. For Citeseer and Cora, since
their labeling rates of training graphs are very small (3.6% and 5.2%, respectively), we choose r to
be {10%, 25%, 50%} of the labeling rate. For Arxiv, the labeling rate is 53% and we choose r to be
{1%, 5%, 10%} of the labeling rate; for inductive datasets (i.e. Flickr, Reddit and Yelp), the nodes of
their training graphs are all labeled (labeling rate is 100%). Thus, the fraction of labeling rate is equal
to the final reduction rate r. The labeling rate, fraction of labeling rate and final reduction rate r of
each dataset are shown in Table

18

Table 8: Explanation of Reduction Rate under transductive and inductive settings

Dataset Labeling Rate Reduction Rate of Labeled Nodes = Reduction Rate r

10% 0.36%

Citeseer 3.6% 25% 0.9%
50% 1.8%

10% 0.5%

Cora 5.2% 25% 1.3%
50% 2.6%

1% 0.3%
Pubmed 0.3% 10% 3%
50% 15%

1% 0.05%

Arxiv 53% 5% 0.25%
10% 0.5%

0.1% 0.1%

Flickr 100% 0.5% 0.5%
1% 1%

0.05% 0.05%

Reddit 100% 0.1% 0.1%
0.2% 0.2%

0.05% 0.05%

Yelp 100% 0.1% 0.1%
0.2% 0.2%

A.5 Implementation Details

Since the node selection of Random, KCenter, and Herding varies too much in each random seed, we
run these three methods three times, and all the results in Table [T|represent the average performance.
We conduct all the experiments on a cluster mixed with NVIDIA A100, V100, K80 and RTX3090
GPUs. Notably, GDEM can only be reproduced by RTX3090 with their provided eigendecomposition.
We use Pytorch (modified BSD license) and PyG [66] (MIT license) to reproduce all those methods
in a user-friendly and unified way.

How other variables are held constant in each comparison? We have used a unified pipeline
(Section 4.1) where each GC method is paired with its author-recommend hyperparameters including
the initialization. The resulting condensed graph is then evaluated with a standardized GCN archi-
tecture and standard GCN hyperparameters, ensuring a fair comparison of the condensed graphs
themselves.

* Privacy and NAS: We have mentioned we use the condensed graph in Line 156 and
Line 178. For most subsequent analyses, we use the fixed condensed graphs from the
main evaluation. We then vary only the specific evaluation protocol (e.g., the membership
inference classifier for privacy).

« Initialization and Denoising: For the former, we fix the other parts of condensation methods
following the Section 4.1 and vary only the initialization. For the latter, we fix the entire
pipeline but vary the input data by adding noise.

A.6 Performance and Scalability

Table [provides the complete average accuracy with the standard deviation of 10 runs results.
GDEM’s results are included here but not in main content due to its reproducibility challenges on
larger datasets. We also append two coreset selection baselines first introduced by [40]: Cent-D
selects nodes based on their degree, prioritizing those with the highest connectivity. Cent-P [67]]
selects nodes with high PageRank [|68]] values, prioritizing those that are more central and influential
in the graph structure. We also explore the potential of one traditional sparsification method called
TSpanner [69]] which only reduces the number of edges and preserves the shortest distance property.

19

Note that due to the reproducibility challenges of GDEM on larger datasets in our experiments, we
have focused on its performance with the three small datasets and have not included it in the main
content.

Table 9: Test accuracy and standard error of each graph reduction method across different datasets
and three representative reduction rates for each dataset. The best and second-best results, excluding

the whole graph training results, are marked in bold and underlined, respectively.

Reduction

Dataset

rate (%)

Coreset & Sparsification

Coarsen

Condensation

Structure-free

Structure-based

‘Whole

Cent-D Cent-P Random Herding K-Center TSpanner Averaging VN

VNG GEOM

SFGC GCSNTK GCDMX GCondX GCond DosCond MSGC

SGDD GDEM

0.36
Citeseer 0.90

42.86 +2737.78 +1335.37 £2843.73 £1641.43 +1471.83 03 69.75 +06 34.32 +£5966.14 +0367.61 £0766.27 £ 08 63.51 +19 70.65 +0567.79 +£0770.05 +2169.41 +0560.24 +6071.87 +0.667.88 + 15
58.77 £0552.83 £0450.71 +0859.24 +0451.15 £ 11 71.62 0.4 69.59 - 05 40.14 +5366.07 +0.470.70 057027 +07 62.91 08 71.27 £0669.69 +0569.15 +1270.83 +0472.08 £0770.52 +0670.13 + 11 72.6

1.80 62.89 +0463.37 +0.462.62 £0666.66 +0.559.04 +09 71.60 + 0.4 69.50 +06 41.98 +£7.065.34 +0673.03 +0372.36 £ 05 63.90 34 72.08 +0268.38 £0569.35 £ 0872.18 +0672.21 £0469.65 £1771.74 09
0.50 57.79 +1758.44 £1735.14 £2551.68 £2144.64 £4479.79 £04 7594 +0724.62 +5770.40 £ 0678.14 £0575.11 £22 71.58 £09 79.21 +0479.74 +0580.17 + 05 80.65 + 0.6 80.54 + 0380.15 +0554.76 £ 45
Cora 130 66.45 £2266.38 +1763.63 +1368.99 +0763.28 +1480.84 + 03 75.87 + 06 51.07 +5874.48 £ 0582.29 +0.679.55 + 03 71.22 + 26 80.26 + 03 78.67 +0480.81 + 0.580.85 + 04 80.98 + 0580.29 +0872.87 + 15 81.5
260 7579 £0775.64 £1672.24 £0673.77 £0970.55 £ 14 80.41 + 03 75.76 + 11 56.75 +5476.03 + 0.4 82.82 1 0280.54 + 05 73.34 1 06 80.68 +0378.60 +0380.54 +0781.15 +0580.94 +0481.04 1 0581.76 + 05
002 56.16 +2657.28 +1249.46 +1662.91 = 1579.18 +£0262.91 = 1.5 74.09 + 06 75.60 + 04 75.60 + 04 69.64 + 1467.61 +2029.45 +10977.62 +0272.03 +1677.36 £0758.13 £2275.25 +0778.11 +03
Pubmed 0.03 55.61 +1.662.50 +1056.10 + 1569.28 + 1.6 65.59 +2.4 79.39 + 03 75.60 + 0.4 74.09 +0675.72 +0376.21 +£0766.89 +33 68.37 £30 76.63 +1272.05 + 1.6 78.05 +0352.70 +03 78.26 + 03 78.07 + 03 78.05 78.6
0.15 71.95+0573.35 £0471.84 £0775.53 £0.474.00 £02 78.39 £02 75.60 +04 73.68 +1.677.53 £0578.49 £0267.61 £4.1 69.89 £22 77.48 £0571.97 £0576.46 +0576.45 +0.178.20 £0275.95 03 +
0.05 32.88 +2736.48 +2050.39 +1451.49 £0750.52 +05 59.62 04 OOM 54.89 +0364.91 +0.464.91 +05 58.21 +17 60.04 +0459.40 +0560.49 +0455.70 + 03 57.66 + 0.4 58.50 + 02
Arxiv 025 48.8511147.90 +0958.92 +0858.00 +0555.28 + 06 59.96 £03 OOM 59.66 +0268.78 1 0.166.58 + 05 59.98 117 60.59 +0.462.46 +0363.88 +0257.39 +0264.85 +0359.18 102 714
0.50 52.01 £0555.65 +0560.19 +0557.70 +0258.66 + 0.4 59.94 03 OOM 60.93 £0269.59 +026 54.73 +50 60.71 £0759.93 +0564.23 £0261.06 +£0665.73 +0263.76 + 02
0.10 40.70 +0440.97 +0942.94 +0342.80 +0.143.01 +05 37.93 +0332.77 +5744.33 + 0347.15 + 01 46.38 £ 02 41.85 +31 43.75 + 0346.66 +0146.75 +0145.87 +0346.21 +0.146.69 + 0.1
Flickr 050 42.90 +0344.06 +0544.54 +0543.86 +0543.46 + 08 37.76 +0433.79 +5243.30 +0646.71 +0246.38 + 02 33.39 + 60 45.05 +0346.69 +0.147.01 +0245.89 +0346.77 +0.146.39 +02 474
100 42.62 £0244.51 £0344.68 £0645.12 £0443.53 06 37.66 +£0334.39 £6043.84 £0546.13 £0246.61 201 31.12 +:42 45.88 +0.146.58 +0.146.99 +0145.81 +£0146.12 +0246.24 +03
0.05 40.00 +1.145.83 +1740.13 £0946.88 £0.440.24 + 05 882301 OOM 69.96 +0590.63 £0290.18 £t02 OOM 87.28 +0286.56 +0285.39 + 0.2 86.56 + 0.4 87.62 £ 0.1 87.37 + 02
Reddit 0.10 50.47 +£1.451.22 £1455.73 £0559.34 £0748.28 + 07 883201 OOM 76.95 +0291.33 0.1 8 OOM 89.96 +0.188.25 £0389.82 +0.188.32 +0288.15 +0.188.73 £ 03 94.4
020 5531 +1861.56 +0258.39 £2373.46 £0556.81 +1.7 883301 OOM 8152069103 £0390.71 01 OOM 89.08 +0.188.73 £0290.42 + 0.1 88.84 +0287.03 +0.190.65 + 0.1
0.05 48.67 +0346.81 +0146.08 +0046.08 +0046.07 + 0.0 55.04 +0151.52 +1649.24 +0152.80 +2246.20 01 OOM 50.75 +0.452.44 + 045230 +0151.10 +0352.94 +0252.02 +02
Yelp 0.10 51.03 +0.146.08 +0046.28 +0152.23 +0346.22 + 00 53.51 +0851.68 +1047.33 £0547.56 +0247.96 +00 OOM 52.49 +0.149.70 +1553.22 + 01 52.54 +0150.97 +0854.13 + 02 582
0.20 46.08 £0046.08 £0049.31 +0447.49 +0146.85 £o2 54.42 £0352.63 £1.148.63 £0449.48 £0746.70 01 OOM 55.89 +0248.77 +1351.76 £0252.19 +£0551.35 +0552.86 + 0.1

Table 10: Experiment results under hyperparameter searching. The search space is shown in
Table @ The best results, excluding the whole graph training results, are marked in bold.

Condensation

Reduc. Coreset & Sparsification Coarsen

rate (%)
Random K-Center

Dataset ‘Whole

Structure-free Structure-based

VNG GEOM SFGC GCondX GCond DosCond SGDD

37.67 +245 45.11 £219 69.97 +0.36 64.37 +1.2968.90 + 0.64 66.96 -+ 1.47 68.29 + 1.30 73.63 + 032 69.53 £ 0.65 71.90 + 0.24
47.13 +1.32 55.09 + 114 69.97 +036 69.37 +0.6273.20 +0.35 70.66 +0.23 69.73 + 046 70.93 £ 051 70.97 +£02970.10 £ 073
64.21 072 62.82 £078 70.01 £02769.35 +0.70 74.36 + 030 72.37 £ 041 69.19 +0.4770.69 +0.4772.73 £03570.11 £ 093

47.93 £096 49.92 +3.06 76.55 £09170.61 +0.6479.03 +0.61 76.80 +2.18 80.04 + 0.60 80.63 -+ 0.48 80.43 +0.72 81.58 + 097
69.54 £2.60 63.16 +137 76.99 +0.6775.72 +0.21 83.10 + 0.41 80.03 +0.61 79.22 +0.2781.01 +05081.19 +0.34 81.24 +0.79 81.81
71.70 £ 192 72.02 £ 121 76.41 +£1.4777.19 +05283.50 + 043 81.64 £ 0.53 78.98 £ 0.31 81.45 +0.46 81.06 + 053 79.80 + 0.85

50.29 +133 49.20 £035 59.59 +0.38 55.36 +0.45 64.27 +£0.12 65.07 £ 049 59.63 +0.37 55.83 +0.68 56.74 +03659.13 + 045
59.26 +0.45 58.05 +0.44 59.94 +£03261.27 +0.19 68.75 +0.10 66.63 028 62.43 + 031 64.79 +0.2757.56 +0.2256.86 +0.42 71.22
62.49 +075 60.77 +£037 59.93 +0.2964.78 +0.1369.63 + 0.16 67.43 +£0.29 60.17 +0.54 64.83 +0.2461.26 +0.4561.15 +0.20

43.07 +0.56 42.68 +0.68 44.48 +0.6446.14 £03047.14 + 0.11 46.93 +0.25 46.74 +0.1246.63 +£0.1145.92 +0.1946.79 +0.14
44.86 +0.16 44.30 £038 44.35 £0.7943.23 £0.4047.01 +0.17 47.22 +0.15 46.76 +£0.1047.13 £0.1446.20 +£0.1846.38 £ 0.15
45.63 +024 44.70 +047 44.38 £07843.97 £05246.93 + 024 47.02 +0.0946.63 +0.1646.74 +0.1546.55 +£0.1446.54 + 0.08

40.32 + 120 43.52 +204 88.65 +£0.1571.34 +£03491.42 + 0.08 90.18 + 0.14 86.92 +0.26 86.53 + 0.21 86.66 + 0.1587.71 +0.20
0.10 56.37 +2.05 48.97 +2.72 88.66 +0.15 84.62 + 023 91.57 + 0.04 89.88 +0.19 88.37 +0.3587.81 +0.22 88.44 +0.1588.88 + 025 93.95
0.20 63.56 +1.08 56.27 +2.99 88.60 +0.34 89.03 + 0.14 91.57 + 0.09 90.79 +0.09 88.99 +0.28 89.80 + 0.13 88.96 +0.23 90.66 + 0.09

Wins after tuning 0 0 0 0 10 3 0 2 0 0
Wins before tuning 0 1 0 0 10 0 0 2 1 1

Averaging

0.36
0.90
1.80

0.50
1.30
2.60

0.05
0.25
0.50

0.10
0.50
1.00

0.05

Citeseer

Cora

Arxiv

Flickr

Reddit

A.6.1 Details description for Test accuracy vs. total time Figure

Figure [T| compares test accuracy (y-axis) and total time (x-axis) for various graph condensation
methods applied to the Arxiv dataset. The methods are distinguished by different marker shapes and
colors: blue stars represent structure-free methods, red circles represent structure-based methods, and
green triangles represent distribution-based methods. The size of each marker indicates the reduction
rate, with smaller markers representing a reduction rate of 0.05%, medium markers 0.25%, and larger
markers 0.50%. Dashed lines connect markers corresponding to the same method across different
reduction rates, illustrating the method’s behavior under varying levels of graph condensation. To
enhance clarity, the name of each method will be positioned near the marker for its respective curve,
ensuring easy identification of methods and their corresponding performance trends.

A.6.2 Further analysis of experimental results

* Factors Affecting Performance in Arxiv and Reddit. We assume that the imbalanced label distri-
butions in these two datasets are the factors for the performance. Arxiv and Reddit datasets have a
larger number of classes and exhibit significant class imbalance compared to others. Consistent
with most GC works, our implementation ensures at least one instance per class, guaranteeing
representation for each class. However, this approach can cause distribution shifts. In contrast,

20

datasets like Cora, Citeseer, and Pubmed have more balanced training sets, leading to more stable
performance. This observation highlights the need for improved initialization methods in the GC
field to effectively handle datasets with numerous and imbalanced classes.

* Why Averaging Achieves the Best Performance on Yelp. This performance difference can be
attributed to the characteristics of the Yelp dataset, which is designed for anomaly detection and
evaluated using the F1-macro score. Averaging methods rely only on the average representations of
normal instances and anomalies, resulting in a simple decision boundary that aligns well with the
dataset’s requirements. In contrast, GC methods may struggle due to unbalanced class initialization,
often leading to overfitted decision boundaries for anomalies.

* High performance variance across datasets or methods. Some methods show high variance. A
key example is MSGC, whose performance on Citeseer drops sharply from 72.08% to 60.24% at
the 0.36% reduction rate. We hypothesize this instability stems from its reliance on multiple graph
initializations, which can lead to inconsistent results depending on the run. we believe it’s a design
mismatch. trajectory-matching objective appears overly sophisticated for a In other cases, like the
poorer performance of SFGC and GEOM on the Yelp dataset, Their simpler binary classification
task, making them difficult to tune effectively. This instability highlights a potential sensitivity in
certain designs. In contrast, methods like GCond and GCDM demonstrate much more consistent
performance across different datasets and reduction rates. We will add this detailed analysis to our
experimental section.

70{ g8EoM Reoc p
70 Y GEOM i 91 DD -EOM 9 isgg E
68 * 68 . A ohd [W
SFGC | s' 90 A 904 o
x MSGC 66 b | - { ’ - ¢
66 S £ laa . 8 g
g * . 2 o g | | 8
§64 ’r’v""/’GCO”d §64 g %GDD gsg Iiascﬂmmcmx gSQ [} SC“"ic«mux
e GCondX sGDD 5 ! 3] { 3 D ¢
8ea| ¢ go2 oo S8 ! Ses 3
< doom; g < ok /& et A~ P A,
I Y, % 60 i o ' 8 | A s ks sech
260% ¢ e i® Fe7 ‘ B Fer =
A
\ 8 o 4 T R
5) 0.5% 86 W o2 86 W oz
56 A 025% 0.1% i 0.1%
561 @DosCond PN A oos% A A 0.05% A A 005%
0 10000 20000 30000 540 20 40 60 000 10000 15000 0 10 20 30 40
Total Time (s) Epoch Time (s) Total Time (s) Epoch Time (s)

Figure 6: Performance vs. Total Time and Epoch Time on Arxiv (left two) and Reddit (right two).

A.7 Privacy Preservation

A.7.1 Step-by-step explanation of the MIA procedure

* First, an adversary trains a GCN model using only the publicly available condensed graph.

» Next, this adversary’s model is used to generate an output confidence score for each node
from the original graph (this includes both private training members and non-members).

* Finally, to measure the worst-case privacy leak, we perform a threshold analysis. We scan
all possible confidence score thresholds to find the optimal value that maximizes the attack’s
accuracy in distinguishing members from non-members. This highest achievable accuracy
is reported as the attack success rate.

A.7.2 Discussions

We focused on a fundamental privacy attack, confidence-based membership inference attack (MIA),
for the following reasons:

We are not merely benchmarking the privacy-preserving properties of existing GC methods but are
also broadening the scope of GC research to encompass critical areas such as privacy and robustness.
This expansion aims to demonstrate the potential of GC methods, inspiring more researchers to
recognize their promise and contribute to this emerging field. Since existing applications of GC
predominantly target Neural Architecture Search (NAS) [[14,[25] and continual learning [[70], we aim
to shift the conversation by highlighting their broader applicability.

To the best of our knowledge, no prior work has empirically validated the privacy-preserving claims
associated with GC. By targeting one of the most fundamental and well-studied privacy attacks,
MIA, our work provides essential, empirical evidence for assessing and understanding the privacy

21

capabilities of GC. This serves as a preliminary yet foundational step toward establishing a
systematic and rigorous framework for evaluating the privacy guarantees of GC methods. We have
chosen to omit additional privacy attacks for the following reasons:

* Model Inversion Attack (MIvA) [71]]: MIvA aims to reconstruct the original graph and assess
attack performance via link prediction tasks. In the context of GC, the condensation process
significantly reduces the number of nodes and reindexes all synthetic nodes. This reduction
diminishes the granularity necessary for accurate link reconstruction, making it difficult for an
attacker to determine specific node connections. Additionally, reindexing disrupts any direct
correspondence between condensed and original nodes, further obfuscating the true link structure.
Instead, we evaluate graph properties in Section 4.8, demonstrating that condensation alters most
graph properties. This suggests that the privacy of graph properties is maintained through the
condensed graph.

 Attribute Inversion Attack (AIA) [72]: AIA typically requires datasets with sensitive attributes,
which diverges from the standard datasets in mainstream GNN studies [72}[73]. As a benchmark
requiring unifying all baseline methods and datasets, Incorporating AIA would thus fall outside the
scope of our current work.

A.8 Transferability

A.8.1 Hyperparameters Searching

For fair evaluation between different architectures, we conduct hyperparameter searching while train-
ing each architecture on the condensed graph. We select the best hyperparameter combinations based
on validation results and report corresponding testing results. The search space of hyperparameters
for each GNN is as follows: Number of hidden units is selected from {64, 256}, learning rate is
chosen from {0.01, 0.001}, weight decay is 0 or Se-4, dropout rate is O or 0.5. For GAT, since we fix
the number of attention heads to 8, to avoid OOM, the number of hidden units is selected from {16,
64} and the search space of dropout rate is in {0.0, 0.5, 0.7}. Additionally, for SGC and APPNP, we
also explore the number of linear layers in {1, 2}. For APPNP, we further search for alpha in {0.1,
0.2}.

A.8.2 Hyperparameters Sensitivity Analysis

Figure 7: Hyperparameters Sensitivity Analysis on Condensed Graphs.

. dropout hidden Ir nlayers weight_decay

L
R T e [—
8¢

© 60

(]

E

0 0.5 64 128 256 0.001 0.01 2 3 4 0 0.0005 0.001

. dropout hidden Ir nlayers weight _decay

X 62
>~
3]
© <60 //‘
o ._/° - oo —o
Eelie))
S
© 958

z

0 0.5 64 128 256 0.001 0.01 2 3 4 0 0.0005 0.001
dropout hidden Ir nlayers weight_decay

(o]
o

./'—"'o—o ./’_°

reddit
Average Acc. (%)
~
w

~
o

0 0.5 64 128 256 0.001 0.01 2 3 4 0 0.0005 0.001

22

Figure 8: Hyperparameters Sensitivity Analysis on Whole Graphs.

. dropout hidden Ir nlayers weight _decay

280

o
g 2 '/'/‘ — ’\\'
o %75

—

()

>

<

0 0.5 64 128 256 0.001 0.01 2 3 4 0 0.0005 0.001
dropout hidden Ir nlayers weight _decay

ogbn-arxiv
Average Acc. (%)

o ~

(e} o

(O, o

o
©
=)

0 05 64 128 256 0.001 0.01 2 3 4 0 0.0005 0.001
. dropout hidden Ir nlayers weight _decay
934
2 3
©5<93.2
gy
~©93.0
()
>
<928
0 0.5 64 128 256 0.001 0.01 2 3 4 0 0.0005 0.001

To provide additional insights on how varying hyperparameters affect the performance of the GNN
model (e.g. GCN) trained on the whole or the condensed graphs, we further expand the search space
of hyperparameters for GCN as shown in Table[TT} The hyperparameter searching results for each
method are shown in Table We compare the winning times differences before and after tuning,
which shows that GC methods that perform better in the main table generally maintain superior
performance after hyperparameter tuning. Notably, methods like GEOM and GCond continue to
outperform others post-tuning, reinforcing the robustness of our initial fixed hyperparameter choices.

Table 11: Hyperparameter Search Space for Sensitivity Analysis

Hyperparameter Values

Number of hidden units {64, 128, 256}
Learning rate {0.01, 0.001}
Number of layers {2,3,4}

Weight decay {0, 0.0005, 0.001}
Dropout rate {0, 0.5}

Figure[7|and[§| These figures show that condensed and whole graphs exhibit similar sensitivity patterns
across the Cora, Ogbn-arxiv, and Reddit datasets, suggesting a consistent response to hyperparameter
tuning.

* Both condensed and whole graphs show low sensitivity to dropout and weight decay, with minimal
variations in accuracy, indicating these hyperparameters have a limited impact on performance.

* The hidden layer size positively influences accuracy in both condensed and whole graphs, with
larger sizes generally improving performance, highlighting the importance of hidden layer capacity
in model effectiveness.

* Learning rate sensitivity is also comparable between condensed and whole graphs; a higher
learning rate (0.01) tends to perform better in both cases, though with slight dataset-specific
variation (i.e. whole graph of Ogbn-arxiv).

* Notably, the number of layers impacts both graph types similarly, as accuracy consistently declines
with an increase in layers, suggesting that deeper architectures do not benefit either condensed or
whole graphs in three datasets.

23

Table 12: Property preservation check for GDEM, a method explicitly preserve the graph property.
Dataset Density % Max Eigenvalue DBI AGG Homophily

Cora 14.82 1.57 1.09 0.33
Whole 0.14 169.01 4.67 0.81
Citeseer 11.86 1.51 1.46 0.33
Whole 0.08 100.04 8.49 0.74
Pubmed 6.90 0.02 1.36 1.00
Whole 0.02 172.16 5.01 0.80

GCN B SGC & APPNP A Cheby V¥ GraphSage » GAT

70 2 ’
0 2e3. 00y _ * syPsgyes
5 g *y I8 " 3 K 24 X x
-] %65 L] 3 Xx x g XX
Y Y s X
=] ™ 5 X X ' 570
N B 8 n L 2 ¢ 8
<70{¢ & <ol o &] > <60
)])] X)]
g1, NS | £.8 .
173 173 173
65 50
e % x © 55 I x b ¢) 1 et z
A
60 > X 40 X
S @ OFNL QDL L L& OFF & ISP L L& OFF & ISP L
S F IO S SO S & O o’ & LS o0 S PITSF O S S OO
& *_o“?&@%o&o@ & gy EXCE S&E TS ey P E S&E ST S Y P E
(a) Corar=2.6% (b) Arxiv r=0.5% (c) Reddit r=0.1%

Figure 9: Performance of condensed graphs evaluated by different GNNs.

Thus, condensed and whole graphs have parallel sensitivity trends, where optimizing hidden layer
size and learning rate while managing network depth is likely to enhance performance across both
representations.

A.8.3 Relative and Absolute Accuracy

We calculate the relative accuracy by dividing the results of the model trained on the condensed graph
by the results of the same model trained on the whole graph. For example, the accuracy of GCN on
the GCond condensed graph is divided by the accuracy of results on the whole graph. Since Figure 4]
in the main content shows the relative accuracy, we show the absolute results of each GNN here in

Figure[9]

A.8.4 Evaluate Condensed Graph by Graph Transformer

The architectures discussed in the main content primarily utilize message-passing styles, which facili-
tate their transfer to each other. However, they may encounter challenges when applied to an entirely
different architecture. Therefore, to conduct a more comprehensive evaluation of transferability, we
assess the performance of various condensation methods using a graph transformer-based architecture
SGFormer [56]], which is totally different from those message-passing architectures. Figure [I0]
shows that SGFormer achieves comparable performance with other architectures on three non-GNN
methods (Random, KCenter, Averaging). However, its performance significantly drops when trained
on graphs condensed by GNN-involved methods. This suggests that future research should explore
the transferability of other graph learning architectures.

A.9 Neural Architecture Search

We utilize APPNP [54]] for NAS experiments because its architecture modules are flexible and can be
easily modified. The detailed architecture search space is shown in Table[T4] Following the settings
in GCond [14], we search full combinations of these choices, i.e., 480 in total for each dataset.

In addition to measuring the correlation between performance on the real graph and the condensed
graph, we further analyze the preservation of top-performing architectures, which is a common

24

GCN sGc APPNP Cheby GraphSage GAT SGFormer
Y phSag

105 ‘
100 . L 3 | 21
‘ > »
g P ' >
8 9 y
< [l ;
©
% 851 v
k #
@ gf ¥ A
75 >
70
N O & N O >
@“éo & &£ & & £ & ooao" £ ¥
¥

Figure 10: Condensed graph performance evaluated using different models including SGFormer on
Cora.

practice in NAS studies. Specifically, we evaluate whether the ground-truth top-K architectures
on the real graph remain within the top-K when evaluated on the condensed graph, quantified by
Recall@ K. We compute this metric by first ranking all candidate architectures on the real graph
by performance and selecting the top K as the ground-truth top-K set, and then ranking the same
candidates on the condensed graph to determine how many of the ground-truth top-K architectures
also appear in the top K on the condensed graph.

Table 13: Recall@ K of top-K architectures evaluated on Cora with r = 0.5.
Random K-Center GCondX SFGC GEOM GCond DosCond MSGC

Recall@5 0.0 0.0 0.2 0.0 0.2 0.0 0.0 0.0
Recall@10 0.0 0.0 0.2 0.1 0.2 0.2 0.1 0.1
Recall@20 0.4 0.35 0.5 0.45 0.4 0.45 0.25 0.4

We conduct experiments on Cora with 7 = 0.5. From Table [I3] we observe that condensation
methods incorporating gradient matching terms (GCondX, GCond) outperform coreset-based methods
(Random, K-Center) in preserving the ground-truth top- K architectures, suggesting that including
performance gradient information better aligns relative performance between the real and condensed
graphs. SFGC performs slightly below the gradient-based methods at moderate K values (10 and
20), indicating that adding local structural consistency constraints can also improve fidelity. In
contrast, purely random or center-based methods lack performance cues and achieve the lowest recall.
Although recall values for all methods increase with K, the highest value reaches only 0.5 at K = 20,
suggesting that condensed graphs still struggle to retain all high-performing architectures. Future
work should further explore strategies that jointly optimize performance signals and graph structure
to enhance consistency between condensed and real graphs.

A.10 Graph property preservation

The full results on graph property preservation are listed in Table[T5] As we mention in the main
content, different GC methods show totally different behavior w.r.t. property preservation. First,
VNG and SGDD tend to produce almost complete graphs linking each node pair. That also leads to a
lower homophily, as they create more proportion of inter-class connections. Second, VNG performs
best in property preservation, however, it shows suboptimal accuracy in Table[9] This suggests that
the selected graph properties are unnecessary to maintain or to preserve as much as possible. Third,
as the only method that creates sparse graphs, MSGC is unique among these methods except in the
Homophily. From this point of view, we hold that homophily is very important for future research
on structure-based GC since all structure-based methods behave consistently. Current research
mostly holds the view that the loss of homophily is harmful [74]], but our benchmark may provide a
contradictory perspective on this.

Notably, we observed that MSGC preserves the maximum eigenvalue up to 0.94. As further evidence,
the latest method, GDEM [37]], focuses on learning to preserve eigenvectors, supporting the idea
that maintaining spectral properties may be beneficial. However, upon closer examination of the
properties of the graph synthesized by GDEM, as shown in Table[I2] we find that these properties
are not fully preserved. This is because their method only retains eigenvalues within a middle range,

25

Table 14: Architecture search space for APPNP.

Architecture Search Space
Number of propagation K {2,4,6,8, 10}
Residual coefficient o {0.1, 0.2}

Hidden dimension {16, 32, 64, 128, 256, 512}

{Sigmoid, Tanh, ReLU, Linear,

Activation function Softplus, LeakyReLLU, ReLU6, ELU}

Table 15: Graph properties in condensed graphs from different structure-based GC methods. The
"Corr." row shows the correlation of certain properties between the condensed graph and the whole
graph across five datasets.

Graph property Dataset and r VNG GCond MSGC SGDD Avg. | Whole
Density% Citeseer 1.8% 36.95 84.58 22.50 100.00 61.01 0.08
(Structure) Cora 2.6% 52.17 82.28 22.00 100.00 64.11 0.14

Arxiv 0.5% 100.00 75.40 8.17 99.91 70.87 0.01

Flickr 1% 100.00 100.00 3.44 99.96 75.85 0.01

Reddit 0.1% 100.00 2.67 3207 7485 52.39 0.05
Corr. -0.81 0.07 0.55 0.13 -0.01 -

Max Eigenvalue Citeseer 1.8% 2.98 22.53 1.67 10.29 9.37 100.04

(Spectra) Cora 2.6% 3.73 34.90 1.69 14.09 13.60 169.01
Arxiv 0.5% 2,092.99 163.95 2.33 79.95 584.81 | 13,161.87
Flickr 1% 1,133.94 281.04 1.76 123.86 385.15 930.01
Reddit 0.1% 1,120.64 152.00 2.00 99.84 343.62 | 2,503.07
Corr. 0.85 0.25 0.95 0.28 0.58 -
DBI Citeseer 1.8% 4.14 1.40 1.98 3.47 275 12.07
(Label & Feature) Cora 2.6% 3.69 1.84 0.70 4.34 2.64 9.28
Arxiv 0.5% 2.27 2.62 2.49 2.80 2.55 7.12
Flickr 1% 5.60 7.14 7.33 13.57 8.41 31.02
Reddit 0.1% 1.51 2.16 1.49 1.53 1.67 9.59
Corr. 0.81 0.93 0.94 0.97 091 -
DBI-AGG Citeseer 1.8% 4.11 0.76 1.75 0.00 1.66 8.49
(Label & Feature & Structure) Cora 2.6% 3.59 0.38 0.57 0.18 1.18 4.67
Arxiv 0.5% 2.38 2.86 2.61 1.77 241 4.40
Flickr 1% 20.26 11.60 7.90 6.51 11.57 25.61
Reddit 0.1% 1.56 1.90 1.49 1.37 1.58 2.48
Corr. 0.99 0.93 0.95 0.89 0.94 -
Homophily Citeseer 1.8% 0.18 0.18 0.23 0.15 0.18 0.74
(Label & Structure) Cora 2.6% 0.14 0.16 0.19 0.13 0.16 0.81
Arxiv 0.5% 0.08 0.07 0.04 0.07 0.07 0.65
Flickr 1% 0.34 0.27 0.27 0.27 0.29 0.33
Reddit 0.1% 0.04 0.04 0.04 0.07 0.05 0.78
Corr. -0.83 -0.68 -0.46 -0.80 -0.69 -

specifically from K to K. This suggests that methods for accurately preserving spectral properties
remain an area for further exploration.

Since only the metric DBI does not rely on structure, we also exhibit the correlation of DBI of
structure-free methods across all five datasets in Table[T6] From the comparison between structure-
free and structure-based methods, we find that GCondX and GEOM also preserve this correlation of
DBI to some extent, similar to structure-based methods.

Obs. 12: Preserving Density %, DBI, and Homophily tends to be beneficial for downstream
tasks. Table[5]indeed measures property preservation, defined as the Pearson correlation between
property values in the condensed graphs and the original graphs. This measure does not indicate
the relationship between properties and downstream accuracy. To clarify this connection, we have
conducted an additional analysis, shown in Table In this table, the Correlation column reports
the Pearson correlation between the average test accuracy across five datasets (row “Avg ACC”) and

26

Table 16: DBI in condensed graphs from both structure-based and structure-free GC methods,
continued from Table[T5}

Datasets VNG GCond MSGC SGDD | GCondX GEOM | Avg. | Whole

Citeseer 1.8% 4.14 1.40 1.98 3.47 2.90 2.55 2.74 12.07
Cora 2.6% 3.69 1.84 0.70 4.34 2.18 3.16 2.65 9.28
Arxiv 0.5% 2.27 2.62 2.49 2.80 5.52 4.37 3.35 7.12
Flickr 1% 5.60 7.14 7.33 13.57 22.93 6.04 10.43 | 31.02

Reddit 0.1% 1.51 2.16 1.49 1.53 0.57 2.96 1.70 9.59
Corr. 0.81 0.93 0.94 0.97 0.95 0.78 0.90 -

each property preservation metric (Density%, Max Eigen, DBI, DBI-AGG, and Homophily). These
results indicate that Density%, DBI, and Homophily show stronger associations with downstream
performance, whereas Max Eigen and DBI-AGG do not.

Table 17: Correlation between condensed graph properties and model performance.
VNG GCond MSGC SGDD Correlation
Avg ACC 63.34 69.40 69.02 68.95 -

Density (%) -0.81 0.07 0.55 0.13 0.91
Max Eigen 0.85 0.25 0.95 0.28 -0.51
DBI 0.81 0.93 0.94 0.97 0.96
DBI-AGG 0.99 0.93 0.95 0.89 -0.80
Homophily -0.83 -0.68 -0.46 -0.80 0.54

A.11 Denoising effects

All corruptions are implemented by a library for attack and defense methods on graphs, DeepRo-
bust [[75]. The full results on denoising effects are in Table[I8] Apart from GC methods, we also add
coreset selection methods as baselines. Results show that the simple baseline, Random, contains a
certain level of denoising effects in terms of performance drop in Citeseer and Flickr. Meanwhile,
KCenter exhibits the lowest performance drop in Cora corrupted by structural noise and adversarial
structural attack. However, these phenomena do not necessarily mean they can defend the attack as
the performance of these two methods before being corrupted is worse than GC methods. In contrast,
the GC methods naturally outperform whole graph training in most scenarios, even though they are
not specifically designed for defense.

A.12 Code Availablity and Usage

We have developed an easy-to-use code package, which is included in the supplementary material
and has been open-sourced as a PyTorch library. The package accepts graphs in the PyG (PyTorch
Geometric) format as input and outputs a reduced graph that preserves the properties or performance
of the original graph. Below, we provide technical details on how users can integrate new datasets,
implement their own methods, propose new settings, and address potential difficulties.

A.12.1 Usage

from graphslim.dataset import *

> from graphslim.evaluation import *
3 from graphslim.condensation import GCond

4

6

9

from graphslim.config import cli

args = cli(standalone_mode=False)
Customize arguments here
args.reduction_rate = 0.5
args.device = ’cuda:0’

27

Table 18: Denoising effects of selected methods. "Perf. Drop" shows the relative loss of accuracy
compared to the original results of each method before being corrupted. The best results are in bold
and results that outperform whole dataset training are underlined. Structure-free and structure-based
methods are colored as blue and red.

Feature Noise Structural Noise Adversarial Structural Noise
Dataset Method Test Acc. T Perf. Drop | Test Acc. T Perf. Drop | Test Acc. T Perf. Drop |

Whole 64.07 11.75% 57.63 20.62% 53.90 25.76%

Random 56.91 9.11% 61.56 1.69% 59.42 5.12%

Citeseer 1.8% KCenter 52.80 10.57% 55.41 6.15% 55.07 6.73%
(Poisoning & Evasion) GCond 64.06 7.63% 65.64 5.35% 66.19 4.55%
GCondX 61.27 10.40% 60.42 11.65% 60.75 11.15%

GEOM 58.77 19.53% 51.41 29.60% 57.94 20.67%

Whole 74.77 8.26% 72.13 11.49% 66.63 18.24%

Random 59.89 17.10% 62.64 13.28% 65.33 9.57%

Cora 2.6% KCenter 59.88 15.13% 62.94 10.79% 65.51 7.14%
(Poisoning & Evasion) GCond 67.62 16.04% 63.14 21.61% 68.90 14.45%
GCondX 67.72 13.85% 63.95 18.63% 69.24 11.91%
GEOM 49.68 40.01% 53.59 35.29% 66.32 19.93%

Whole 46.68 1.51% 42.60 10.13% 44.44 6.24%

Random 44.33 0.78% 43.28 3.13% 43.93 1.69%

Flickr 1% KCenter 43.15 0.88% 42.36 2.68% 42.21 3.03%
(Poisoning) GCond 46.29 1.49% 46.97 0.04% 43.90 6.58%
GCondX 45.60 2.11% 46.19 0.83% 42.00 9.83%

GEOM 45.38 1.63% 45.52 1.32% 44.72 3.06%

0 # Add more args.<main_args/dataset_args> as needed

3 # To reproduce the benchmark, use our args and graph class
4 # To use your own args and graph format, ensure the args and graph
class have the required attributes

1

1

12 graph = get_dataset(’cora’, args=args)
!

1

6 # Create an agent for the reduction algorithm
17 # Add more args.<agent_args> as needed
s agent = GCond(setting=’trans’, data=graph, args=args)

20 # Reduce the graph
21 reduced_graph = agent.reduce (graph, verbose=True)

23 # Create an evaluator
24 # Add more args.<evaluator_args> as needed
25 evaluator = Evaluator (args)

27 # Evaluate the reduced graph on a GNN model
23 res_mean, res_std = evaluator.evaluate(reduced_graph, model_type=’GCN’

)
Listing 1: Code Example for Using the Benchmark Package

A.12.2 Customization
Adding a New Dataset: To implement a new dataset, create a new class in dataset/loader.py
and inherit from the TransAndInd class.

Implementing a New Reduction Algorithm: To add a new reduction algorithm, create a new class
in sparsification, coarsening, or condensation, and inherit from the Base class.

Adding a New Evaluation Metric: To implement a new evaluation metric, create a new function in
evaluation/eval_agent.py.

28

Implementing a New GNN Model: To add a new GNN model, create a new class in models and
inherit from the Base class.

A.12.3 Potential Difficulties

Users may encounter the following challenges:
Disk Space Limitations:

* Some methods store training trajectories of multiple experts, which can exceed 100 GB.
* Solution: Reduce the number of experts using the <method>.reduce () module to manage disk
space.

Memory and GPU Constraints:

 Larger datasets might cause memory or GPU limitations during the condensation process.
* Solution: Load data and adjust the reduction process to run in a mini-batch manner to reduce
memory usage.

Hyperparameter Adjustment:

* Tuning hyperparameters may be necessary for optimal performance.
* Solution: Modify the JSON configuration files in the configs folder, which contain all hyperpa-
rameters for each method.

We believe this information will help users effectively utilize, customize, and integrate our benchmark
package with new datasets or algorithms. We provide comprehensive documentation and support for
easy adoption and extension.

A.13 Practical guidelines for applying GC

In response to the request for practical guidance on applying GC in constrained or privacy-sensitive
settings, our conclusions are directly supported by the observed trade-offs (Obs) and experiments
results in the paper:

* Condenser choice: From Obs. 2 (Sec. 5.2) and Fig. 4, structure-free methods (GCondX,
GCDM) are much more efficient in time and memory while maintaining competitive accu-
racy, which makes them better for low-resource devices.

* Trajectory matching: Obs. 1 (Sec. 5.1) and Fig. 3 show that trajectory-matching methods
(GEOM, SFGC) yield the highest accuracy but require expensive preprocessing. A practical
workflow is to condense graphs on a powerful machine and deploy the result on smaller
systems.

* Condensation ratio: Sec. 6.1 and Fig. 6 indicate that GC remains effective even with
1 sample per class, but aggressive ratios may lead to memory errors. Ratios between 0.5 %
and 2 % are stable.

* Privacy: Obs. 7 (Sec. 7.2) and Table 2 confirm that GC reduces membership inference
attack success by 5-10 % with little accuracy loss, providing a simple privacy-preserving
preprocessing step.

* Noisy graphs: Obs. 5 (Sec. 6.3) and Fig. 9 show GC improves robustness to structural noise,
with structure-based condensers giving stronger gains. GC has limited benefit for feature
noise, so other denoising methods are needed in those cases.

* Transferability: Obs. 8 (Sec. 8) shows gradient- and trajectory-matching improve neural
architecture search and transfer across backbones, while structure-free methods are more
scalable when hardware is limited.

A.14 Benefits to Graph Machine Learning Community

Our benchmark and its insights offer significant benefits to the broader graph machine learning
community in the following areas:

(a) Current Position of GC in Graph Machine Learning. First, GC originated in the computer
vision domain but has been adapted to address the unique challenges of graph data. It incorporates

29

techniques from graph sampling and coarsening to effectively manage the complexities inherent to
graph modalities while to extract essential information. Second, from the view of representation
learning, GC aims to create a compact representation of the original graph, preserving essential
features for training well-generalized GNNs. Third, GC is gaining traction due to its advantages in
accelerating training, enhancing scalability, and improving visualization, making it a valuable tool for
various graph-based applications such as NAS [25]], continual learning [[70] and explainability [[76].

(b) Addressing Key Questions.

* When and Why Specific GC Methods Work: Our benchmark systematically evaluates different
GC methods, elucidating the conditions under which each method excels. This helps researchers
and users understand the strengths and limitations of various condensation techniques.

* Broader Applications of GC: We demonstrate the versatility of GC beyond traditional applications
like NAS and continual learning. Our benchmark highlights its potential in areas such as privacy
preservation and efficient data management.

» Key Observations and Novel Insights: Based on our well-established benchmark, we have made
several new observations and provided fresh insights in the field of GC. For instance, GC methods
exhibit significant denoising capabilities against structural noise but are less effective at mitigating
node feature noise. Additionally, trajectory matching and gradient-based inner optimization are
crucial for achieving reliable performance in NAS and enhancing transferability. These findings
highlight both the strengths and limitations of current GC techniques.

(c) Facilitating General Graph Machine Learning Research.

* Our benchmark provides a pioneering investigation into the practical effectiveness of GC methods
in privacy preservation and their denoising effects (robustness). This highlights the potential of
GC methods to serve as a novel set of baselines for comparison with existing privacy defense and
robustness techniques. Furthermore, as graph condensation inherently involves modifying datasets,
i.e., a data-centric approach, it can be seamlessly integrated with model-centric efforts to deliver
complementary benefits in robustness and privacy preservation.

* Observation 4: Certain GC methods can achieve both privacy preservation and high condensation
performance. This dual capability suggests the potential to break the traditional trade-off between
privacy and utility in the trustworthy graph learning area by effectively synthesizing data.

» Observation 7: We observe that different GC methods exhibit varying degrees of transferability
across datasets, indicating natural differences among GNNs including Graph Transformer. This
inspires a rethinking of the similarities between current GNN models, particularly regarding the
perspectives and priors they prefer to extract.

* Observation 11: We observed that homophilous graphs often become heterophilous after con-
densation while still maintaining high performance. This unexpected outcome challenges the
conventional understanding of the relationship between GNN performance and homophily [77].
Our findings suggest that the dependency of GNNs on homophily may need to be reevaluated,
opening new avenues for research into how graph condensation affects structural properties and
model performance.

Overall, our benchmark serves as a valuable resource for graph machine learning researchers by
providing comprehensive evaluations, uncovering new applications of GC, and inspiring innovative
methodologies. This facilitates advancements in the field, enabling the creation of more effective and
adaptable graph learning models.

30

	Introduction
	Related Work
	Graph Condensation
	Coreset Selection and Graph Coarsening

	Benchmark Design
	Evaluation Protocol
	Impact of design choices

	Empirical Studies
	Performance, Efficiency and Scalability
	Privacy Preservation
	Denoising ability
	Neural Architecture Search
	Transferability
	Data Initialization
	Graph Property Preservation

	Conclusion and Outlook
	Appendix
	Comparison with concurrent benchmarks
	Limitations and Future Directions
	Experiments Setup
	Datasets
	Implementation Details
	Performance and Scalability
	Details description for Test accuracy vs. total time Figure
	Further analysis of experimental results

	Privacy Preservation
	Step-by-step explanation of the MIA procedure
	Discussions

	Transferability
	Hyperparameters Searching
	Hyperparameters Sensitivity Analysis
	Relative and Absolute Accuracy
	Evaluate Condensed Graph by Graph Transformer

	Neural Architecture Search
	Graph property preservation
	Denoising effects
	Code Availablity and Usage
	Usage
	Customization
	Potential Difficulties

	Practical guidelines for applying GC
	Benefits to Graph Machine Learning Community

