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In the dynamic environment of multimedia-sharing platforms like Twitter and TikTok, multimedia recommendation systems
have been widely used to help users discover items of interest. However, traditional approaches often fall short, when the
item modalities are incomplete, a common issue in real-world scenarios. To this end, we introduce the unified heterogeneous
Hypergraph construction for Incomplete multimedia REcommendation (HIRE), a novel framework designed to jointly learn a
heterogeneous hypergraph and perform accurate recommendations under incomplete scenarios. HIRE first initializes the
unified heterogeneous hypergraph for modality completion and employs self-supervised learning aligned with the contrastive
text-centered view for multimedia recommendation. Such integration effectively handles the challenges posed by incomplete
modalities, leading to improved recommendation accuracy. Furthermore, we find that the hypergraph directly learned from
the HIRE is a dense structure which can be inaccurate and coarse. Therefore, we devise the HIRE framework with Sparse
constraint named HIRES, which uniquely integrates optimal transport and a ℓ2,1-norm to refine the hypergraph structure. Our
extensive experiments across various datasets demonstrate the superiority of HIRES in addressing incomplete modalities,
establishing it as a powerful tool for personalized multimedia recommendations.
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1 Introduction
With the rapid growth of multimedia-sharing platforms such as Twitter and TikTok, multimedia recommender
systems have been widely used in many online applications [35, 37, 38]. Benefiting from the available multimodal
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Fig. 1. A toy example of missing modalities on the TikTok multimedia-sharing platform. (a) Introduction of incomplete
modalities and high-order similarities. (b) Illustration of unified hypergraph structure. A dotted circle represents a hyperedge
in the hypergraph.

information like visual, textual, and acoustic contents, multimedia recommendation systems can obtain more
accurate item and user representations compared to the general recommendation models when the interaction
data is sparse.

To make good use of rich multimedia information from the online active users, some efforts have already been
attempted to align the different modalities into a common latent space [63]. Recently, graph-based collaborative
filtering [39] has been demonstrated as an effective mechanism for multimedia recommendations, where the core
is to inject multimodal auxiliary information into the latent representations for users or items with user-item
interactions. However, these methods often require complete modalities for each item, which are not readily
available in every situation [65]. For example, as shown in Fig. 1 (a), the textual modality is absent when the user
only want to upload a short video without textual descriptions; The visual modality is missing because users only
left text contents in the comment of the multimedia platforms; The acoustic modality may be unavailable while
the multimedia video with the enormous ambient noise during recording. In most real-life scenarios, traditional
approaches often fall short or may not work well, when the real-incomplete conditions are not considered.

For deploying recommendationmodels having high performance under complete assumption to real-incomplete
scenarios, a natural idea of completing missing modalities was proposed. The existing graph-based completing
paradigm is to calculate the modality-specific similarity between nodes with or without missing values and
complete the missing modality based on such pair-wise relations. For example, in Fig. 1(a), item 𝑣1 with missing
values is completed by the textual similarity with 𝑣2. However, such local pair-wise (one-to-one) connections
ignore higher-order global (set-to-set) relations, which is common in real-incomplete scenarios[36, 71]. Under
real-world recommendations, the missing features may be similar to several complete features. In other words,
the completion of incomplete modalities is a complex set-to-set problem (from complete set to missing set) [57].
To complete the missing values with set-to-set higher-order similarities, the hypergraph-based models are
introduced into the collaborative filtering recommender systems. The hypergraph, composed of some hypernodes
and hyperedges, is generalizing the concept of edges in graphs to hyperedges [72]. Since the hyperedges can
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contain any number of nodes, we can use them to represent the set-to-set higher-order correlations of items in
the different modalities, shown in Fig. 1 (b).
Although the hypergraphs have been successful in various domains, the well-designed hypergraph is either

unavailable in every situation or artificially constructed, which is costly and time-consuming [15]. Therefore,
given the interactions among users and items in incomplete multimedia recommendations and the incomplete
multimodal representations, a natural question is: Can we jointly construct a hypergraph structure and perform
incomplete multimedia recommendations?

To solve the above question, in this work, we introduce the unified heterogeneous Hypergraph construction for
the Incomplete multimedia REcommendation, (HIRE), a novel framework designed to jointly learn a heterogeneous
hypergraph and perform accurate recommendations under incomplete scenarios. The task is challenging in
several perspectives.

Firstly, the existing paradigm of hypergraph generating is based on homogeneous higher-order connections [8],
where the hypergraph structure is defined as single-modality similarities and the modality-specific hypergraph
convolution is exploited to complete the incomplete missing values, shown in Fig. 1(b). However, such construction
mechanism ignores the rich higher-order similarities across modalities under multimedia scenarios [13]. For
example, item 𝑣1 and 𝑣2 have similar textual descriptions. Besides, item 𝑣2 and 𝑣3 belong to the same category
when considering the visual modality. Across the bridge of the item 𝑣2 across textual and visual modality, 𝑣1 and
𝑣3 may also have a high similarity. Different from the previous homogeneous hypergraph construction methods,
we uniformly term the above relations across different modalities as heterogeneous higher-order similarity and
seek to model such correlations into a unified heterogeneous hypergraph structure, which can be exploited to
complete the missing modalities. Specifically, we proposed the unified heterogeneous hypergraph construction
mechanism, where we formulate the hypergraph construction as a process of clustering, and perform the unified
hypergraph convolution to complete the missing modalities shown in Fig. 1(c). In this way, we can group the
similar items with the heterogeneous higher-order correlations into a unified structure. More details about the
construction process are presented in Section 3.2.
Secondly, although the heterogeneous higher-order relations can explore the similarities across modalities

to enhance the completion of missing values, most existing hypergraph-based recommendation methods often
rely on the homogeneous connections in a single modality [48]. Therefore, how to perform the incomplete
multimedia recommendation based on the constructed heterogeneous hypergraph structure is a non-trivial
problem, where we need to maintain the existing well-explored homogeneous connections and inject the
heterogeneous relationships into the recommendation framework simultaneously. Inspired by the recent success
of language models in heterogeneous representation learning, our solution is to design a novel contrastive
multimodel recommendation module, which contains a self-supervised contrastive mechanism aligned with the
textual modality and an enhanced multimedia recommendation. Specifically, we perform contrastive learning to
align the different homogeneous and heterogeneous relations with the textual view. Then, we inject the aligned
multimodal relations into the id-based collaborative filtering recommendation framework. More details about the
incomplete multimedia recommendation is presented in Section 3.3.
Finally, we find that the hypergraph directly constructed from the clustering mechanism in HIRE is a dense

matrix, which can be inaccurate and coarse for incomplete scenarios, since the assumption that items with
missing values may introduce more noise than complete items. However, the standard optimization objectives
of such hypergraph structure are not designed towards the learning under incomplete scenarios, where such
dense hypergraph structure may also assign the weights to incomplete nodes and it may enhance the incomplete
noises with the increase of convolution layers of hypergraph. In light of this, we propose to leverage the HIRE
framework with Sparse constrain named HIRES to reduce the unreliable interactions of items with missing
modalities. Specifically, we devise a novel sparse optimal transport framework, which uniquely integrates optimal
transport and a ℓ2,1-norm constraint to refine the hypergraph structure. Then, to obtain the optimal solution for
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the proposed sparse optimal transport, we design a differentiable optimization strategy, calibrating the gradient
by the Frank-Wolfe algorithm. More details about the optimization are presented in Section 4.
We evaluate both HIRE and HIRES with extensive experiments on four real-world benchmark datasets for

incomplete recommendations. We compare them with 20 comprehensive methods focusing on state-of-the-art
collaborative filtering and incomplete multimedia recommendation methods. Extensive experimental results
show that HIRES is able to significantly improve the recommendation overall baselines (e.g., with up to 9.09%
improvements in P@20 on the sports dataset over the best baseline).
In summary, we mainly make the following contributions:

• Formulation of unified heterogeneous hypergraph construction: HIRES and HIRE are the first incomplete multi-
media recommendation framework with a unified hypergraph structure, which can capture the higher-order
similarities across modalities to complete the missing modalities.

• Effective model designs: In HIRE, we exploit the clustering mechanism and textual-aligned self-supervised
mechanism to jointly construct the unified heterogeneous hypergraph and perform the enhanced incomplete
multimedia recommendations. In HIRES, we devise a novel sparse transport mechanism to constrain the
hypergraph structure for items with missing modalities.

• Extensive experiments on four real-world datasets: We conduct extensive experiments on four real-world datasets,
which demonstrate significant improvements of the proposed HIRES framework on incomplete multimedia
recommendation with highly accurate and interpretable results of unified heterogeneous hypergraph structure.

2 Related work

2.1 Multimedia Recommendation
Collaborative filtering (CF), which achieves relatively high performance with graph neural networks, has been
widely used in the recommender system. For example, NCL [32] explicitly captured the potential node relatedness
into contrastive learning for the graph collaborative filtering. MILK [1]designed a cross-modality alignment
module to keep semantic consistency from pretrained multimedia item features. MICRO [70] designed a novel
modality-aware structure learning module to learn item-item relationships for each modality. GCCF [7] modeled
the user preference by the residual preference prediction and the linear embedding propagation. GDSRec [6]
treated the biases as vectors and fused them into the process of learning user and item representations. Although
the above methods achieve promising performance, the learned representations that rely on user-item interactions
only are limited by data sparsity. Consequently, many studies have incorporated multimodal information, which
can alleviate the data sparsity problem. LATTICE [69] leveraged graph structure learning to discover latent item
relationships underlying multimodal features. MKGAT [46] introduced the multi-modal knowledge graph to the
recommendation system innovatively. Recently, some works have attempted to construct item graph based on
similarity within every modality to inject the multi-modal information into the multimedia recommendation.
MICRO [70] is proposed to model item-item relationships and conduct fine-grained multimodal fusion with a
modality-specific graph to inject themultimodal high-order relations into the item representations. FREEDOM [73]
frozen the item-item graph during the training of multimodal process and provide a tighter upper bound on the
graph spectrum.

However, all the above methods based on item-item graphs assume that each modality is complete and all the
modalities are always available, while in the real-world applications, the missing modality scenarios are more
common. When deploying models to more realistic incomplete recommendation scenarios, such item-graph-based
mechanisms may fail or fall short because the graph cannot be constructed among missing modalities. Besides,
previous graph methods only capture the multimodal high-order relations within a specific modality, while
ignoring the relations across modalities, which may hinder the full potential of multimedia recommendations.
Therefore, different from the existing methods, our proposed HIRE and HIRES framework are the first incomplete
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multimedia recommendation framework with a unified hypergraph structure, which can capture the relations
across different modality jointly.

2.2 Incomplete Multi-modal Models
In order to solve the problem of missing modalities in the multimodal area, many previous work directly excluded
missing modalities and achieved some performance improvements. For example, Wang et el. [51] proposed a
framework based on knowledge distillation, utilizing the supplementary information from all modalities, and
avoiding imputation and noise associated with it. ModDrop++ [34] has been applied to MS lesion segmentation
to achieve the state-of-the-art performance with missing modality. However, these methods may lose valuable
multimodal information by discarding missing modalities. Consequently, many studies that aim to generate
missing modalities have been proposed. LIDO [21] investigated the problem of how to reconstruct the topology
of a diffusion network with incomplete observations of the node infection statuses. Lin et al. [31] proposed a
contrastive intra- and inter-modality generation for enhancing incomplete multimedia recommendation, which
alleviated the challenge with missing modalities. Zhou et al. [75] designed anovel self-supervised learning
framework BM3 for multi-modal recommendation, removed the requirement of randomly sampled negative
examples in modeling the interactions between users and items. Sun et al. [45] described a balance-guided
approach for incomplete multi-view spectral clustering, which aids in handling the discrepancies across different
views. Lin et al. [30] introduced a dual contrastive prediction model for incomplete multi-view representation
learning, which provides a robust framework for dealing with partial data. Similarly, Huang et al. [19] developed
an incomplete multi-view clustering network using nonlinear manifold embedding and a probability-induced
loss, which improves clustering performance by effectively managing incomplete views.

Different from the above methods, we model the high-order similarities through a unified hypergraph structure,
which can be jointly refined by the multimedia recommendation task for completing the missing modalities.

2.3 Hypergraph Neural Networks
Hypergraph has attracted tremendous attention due to its effectiveness in modeling higher-order interactions.
Hypergraph Neural Network (HGNN) [10], presented for data representation learning, which can encode high-
order data correlation in a hypergraph structure. DHLCF [29] constructed the unprovided hypergraph structures
based on the collaborative filtering user-item interactions and proposed an adaptive lightweight neural network to
inject the high-order relations of hypergraphs. However, the hypergraph structure is the basis of the hypergraph
convolution operation, which is not always available. Consequently, some previous studies solved the problem
of the lack of hypergraph incidence matrix by generating hypergraphs. For example, MHCN [64] worked on
multiple motif-induced hypergraphs to enhance the social recommendation by leveraging high-order user
relations. HSL [3] learned an informative and concised hypergraph structure that is optimized for downstream
tasks. QHGN [17] constructed hypergraphs based on the visual objects detected in the video. Gong et al. [16]
considered the problem of embedding a hypergraph into the low-dimensional Euclidean space so that most
interactions are short-range.

Different from the above method of learning the hypergraph structure, we construct the hypergraph structure
with the multimodal information from user preference and we introduce the priori knowledge tailored for
incomplete scenarios. Besides, we also design a sparsity optimization to remove the noise information in the
hypergraph.

2.4 Sparse Constraint
Sparse constraint mechanisms have emerged as crucial components in optimization. Carreira-Perpinan and
Idelbayev [4] proposed an alternative formulation for the constrained optimization problem using “auxiliary
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Fig. 2. The overall architecture about HIRES. In the left part, a heterogeneous hypergraph is employed to capture the
high-order relations among multiple modalities. In the right part, the Enhanced Multimedia Recommendation Module is
designed to jointly perform multimedia recommendations and optimize heterogeneous hypergraph construction.

variables”. However, their empirical evaluation was limited to small-scale models and datasets. In order to avoid
fine-tuning pruning rates separately for each layer in the network, ProbMask [74] automatically determined the
amount of weight redundancy through sparse constraint. Lemaire et al. [26] adopted budgeted regularization for
pruning to handle the constrained issue. Gallego-Posada et al. [12] put emphasis on training models with limited
levels of sparsity, enabling the training of sparse neural networks using constrained regularization.

Furthermore, the imposition of sparsity constraints has significantly contributed to optimizing the efficiency of
the acquired graph structures. For example, Subbareddy et al. [44] considered a new sparsity based graph learning
model to calculate the eigenvectors of the graph matrix and determine the eigenvalues based on the eigenvectors
obtained. Kuroda et al. [25] proposed sparse regularization as a convex method for sparse reconstruction of
graphstructured data. Similarly, we optimize hypergraph structure with sparse constraint to perform more
accurate multimedia recommendation under incomplete scenarios.
Different from the existing sparse constraint to denoise the process of optimization, our proposed sparse

optimization is a modality-aware process, which is tailored for incomplete multimedia recommendation scenarios.

3 The HIRE Framework
In this section, we will present the main designs of our proposed HIRE framework and discuss the details of
each component. Firstly, we give the problem statement and show the overall architecture of our proposed
HIRE. Secondly, a unified heterogeneous hypergraph construction mechanism is designed to inject the hetero-
geneous information into node representations under scenarios with missing modalities. Finally, we introduce
the contrastive multimodel recommendation module to align the representations under each modality with
the text-centered self-supervised contrastive learning mechanism to jointly enhance the hypergraph structure
learning and multimedia recommendation.

3.1 Problem Statement and HIRE Overview
The goal of our proposed HIRE framework is to jointly construct a unified heterogeneous hypergraph and perform
the accurate multimodal recommendation based on the unified hypergraph structure under incomplete scenarios.
Assume we have initially historical user-item interaction graph, containing user node set 𝑼 with 𝑁𝑈 users and
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Table 1. Notations and Definitions.

Notations Descriptions
𝑁𝑉 The numbers of items
𝑁𝑈 The numbers of users
𝐾 The number of hyperedges group
𝒄𝑖 The mean (i.e., centroid) of points 𝒋 belonging 𝑯 𝑖

𝑸𝑚,(𝑙 ) The𝑚-th modal complete embedding with hypergraph convolution of 𝑙 layers
𝑾 The trainable weight of hypergraph neural networks

𝑸𝑚,(0) The zero-order representation obtained by item features 𝑭𝑉 ,𝑚
𝒒𝑇𝑖 , 𝒒𝑉𝑖 , 𝒒𝐴𝑖 The 𝑖-th item embedding of hypergraph representation 𝑸𝑚

𝜏 The temperature hyperparameter
𝑿𝑈 ,(𝑙 ) ∈ R𝑁𝑈 ×𝑑 , 𝑿𝑉 ,(𝑙 ) ∈ R𝑁𝑉 ×𝑑 The ID-corresponding embedding of users and items in the 𝑙-th layer

𝜎 (·) The activation function to introduce the nonlinear factors
𝚯
𝑈 ,(𝑙 ) , 𝚯𝑉 ,(𝑙 ) The trainable user and item weights of the 𝑙-layer for GNNs

𝑿̂
𝑈 ∈ R𝑁𝑈 ×𝑀𝑑 ,𝑿̂𝑉 ∈ R𝑁𝑉 ×𝑀𝑑 The final representations of users and items

𝒁𝑽,𝒎 The𝑚-th modal complete embedding in equation 4
| |Θ| |2 The weight-decay regularization against over-fitting
𝑯 The probability of joint distribution between item embeddings and hyperedges
ℓ2,1 The ℓ2-norm for the column and the ℓ1-norm for the row

1𝐾 or 1𝑁𝑉
The vector of ones to calculate the sum of row or column in hypergraph structure

< ·, · > The Frobenius dot-product
𝑴𝑈 The matrix stands for the cost of transport.
𝑴𝑈 The formulation of cost matrix obtained by hypernode embedding
𝒛𝑑𝑒𝑔

−

𝑖
The indegree of 𝑖-th item

𝒛𝑑𝑒𝑔
+

𝑖
The outdegree of 𝑖-th item

𝒛𝑖𝑛𝑡𝑖 The number of interacted modalities (complete modalities) by item 𝑖

vec(·) The process of vectorizing a matrix
𝒔 ∈ R𝑁𝐾 The optimization variable
𝑨𝒔 = 𝒃 The equality constraint
𝑭 𝒔 ≤ 0 The inequality constraint

𝝁 The equality constraint
𝝀 ≥ 0 The dual variables on the inequality constraint
𝜃 The problem parameter relates to the earlier layers
𝐽𝜃 𝒔̃ The partial Jacobian of 𝒔̃ with the respect to 𝜃
𝒉(𝑘 ) The embedding at the 𝑘-th iteratio
L𝐹𝑊 The loss of sparse optimization for users and items hypergraphs
L𝑠 The loss of contrastive learning formulated in Equation 4

L𝐵𝑃𝑅 The loss of recommendation tasks formulated in Equation 7
𝜆 The hyperparameter to control the weights of the loss

item node set 𝑽 with 𝑁𝑉 items. Then, we can use ranking matrix 𝑹 ∈ R𝑁𝑈 ×𝑁𝑉 to define the user-item graph
interactions. The value of 𝑹 𝒊𝒋 is set to 1 if the 𝑖−th user 𝒖𝑖 ∈ 𝑼 has interacted with the 𝑗−th item 𝒗 𝑗 ∈ 𝑽 . Otherwise,
𝑹𝑖 𝑗 = 0. In addition, each item contains𝑀 modalities and we use the visual, acoustic, and textual modalities in our
experimental setting. (𝑀 = 3). We define 𝒇𝑉 ,𝑚

𝑖
∈ R𝑑 as a 𝑑-dimensional vector to represent the each raw feature

of 𝑖-th item under the𝑚-th modality and we combine the whole item features as 𝑭𝑉 ,𝑚 = {𝒇𝑚1 ; · · · ;𝒇𝑚𝑁𝑉
}, where

we assign the values of missing modalities to zero. To construct the heterogeneous hypergraph for capturing the
heterogeneous information under incomplete modalities, we first initialize the hypergraph structure 𝑯 , where
𝑯 ∈ R𝑁𝑉 ×𝐾and 𝐾 is the number of hyperedge group. After hypergraph convolution with unified hypergraph
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structure 𝑯 , we use the 𝑸𝑚 ∈ R𝑁𝑉 ×𝑑 to represent the hypernode embedding in 𝑚-th modalities with self-
supervised learning. Finally, we can obtain a prediction probability matrix 𝑹̂, where the value of 𝑹̂𝑖 𝑗 represents
the probability that the 𝑗-th item is recommended to the 𝑖-th user. In summary, the input and output are defined
as follows:
• Input: user-item interaction matrix 𝑹 and incomplete modality features 𝑭𝑉 ,𝑚 .
• Output: a prediction probability matrix 𝑹̂ for incomplete multimedia recommendation.
We summarize the main components of the HIRE framework in Fig. 2 and provide an overview about the

architecture. Our proposed model has two main parts: (1) In the Heterogeneous Hypergraph Construction
Module, we initialize the hypergraph structure by K-means algorithm. Then, we exploit a unified heterogeneous
hypergraph convolution mechanism in order to complete the missing multimodal features by high-order relations
across different modalities. (2) In the Contrastive Multimedia Recommendation Module, we propose a contrastive
multimedia recommendation mechanism containing a novel self-supervised mechanism aligned by the textual-
modality view, and perform the multimedia recommendation based on the enhanced multimodal representations.

3.2 Heterogeneous Hypergraph Construction
Inspired by the recent success of hypergraphs in various domains, our approach seeks to construct a hypergraph
structure containing multiple modalities. The key limitation of constructing the well-designed structure is how to
inject the heterogeneous high-order relations [5] across modalities into the unified hypergraph. Benefiting from
clustering methods in heterogeneous scenarios [66], we innovatively propose the use of category (clustering
centroid) representation to define higher-order correlations across modalities. Our motivation comes from
the assumption that items from different modalities may share the same category, e.g. items of the textual
football description and visual basketball image all belong to the “Sports” category. Therefore, to construct a
unified hypergraph that captures higher-order information in order to complete missing modalities, we design
the heterogeneous hypergraph construction module. Specifically, we first initialize the hypergraph structure
𝑯 ∈ R𝑁𝑉 ×𝐾 by K-means algorithm, where 𝑁𝑉 is the numbers of items and 𝐾 is the number of hyperedges group.

min
𝑯

1
2

𝐾∑︁
𝑘=1

∑︁
𝒋∈𝑯 𝑖

| |𝑭 𝑗 − 𝒄𝑖 | |22 . (1)

Here, 𝐾-means algorithm to cluster the items with similar characteristics into𝐾 groups by clustering mechanism,
which can be seen as 𝐾 hyperedges. 𝑭 is the joint embedding and can be defined as 𝑭 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑭 1,𝑭 2,..., 𝑭𝑀 ),
where 𝑭 ∈ R𝑁𝑉 ×𝑀𝑑 and 𝐶𝑜𝑛𝑐𝑎𝑡 (·) is the concatenation function. Set 𝑯 = {𝑯 1,𝑯 2, · · · ,𝑯𝐾 } represents the
unified heterogeneous hypergraph structure with 𝐾 item-item hyperedges. Besides, the clustering centroid 𝒄𝑖
means the embedding of 𝑖-th hyperedge, where the value of 𝑯 𝑗𝑖 represents the hypernode 𝒋 belonging 𝒄𝑖 .
Then, we exploit the general hypergraph convolutional networks to capture the heterogeneous relations for

completing representations of missing modalities:
𝑸𝑚,(𝑙+1) = 𝜎 (𝑫−1𝑯𝑾𝑩−1𝑯𝑇𝑸𝑚,(𝑙 ) ), (2)

where 𝑸𝑚,(𝑙 ) is the completed embedding under𝑚-th modality after hypergraph convolution completion of
𝑙 layers. 𝑫 and 𝑩 are diagonal matrices to standardize hypergraph structure 𝑯 . 𝑾 is the trainable weight of
hypergraph neural networks and the zero-order representation 𝑸𝑚,(0) is obtained by item features 𝑭𝑉 ,𝑚 .

3.3 Contrastive Multimedia Recommendation
Inspired by the recent success of language model, we first perform contrastive learning between different
modalities to refine the multimodal representations, aligned with the textual view. The above process can be
written as follows:
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𝑙 (𝒒𝑽𝒊 , 𝒒𝑻𝒊 , 𝒒𝑨𝒊 ) = 𝒆𝜽 (𝒒
𝑻
𝒊 ,𝒒

𝑽
𝒊 )/𝝉︸⊊⊊⊊⊊⊊⊊⊊︷︷⊊⊊⊊⊊⊊⊊⊊︸

T-V pos

+ 𝒆𝜽 (𝒒
𝑻
𝒊 ,𝒒

𝑨
𝒊 )/𝝉︸⊊⊊⊊⊊⊊⊊⊊︷︷⊊⊊⊊⊊⊊⊊⊊︸

T-A pos

+
∑︁
𝑘≠𝑖

𝒆𝜽 (𝒒
𝑻
𝒊 ,𝒒

𝑻
𝒌
)/𝝉

︸⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊︷︷⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊︸
𝑇−𝑇 𝑛𝑒𝑔

+
∑︁
𝑘≠𝑖

𝒆𝜽 (𝒒
𝑻
𝒊 ,𝒒

𝑽
𝒌
)/𝝉

︸⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊︷︷⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊︸
𝑇−𝑉 𝑛𝑒𝑔

+
∑︁
𝑘≠𝑖

𝒆𝜽 (𝒒
𝑻
𝒊 ,𝒒

𝑨
𝒌
)/𝝉

︸⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊︷︷⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊⊊︸
𝑇−𝐴 𝑛𝑒𝑔

, (3)

minL𝑠 = min log 𝒆𝜽 (𝒒
𝑻
𝒊 ,𝒒

𝑽
𝒊 )/𝝉 + 𝒆𝜽 (𝒒

𝑻
𝒊 ,𝒒

𝑨
𝒊 )/𝝉

𝑙 (𝒒𝑽𝒊 , 𝒒𝑻𝒊 , 𝒒𝑨𝒊 )
, (4)

where 𝒒𝑇𝑖 , 𝒒𝑉𝑖 and 𝒒𝐴𝑖 are the 𝑖-th item embedding of hypergraph representation 𝑸𝑚 , 𝜏 is the temperature
hyperparameter. Where pos means positive and neg means negative, T means Textual, V means Visual and A
means Acoustic.

Then, inspired by the recent success of id-based collaborative filtering paradigm in recommendation, we perform
the ID-corresponding aggregation through the user-item interactions over and combine the representations
among user and item neighbors:

𝑿𝑈 ,(𝑙+1) = 𝜎 (𝑫𝑈 −1
𝑹𝑿𝑉 ,(𝑙 )

𝚯
𝑈 ,(𝑙 ) ),

𝑿𝑉 ,(𝑙+1) = 𝜎 (𝑫𝑉 −1
𝑹𝑇𝑿𝑈 ,(𝑙 )

𝚯
𝑉 ,(𝑙 ) ).

(5)

We define 𝑿𝑈 ,(𝑙 ) ∈ R𝑁𝑈 ×𝑑 , 𝑿𝑉 ,(𝑙 ) ∈ R𝑁𝑉 ×𝑑 as the ID-corresponding embedding of users and items in the 𝑙-th
layer of graph neural networks, where the zero-layer embeddings𝑿𝑈 ,(0) and𝑿𝑉 ,(0) are initialized from a trainable
lookup table. 𝜎 (·) is the activation function to introduce the nonlinear factors. 𝚯𝑈 ,(𝑙 ) and 𝚯

𝑉 ,(𝑙 ) are trainable
user and item weights of the 𝑙-layer for GNNs.

To incorporate the learned features of items into the recommendation framework, we combine the id embedding
and item contents as the complete multi-modality embeddings:

𝑿̂𝑼 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑿𝑼 ,𝒁𝑼,1,𝒁𝑼,2, ...,𝒁𝑼,𝑴 ),
𝑿̂𝑽 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑿𝑽 ,𝒁𝑽,1,𝒁𝑽,2, ...,𝒁𝑽,𝑴 ).

(6)

We denote 𝑿̂
𝑈 ∈ R𝑁𝑈 ×(𝑀+1)𝑑 and 𝑿̂

𝑉 ∈ R𝑁𝑉 ×(𝑀+1)𝑑 as the final representations of users and items, where
𝐶𝑜𝑛𝑐𝑎𝑡 (·) is a concatenation function. 𝒁𝑽,𝒎 is the complete embedding of the𝑚-th modality after self-supervised
learning in equation 4. We denote 𝒁𝑼,𝒎 = 𝑫𝑈

−1
𝑹𝒁𝑽,𝒎, here, 𝑫𝑈 ∈ R𝑁𝑈 ×𝑁𝑈 and is the diagonal degree matrix

of user-item and item-user interaction matrices 𝑹 ∈ R𝑁𝑈 ×𝑁𝑉 and 𝑹𝑇 ∈ R𝑁𝑉 ×𝑁𝑈 . Then, we exploit the Multilayer
Perceptron (MLP) to project the fusion representations after concatenation onto a common latent subspace. The
formulation of the above process can be written as 𝑿̃𝑈

= 𝜎 (𝑿̂𝑈
𝑾̂
𝑈 + 𝑩̂

𝑈 ) and 𝑿̃
𝑉
= 𝜎 (𝑿̂𝑉

𝑾̂
𝑉 + 𝑩̂

𝑉 ), where
𝑾̂
𝑈 ∈ R𝑀𝑑×𝑑 , 𝑾̂𝑉 ∈ R𝑀𝑑×𝑑 are the projection weights and 𝑩̂

𝑈 ∈ R𝑁𝑈 ×𝑑 , 𝑩̂𝑉 ∈ R𝑁𝑉 ×𝑑 are the bias in MLP. The
preference score 𝑹̂ can be predicted by 𝑹̂ = 𝑿̃

𝑈 (𝑿̃𝑉 )𝑇 , where 𝑿̃𝑈 ∈ R𝑁𝑈 ×𝑑 and 𝑿̃𝑉 ∈ R𝑁𝑉 ×𝑑 . The value 𝒓𝑖 𝑗 in 𝑹̂
means the probability of item 𝑗 recommended to user 𝑖 . For enhanced multimodal recommendation, we adopt the
BPR loss, wich is a common loss function in recommendation tasks.

L𝐵𝑃𝑅 =

| E |∑︁
(𝑖, 𝑗𝑝 , 𝑗𝑛 )

−𝑙𝑜𝑔(𝑠𝑖𝑔𝑚(𝒓𝑖 𝑗𝑝 − 𝒓𝑖 𝑗𝑛 )), (7)
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Fig. 3. An illustration of sparse optimization. Dashed circles are hyperedges, and solid circles are hypernodes. The red dashed
rectangles represent the two hypernodes belonging to different categories.

where 𝑗𝑝 and 𝑗𝑛 denotes the positive and negative samples for user 𝑖 . Finally, We train our recommender systems
with the combination loss to jointly optimize HIRE:

L = L𝐵𝑃𝑅 + 𝜆L𝑠 (8)

Where 𝜆 is the hyperparameter.

4 HIRE with Sparse Constraint (HIRES)
Benefiting from the heterogeneous clustering mechanism in Equation 1, HIRE can essentially capture the cross-
modality high-order relations to complete missing modalities for multimedia recommendation. However, the
above unified hypergraph directly clustered from the original item representations cannot take prior knowledge
under incomplete scenarios into account, which may hinder the full potential of incomplete multimedia recom-
mendations. For example, shown in HIRE of Fig. 3, the item 𝑣1 contains the complete modalities and abundant
interactions while 𝑣2 has sparser interactions, meanwhile, with the absence of acoustic and textual modalities.
Therefore, 𝑣1 may have more information to enhance the incomplete multimedia recommendation but 𝑣2 may
have more incomplete information with noise, deepened with the aggregation of hypergraph-based message
mechanisms. Therefore, the dense clustering structure can be inaccurate and coarse for incomplete scenarios [33].
In this way, we hope to obtain a sparse unified heterogeneous hypergraph structure to reduce the unreliable
interactions of items with missing modalities.
In order to deal with the above problem, we design the novel framework of HIRE with Sparse constraint

(HIRES) shown in Fig. 3, inspired by the sparse regularization. Our goal of HIRES is to remove the irrelevant
relations within the hypergraph by assigning the zero value to noisy hypernodes in the hypergraph structure
matrix, where the more noise relationships (the more zero values) are removed, the sparser the hypergraph
structure becomes. Specifically, to design the details of HIRES, we replace the clustering-based heterogeneous
hypergraph construction in Section 3.2 with a sparse optimal transport mechanism. Furthermore, to obtain the
optimal solution for the proposed sparse optimal transport, we design a differentiable optimization strategy,
calibrating the gradient by the Frank-Wolfe algorithm [11].
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4.1 Sparse Optimal Transport Framework
Different from unconstrained mechanisms in clustering, the inspiration of HIRES comes from two straightforward
insights. The first insight is modality-driven constrain: items (row in the hypergraph structure) with
complete modalities are more trustworthy than those with missing values. The second insight is interaction-
driven constrain: items with abundant interactions should have a large impact on incomplete multimedia
recommendations, since such items may have richer semantic information for recommender systems to complete
the missing modalities.
Formodality-driven constrain: to reduce the weight of low-reliability items with missing modalities, we

exploit sparse regularization as the constraint to properly rearrange the hypergraph structure. Compared with the
existing unsupervised sparse constraints, e.g., ℓ1-norm and ℓ2-norm, we exploit the ℓ2,1-norm, which constrains
row sparsity in the hypergraph structure, since we hope to make the items with missing modalities (row in the
hypergraph structure) have fewer interactions with hyperedges. The definition of ℓ2,1-norm is shown:

∥𝑯 ∥2,1 =
𝑁∑︁
𝑖=1

√√√ 𝐾∑︁
𝑗=1

(𝑯 𝑖 𝑗 )2, (9)

where 𝐾 is the number of hyperedges setting to control the column constraint and 𝑁 is the number of items
setting to control the row sparsity. The hypergraph structure 𝑯 represents a learnable matrix under the column
and row constraints, and we can use 𝑯 𝑖 𝑗 to measure the similarity of 𝑖-th and 𝑗-th probability distribution,
the hypernode distribution 𝑖 and hyperedge distribution 𝑗 . In other words, ℓ2,1 is equivalent to calculating the
column sparsity of ℓ2-norm first and then finding the row constraint of ℓ1-norm. To balance the impact on both
item and hyperedge in the structure, we propose to leverage the optimal transport technique with row sparse
regularization to ensure a reliable hypergraph structure. The formulation of above process can be written:

min
𝑯 ∈Δ

𝐽 =< 𝑯 ,𝑴 > +𝜂∥𝑯 ∥2,1

𝑠 .𝑡 .Δ= {𝑯 ∈ 𝑹𝑁𝑉 ×𝐾
+ |𝑯1𝐾 =

1𝑁
𝑁𝑉

, (𝑯 )𝑇 1𝑁𝑉
=
1𝐾
𝐾

}.
(10)

Here, 𝜂 is a hyperparameter to control the strength of the sparsity setting to 1. Δ is the constraint condition in
optimal transport. The symbols of 1𝐾 or 1𝑁𝑉

are the vector of all ones with the𝐾-dimensional and𝑁𝑉 -dimensional
number, which can be seen as the operator to calculate the sum of row and column in hypergraph structure
𝑯 and < ·, · > is the Frobenius dot-product to calculate the total transport costs. The cost matrix 𝑴 represents
represents the cost per unit distance. To obtain the cost matrix 𝑴 , we can use metric (e.g. the cosine similarity
or mean square error) to calculate the distance between hypernodes and hyperedges for 𝑴 . Here, we use the
𝐿2 distance to obtain cost matrix 𝑴 and the formulation can be calculated by measuring the distance between
hypernode embedding 𝑭 and hyperedge embedding 𝑬 by

𝑴𝑖 𝑗 = | |𝑭 𝑖 − 𝑬 𝑗 | |22, (11)

where 𝑴𝑖 𝑗 can be also seen as the similarity between hypernode 𝑖 and hyperedge 𝑗 and a small value of 𝑴𝑖 𝑗

means that the 𝑖-th item has higher similarity belonging to the 𝑗-th corresponding hyperedge. 𝑖 and 𝑗 represents
the row of 𝑭 and column of 𝑬 , respectively. 𝑬 is initialized from the Xavier distribution [59].
For interaction-driven constrain, to assign large weights to the items with rich interactions, we use the

degree of the node as the measurement for interactions, which can be formulated as 𝒛𝑑𝑒𝑔
𝑖

= 𝒛𝑑𝑒𝑔
−

𝑖
+ 𝒛𝑑𝑒𝑔

+

𝑖
. Here,

𝒛𝑑𝑒𝑔
−

𝑖
and 𝒛𝑑𝑒𝑔

+

𝑖
are indegree and outdegree of 𝑖-th item, respectively. Besides, we also consider the item-modality

interactions and use the 𝒛𝑖𝑛𝑡𝑖 to represent the number of interacted modalities (complete modalities) by item 𝑖 , the
value in 𝒛𝑖𝑛𝑡𝑖 from the range {0, 1, 2, 3}. Then, we adopt 𝒛 = 𝒛𝑑𝑒𝑔

𝑖
× 𝒛𝑖𝑛𝑡𝑖 as the final number for interaction-driven
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measurement. To inject the interaction-driven constrain into optimal transport theory [47], we modify the
distribution constraint of items in Δ from uniform assigning equal weight to each node (i.e., 𝑯1𝐾 =

1𝑁
𝑁𝑉

) to
interaction-based (i.e., 𝑯1𝐾 = 𝒑), where 𝒑𝑖 = 𝒛𝑑𝑒𝑔

𝑖
/∑𝑁𝑉

𝑗=1 𝒛
𝑑𝑒𝑔

𝑗
. Therefore, the final formulation of the sparse

optimal transport mechanism can be formulated as
min
𝑯 ∈Δ

𝐽 =< 𝑯 ,𝑴 > +𝜂∥𝑯 ∥2,1

𝑠 .𝑡 .Δ= {𝑯 ∈ 𝑹𝑁𝑉 ×𝐾
+ |𝑯1𝐾 =𝒑, (𝑯 )𝑇 1𝑁𝑉

=
1𝐾
𝐾

}.
(12)

4.2 Differentiable Optimization Strategy
It seems that solving the problem in Equation 12 is difficult as the term of ℓ2,1-norm is non-smooth. Therefore, we
design a differentiable sparse optimization strategy, calibrating the gradient by the Frank-Wolfe algorithm.
Specifically, we will use the Frank-Wolfe direction as the approximation to formulate the non-differentiable

objective function as the form with KKT conditions. First, we hope to obtain the solution of hypergraph structure
𝑯 by optimizing the objective function. We take the derivative of Equation 12 for 𝑯 and a diagonal 𝑫 is defined
to simplify expression:

∇𝐽 (𝑯 ) = 𝑴 − 𝑯𝑫

= 𝑴 − 𝑯
©­­­«
− 𝜂

∥𝑯 1 ∥2
. . .

− 𝜂

∥𝑯 𝑗 ∥2

ª®®®¬ .
(13)

If we introduce 𝑫 and define the values of 𝑫 as columns of ℓ2-norm in 𝑯 , written by ∥𝑯 𝑗 ∥2. Then, we can simplify
the Equation 13 and adopt the Frank-Wolfe algorithm to calculate the calibrated gradient to optimize the current
parameters in unified hypergraph structure 𝑯𝑈 as the following objectives:

min
𝑯𝑈 ∈Δ

𝐽𝐻 =< 𝑯 ,∇𝐽 (𝑯 ) > . (14)

Here, we define the calibrated Frank-Wolfe direction of gradient as the opposite direction most inconsistent with
the current optimization direction. If we find the iteration point 𝒔 with calibrated Frank-Wolfe direction, we can
reformulate the objective function by Frank-Wolfe algorithm:

𝒔 = 𝑎𝑟𝑔𝑚𝑖𝑛
𝒔∈Δ

𝑮𝒔, 𝑮 = vec(∇𝐽 (𝑯 )), 𝒔 = vec(𝑯 ), (15)

where function vec(·) represents the process of converting a matrix into a vector. To optimize the current iteration
points 𝒔 and obtain the approximate solution in a differentiable way, we introduce the optimization strategy of
DeepEMD algorithm[67]. Hence, we can rewrite the Equation 15 into the linear programming problem following
the KKT conditions:

min
𝒔

𝑮𝒔 s.t. 𝑨𝒔 = 𝒃, 𝑭 𝒔 ≤ 0. (16)

Here, 𝒔 ∈ R𝑁𝐾 is the vector to be solved under Frank-Wolfe algorithm. The equality constraint 𝑨𝒔 = 𝒃 represents
all boundary conditions constructed with equality conditions. Besides, the inequality constraint 𝑭 𝒔 ≤ 0 denotes
the all feasible solution ranges in the variable domain under KKT conditions. Then, following the Lagrangian
principle which has been well-studied in the LP problem, it can be reformulated as follows:

L𝐹𝑊 (𝜃, 𝒔, 𝝁, 𝝀) = 𝑮𝒔 + 𝝀𝑇 𝑭 𝒔 + 𝝁𝑇 (𝑨𝒔 − 𝒃), (17)

where 𝝁 is the set containing all equality constraint in Equation 17. Similar to the above definition, 𝝀 ≥ 0 is the
set containing all the inequality constraint. Here, 𝜃 is the learnable parameter in our designed neural network.
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According to the EMD principle under KKT conditions, we can calculate the optimum (s̃, 𝜇̃, 𝜆̃) of loss function
through 𝑔(𝜃, 𝒔, 𝜇, 𝜆) = 0 and the formulation is given by

𝑔(𝜃, 𝒔, 𝜇, 𝜆) =

∇𝜃𝐿𝐹𝑊 (𝜃, 𝒔, 𝜇, 𝜆)
𝒅 𝒊𝒂𝒈(𝜆)𝑭 (𝜃 )𝒔
𝑨(𝜃 )𝒔 − 𝒃 (𝜃 )

 . (18)

Due to the convex optimization theory which has been proposed in [2], the variables 𝒔̃ and 𝜃 have the implicit
function and can be solved by

𝐽𝜃 𝒔̃ = −𝐽𝒔𝑔(𝜃, 𝜆̃, 𝜇̃, 𝒔̃)−1 𝐽𝜃𝑔(𝜃, 𝒔̃, 𝜇̃, 𝜆̃). (19)
Here, we analyze the the implicit function of Equation 19. To calculate the optimum variables 𝒔̃ and 𝜃 , we need to
obtain the Jacobian matrix of the solution and we can use 𝐽𝜃 𝒔̃ to represent the partial Jacobian of 𝒔̃ with the respect
to 𝜃 . Based on the implicit function theory about the Jacobian[24], we can calculate the formula of Jacobian and
obtain it by a differentiable way. Then, we can obtain a gradient concluding 𝒔̃ with closed-form solution targeting
for parameter 𝜃 . In other words, we can use the automaticly differentiable framework (e.g. Pytorch or TensorFlow)
for optimization of parameters in our neural network. Specifically, we flatten the optimized hypergraph matrix as a
vectorized formulation. For example, we split 𝑯 = [𝒉1;𝒉2; · · · ;𝒉𝑁 ] ∈ R𝑁×𝐾 with 𝒉𝑖 = [𝑯 𝑖1,𝑯 𝑖2, · · · ,𝑯 𝑖𝐾 ] ∈ R𝐾 ,
into 𝒉 = [𝒉𝑇1 ;𝒉𝑇2 ; · · · ;𝒉𝑇𝑁 ] ∈ R𝑁𝐾 as a vector. Then, we use 𝒉(𝑘 ) represent the embedding at the 𝑘-th iteration,
which is a fixed point, and we can obtain the final iterative formula with

𝒉(𝑘+1) = (1 − 𝛾)𝒉(𝑘 ) + 𝛾𝒔, (20)
where 𝛾 is the hyperparameter to maintain the current iteration point. The optimization formulation of hyperdege
𝑬 in Equation 11 can be obtain by setting the derivation to 0:

𝜕𝐽

𝜕𝑬 𝑗
= 0, 𝑬 𝑗 =

∑𝑁𝑉

𝑖=1 𝑯 𝑖 𝑗𝑭 𝑖∑𝑁𝑉

𝑖=1 𝑯 𝑖 𝑗

. (21)

Then, we can obtain the closed-form solution of 𝑬 , which also can be solved by a differentiable way.
Finally, we combine the BPR recommendation loss in Equation 7, the loss of differentiable sparse optimization

for hypergraphs in Equation 17 and the loss for contrastive learning in Equation 4 to obtain the final proposed
objective as follows:

L = L𝐵𝑃𝑅 + L𝐹𝑊 + 𝜆L𝑠 . (22)
Here, 𝜆 is the hyperparameter of the loss function in contrastive learning to balance the text-aligned strength of
the training process. By integrating the three losses, we can learn a hypergraph structure tailored for incomplete
scenarios and multimedia recommendations jointly. The whole optimization is presented in Algorithm 1.

4.3 Complexity Analysis
Through our proposed HIRE and HIRES, we can achieve promising results under incomplete multimedia recom-
mendation scenarios. However, the trade-off between model performance and running complexity is essential
during the deploying process. Therefore, in this section, we will provide our discussion about complexity analysis
of our HIRE and HIRES.
For our HIRE framework, the running time is limited by two steps: hypergraph construction and multimedia

recommendation. In the hypergraph construction, we exploit the deep K-means clustering technique in Equation 1
with𝑂 (𝑁𝑉𝐾𝑑) and the complexity of our hypergraph convolution is𝑂 (2𝑁𝑉𝐾𝑑). Here, 𝑁𝑉 is the number of items,
𝐾 is the number of hyperedges and 𝑑 is the dimension of latent embeddings. In the multimedia recommendation
step, our contrastive learning is implemented by mini-batch sampling, which can be ignored compared with the
global complexity. The multimedia recommendation contains the multimodal fusion module with 𝑂 (3𝑁𝑉𝑑2) and
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the recommendation module with 𝑂 (𝑁𝑈𝑁𝑉𝑑), where 𝑁𝑈 is the number of users. Therefore, the total complexity
of our HIRE is 𝑂 (3𝑁𝑉𝐾𝑑 + 3𝑁𝑉𝑑2 + 𝑁𝑈𝑁𝑉𝑑)
For our HIRES framework, compared with HIRE framework, we replace the hypergraph construction with

sparse optimal transport. In the sparse optimal transport step, the running time is limited by calculating the cost
matrix𝑴 with𝑂 (𝑁𝑉𝐾𝑑) and the derivative ∇𝐽 (𝑯 ) in Equation 13. The complexity of ∇𝐽 (𝑯 ) is𝑂 (𝑁𝑉𝐾2 +𝑁𝑉𝐾),
where we need to calculate the values of 𝑫 with 𝑂 (𝑁𝑉𝐾) and the derivative with 𝑂 (𝑁𝑉𝐾2). Note that, since we
use a differentiable technique to approximate the sparse optimal transport, the other steps can be calculated by
the gradient framework automatically, e.g. Pytorch or TensorFlow. Therefore, the total complexity of our HIRES
is 𝑂 (𝑁𝑉𝐾𝑑 + 𝑁𝑉𝐾2 + 𝑁𝑉𝐾 + 3𝑁𝑉𝑑2 + 𝑁𝑈𝑁𝑉𝑑).

Algorithm 1 Sparse Optimal Transport Optimization
Input: Multimedia item representation 𝑭 , number of hyperedge 𝐾 , hyperparameter 𝛾 , number of dimension 𝑑 .
Output: Final differentiable loss function L𝐹𝑊 .
1: Initial hyperedge embedding 𝑬 and unified heterogeneous hypergraph structure 𝑯 ;
2: while not convergent do
3: Calculate the cost matrix 𝑴 by 𝑴𝑖 𝑗 = | |𝑭 𝑖 − 𝑬 𝑗 | |22 in Equation 11;
4: Update the hypergraph structure by min𝑯 ∈Δ 𝐽 =< 𝑯 ,𝑴 > +𝜂∥𝑯 ∥2,1 in Equation 12;
5: Take the derivative of 𝐽 by Equation 13;
6: exploit the Frank-Wolfe algorithm to optimize the current hypergraph matrix 𝑯 with Equation 14;
7: Find the iteration point 𝒔 with calibrated Frank-Wolfe direction by Equation 16.
8: end while
9: Calculate L𝐹𝑊 (𝜃, 𝒔, 𝝁, 𝝀) = 𝑮𝒔 + 𝝀𝑇 𝑭 𝒔 + 𝝁𝑇 (𝑨𝒔 − 𝒃) in Equation 17.

5 Experiments
In this section, we evaluate the effectiveness of our proposed HIRES on four public multimedia datasets. First,
we provide a brief description of datasets and experimental settings. Then, we evaluate our proposed HIRES
framework from the following four research questions:
• RQ1: How do HIRE framework and HIRES framework perform compared to the state-of-the-art single space
recommendation methods?

• RQ2: How does the HIRE and HIRES propose each component contributes to performance improvement?
• RQ3: How do the hyperparameters impact the performance of recommendation and how can optimal values
be chosen?

• RQ4: How does HIRES improve the modeling of multiple facets of users and items?

5.1 Experimental Setup
5.1.1 Datasets. To comprehensively demonstrate the effectiveness of the methods we are comparing, we use
four real-world datasets from different application domains,which have different sizes and interaction densities.

The statistics are summarized in Table 2.
• Amazon.We use three datasets from Amazon, which are Amazon-Baby, Amazon-Sports, and Amazon-Elec.
The images and textual details of products are used to generate 4096-dimensional visual feature embeddings
and textual feature embeddings. The textual features are encoded with Sentence-Bert [41].

• TikTok. This dataset comes consists of short videos on the Tiktok platform. The short videos contain visual,
acoustic, and textual features, which are considered as multi-modal features. The textual features are also
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Table 2. Statistics of experimented datasets with multimodal item Visual (V), Acoustic (A), and Textual (T) contents.

Dataset Amazon-Baby Amazon-Sports Amazon-Elec Tiktok
Modality V T V T V T V A T

Embedding Dim 4096 1024 4096 1024 4096 384 128 128 768
User 19445 35598 192403 9319
Item 7050 18357 63001 6710

Interactions 160792 296337 1689188 59541
Sparsity 99.883% 99.955% 99.990% 99.904%

encoded with Sentence-Bert. Besides, the acoustic features are extracted by the Transformer [14] tailored for
acoustic learning.
In these datasets, each item review rating is treated as a record of positive user-item interaction and we use

a graph structure to store the matrix. Following previous works [9, 40], we adopt their selected multimedia
pre-processing settings, like [28, 31], to build our incomplete multimedia scenarios. Specifically, we filter out
the items that have fewer than 5 interactions and the users that have fewer than 5 interactions in their domains
as previous works [75]. Note that we maintain the user having ratings with items with score greater than 3
as the positive samples to model the real scenarios. The modality missing means the whole features under the
modality are missed and we use the zero value to mask the features as the missing process. Under each modality,
we randomly select a certain rate of nodes for missing operations, which is defined as the missing rate. Besides,
we conduct 10 tests on each round of experimental results and report the average of the results as the final
performance. In order to guarantee a fair comparison, we follow the latest multimedia models [1] to split the
dataset into training, test and validation sets with the ratio of 7:2:1.

5.1.2 Evaluation protocols. We evaluate the recommendation performance using three metrics: Recall@K ,
Precision@K and Normalized Discounted Cumulative Gain (NDCG@K) to test the accuracy of our proposed HIRE
and HIRES. Besides, to illustrate the diversity of our proposed model, we also introduce the Intra-List Category
Similarity (ILCS) to calculate the micro diversity for our tailored hypergraph methods for incomplete multimedia
recommendations. The specific formulae are as follows:

Recall@k =
TP@k

TP@k + FN@k
(23)

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 is defined as the ratio of the number of true positive cases identified within the top k recommendations
to the total number of positive cases. It measures the ability of the system to retrieve relevant items from the
total set of relevant items.𝑇𝑃@𝑘 means the number of positive cases that are correctly identified within the top
k recommendations or predictions. These are the relevant items that the system successfully retrieves. 𝐹𝑁@𝑘
means the number of positive cases that are not identified within the top k recommendations or predictions.
These are the relevant items that the system fails to retrieve.

Precision@k =
TP@k

TP@k + FP@k
(24)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@𝐾 is the accuracy of evaluating the recommendation system in the Top-K recommendation results.
𝐹𝑃@𝑘 means the number of samples that were incorrectly predicted as positive in the first k predictions. That is,
these samples are actually negative classes, but the model incorrectly predicts them as positive.
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DCG@K =

𝐾∑︁
𝑖=1

2𝐹 (𝑣𝑖𝑇 (𝑢 ) ) − 1
log2 (𝑖 + 1)

(25)

IDCG@𝐾 =

𝐾∑︁
𝑖=1

1
log2 (𝑖 + 1)

(26)

NDCG@ K =
DCG@ K
IDCG@ K (27)

𝑁𝐷𝐶𝐺@𝐾 is an indicator that is sensitive to the order of recommended items. The function 𝐹 (𝑣𝑖𝑇 (𝑢)) is an
indicator function that determines whether item 𝑣 is in the set 𝑇 (𝑢). If it is, the value is 1, otherwise, it is 0. 𝐷𝐶𝐺
represents Discounted Cumulative Gain, and 𝐼𝐷𝐶𝐺 represents the Ideal Discounted Cumulative Gain. Following
the settings in [53], we all-rank item evaluation strategy is used to measure the accuracy. To measure the accuracy,
the average scores over all users are reported in the test set.

𝐼𝐿𝐶𝑆 =
1
|𝑈 |

∑︁
𝑢∈𝑈

1
|𝑹̂𝑢 | ( |𝑹̂𝑢 | − 1)

∑︁
(𝑖, 𝑗 ) ∈𝑹̂𝑢

|𝐶𝑖 ∩𝐶 𝑗 |
|𝐶𝑖 ∪𝐶 𝑗 |

(28)

Intra-List Category Similarity (ILCS) is the metric to measure the micro diversity of the recommendation sets for
specific users, which has been widely exploited in previous works [56]. ILCS can measure the diversity between
all pairs of items in 𝑹̂𝑢 for each user 𝑢, and then takes the average. The fewer categories 𝐶 of items 𝑖 and 𝑗 that
overlap in the recommended candidate set means the smaller ILCS values, which is is supposed to indicate greater
diversity of the proposed framework.

5.1.3 Baselines. To illustrate the influences of the inclusion of missing modalities on the models and verify
the effectiveness of our proposed framework in completing missing modalities, we compare with the following
representative and recent baselines, which can be divided into two categories. (1) collaborative filtering without
multimedia contents (MF-BPR, NGCF, LightGCN, SGL, NCL, HCCF, MMGCN, LATTICE, and CLCRec), and
(2) multimedia recommendation with missing modalities (LightGCN-𝑀 , MMGCL, SLMRec, MMSSL, AGCN,
DualGNN, M3care, GCIMH, T2-GNN, MoMKE and CI2MG):
• BPR [42]: The full name of BPR is Bayesian Personalized Ranking, which is a sorting algorithm for Top-N
recommendation and is suitable for implicit feedback data.

• NGCF [52]:NGCF exploits the user-item graph structure by propagating embeddings on it, effectively injecting
the collaborative signal into the embedding process in an explicit manner.

• LightGCN [18]: LightGCN learns embeddings by linearly propagating them on the user-item interaction
graph, and uses weighted sum of embeddings learned at all layers as the final embedding.

• SGL [20]: SGL generates multiple views of a node, maximizing the agreement between different views of the
same node compared to that of other nodes.

• NCL [27]: NCL consists of two core components, which focus on the individual supervised learning for each
single expert and the knowledge transferring among multiple experts, respectively.

• HCCF [60]: HCCF is proposed to jointly capture local and global collaborative relations with a hypergraph-
enhanced cross-view contrastive learning architecture.

• MMGCN [55]: MMGCN, built upon the message-passing idea of graph neural networks, can yield modal-
specific representations of users and micro-videos to better capture user preferences.

• LATTICE [69]: LATTICE, which is proposed for multimodal recommendation, leverages graph structure
learning to discover latent item relationships underlying multimodal features.
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• CLCRec [54]: CLCRec reformulates the representation learning for cold-start item from an information-
theoretic standpoint.

• LightGCN-M: This is generated on the basis of model LightGCN combined with multimodal features.
• MMGCL [62]:MMGCL aims to explicitly enhance multi-modal representation learning in a self-supervised
learning manner.

• SLMRec [49]: In order to capture multi-modal patterns in the data itself, SLMRec goes beyond the supervised
learning paradigm.

• MMSSL [53]: MMSSL is a modality-aware structure learning paradigm via adversarial perturbations for data
augmentation to characterize the inter-dependency.

• AGCN [58]: AGCN is proposed for joint item recommendation and attribute inference in an attributed
user-item bipartite graph with missing attribute values.

• DualGNN [50]: leverages the correlation between users to mine the particular fusion pattern for each user.
• M3care [68]:M3Care imputes the task-related information of the missing modalities in the latent space by the
auxiliary information from each patient’s similar neighborss.

• GCIMH [43]: GCIMH employs graph convolutional autoencoding and multi-modal hashing to generate hash
codes from incomplete multi-modal data for efficient retrieval.

• T2-GNN [22]: T2-GNN enhances GNN performance on incomplete graphs using teacher-student distillation
with specialized feature and structure guidance.

• MoMKE [61]:MoMKE leverages unimodal and joint representations learned from all modality experts through
a two-stage training process to robustly handle incomplete multimodal data.

• CI2MG [31]: CI2MG is proposed for enhancing incomplete multimedia recommendation, in order to address
the challenge of missing modalities.

5.1.4 Experimental Setup Details. To ensure fair comparison, we have carefully tuned the hyperparameter of
dimension for all baselines through cross-validation as suggested in their original papers to achieve their best
performance. Besides, for multi-modality methods, the dimension given is the total dimension after concatenation
which is the same for all baselines to achieve a fair comparison, following the most existing settings [23, 53]. We
implement HIRE and HIRES using PyTorch, which will be made publicly available upon the acceptance of this
work. AdamW and Adam are adopted as the optimizer for the generator. In particular, we set learning rate in
{4.5e-4, 5e-4, 5.4e-3, 5.6e-3} and {2.5e-4, 3e-4, 3.5e-3}, the number of graph layer in {1, 2, 3, 4}. In our experiments,
except the LightGCN-𝑀 implemented by ourselves, we use official implementations proposed by the original
paper of other baselines. For all the baselines, we exploit the same value with the common hyperparameters. For
example, the embedding dimension d is set to 64, the batch size to 1024. For the specific hyperparameters in the
baselines, we use the values reported in their original literature. Additionally, for the experimental environment,
we implement the proposed method and other baseline models on a standard Ubuntu-16.04 operating system.
Furthermore, most experiments reported in this paper are trained using four Nvidia Tesla P100 and two GeForce
RTX 3090 GPUs with 128G memory.

5.2 Overall Performance Comparison (RQ1)
In order to verify the effectiveness of our proposed model, We compare the recommendation performance of
HIRE and HIRES against the selected benchmarks using Recall@20, Precision@20, and NDCG@20 metrics. From
Table 3, we can make the following observations.

Overall, HIRE and HIRES surpass all 20 baselines across the evaluation metrics on the four multimedia datasets.
This answers RQ1 and illustrates the effectiveness of jointly training heterogeneous hypergraph and multimedia
recommendation under the incomplete scenarios. Compared with the HIRE framework, the performance gains of
HIRES on Amazon-baby, Amazon-sports, Amazon-elec, and Tiktok range from reasonably large (2.17% achieved
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Table 3. Performance (%) comparison of baselines with the 90% missing rate in terms of Recall@20, Precision@20 and
NDCG@20 on Amazon-Baby, Amazon-Sports, Amazon-Elec and Tiktok multimedia datasets, where ∗ denotes a significant
improvement according to the wilcoxon signed-rank test.

Baseline Amazon-Baby Amazon-Sports
Recall@20 Precision@20 NDCG@20 Recall@20 Precision@20 NDCG@20

MF-BPR 4.51±0.11 0.24±0.002 2.06±0.16 4.03±0.15 0.19±0.009 1.97±0.18
NGCF 6.11±0.12 0.34±0.003 2.64±0.10 6.80±0.13 0.34±0.006 3.08±0.10
LightGCN 7.24±0.20 0.38±0.002 3.32±0.16 6.31±0.13 0.40±0.007 3.55±0.15
SGL 6.85±0.14 0.36±0.007 2.91±0.14 7.33±0.15 0.37±0.006 3.51±0.14
NCL 7.37±0.19 0.36±0.007 3.06±0.19 7.56±0.17 0.37±0.005 3.50±0.20
HCCF 7.20±0.14 0.38±0.007 3.05±0.17 6.95±0.14 0.39±0.005 3.21±0.15
MMGCN 5.44±0.19 0.27±0.001 2.39±0.17 4.37±0.14 0.22±0.004 2.17±0.15
LATTICE 6.77±0.19 0.39±0.001 3.02±0.12 6.68±0.20 0.28±0.002 2.74±0.11
CLCRec 6.31±0.15 0.36±0.002 2.78±0.19 5.97±0.18 0.28±0.002 2.57±0.15
LightGCN-M 5.38±0.27 0.28±0.002 2.18±0.10 3.65±0.16 0.23±0.004 2.35±0.15
MMGCL 5.70±0.25 0.31±0.002 2.57±0.17 6.90±0.13 0.37±0.001 3.28±0.19
SLMRec 6.91±0.18 0.41±0.008 3.12±0.15 7.61±0.18 0.37±0.003 3.43±0.17
MMSSL 8.00±0.20 0.41±0.001 3.47±0.10 8.16±0.10 0.35±0.002 3.58±0.05
AGCN 7.05±0.15 0.33±0.001 3.06±0.09 5.25±0.14 0.32±0.002 2.90±0.09
DualGNN 6.15±0.21 0.31±0.002 2.82±0.13 5.38±0.24 0.29±0.001 2.31±0.14
M3care 7.31±0.10 0.37±0.001 3.01±0.15 6.44±0.15 0.29±0.002 2.31±0.13
GCIMH 6.89±0.19 0.28±0.002 2.97±0.12 5.01±0.13 0.29±0.003 2.71±0.10
T2-GNN 7.01±0.21 0.30±0.002 3.02±0.11 5.16±0.14 0.32±0.001 2.93±0.13
MoMKE 8.21±0.17 0.42±0.001 3.33±0.09 8.16±0.15 0.40±0.002 3.40±0.09
CI2MG 8.26±0.13 0.44±0.004 3.55±0.10 8.36±0.12 0.44±0.006 3.31±0.12
HIRE 8.54±0.18∗ 0.46±0.004∗ 3.70±0.10∗ 8.63±0.12∗ 0.46±0.003∗ 3.45±0.10∗
HIRES 8.81±0.16∗ 0.47±0.004∗ 3.78±0.09∗ 8.98±0.12∗ 0.48±0.003∗ 3.59±0.08∗

Imp of HIRE 3.39% 4.55% 4.23% 3.23% 4.55% 4.23%
Imp of HIRES 6.66% 6.82% 6.48% 7.42% 9.09% 8.46%

Baseline Amazon-Elec Tiktok
Recall@20 Precision@20 NDCG@20 Recall@20 Precision@20 NDCG@20

MF-BPR 3.03±0.13 0.16±0.004 1.43±0.13 3.23±0.19 0.19±0.003 1.25±0.15
NGCF 4.11±0.18 0.22±0.002 1.75±0.15 5.92±0.14 0.31±0.004 2.20±0.21
LightGCN 4.71±0.13 0.27±0.005 2.29±0.14 5.85±0.14 0.32±0.004 3.21±0.16
SGL 4.94±0.13 0.24±0.001 2.04±0.17 6.58±0.14 0.28±0.006 1.28±0.19
NCL 4.94±0.15 0.24±0.002 2.04±0.15 6.58±0.18 0.28±0.001 1.28±0.14
HCCF 4.70±0.13 0.27±0.005 2.24±0.16 6.49±0.18 0.26±0.009 2.71±0.11
MMGCN 3.90±0.15 0.19±0.003 1.61±0.11 6.99±0.17 0.33±0.002 2.46±0.12
LATTICE 4.96±0.17 0.27±0.003 2.08±0.07 6.26±0.18 0.33±0.002 3.19±0.08
CLCRec 4.71±0.19 0.24±0.001 2.08±0.13 5.86±0.17 0.34±0.003 3.20±0.10
LightGCN-M 3.59±0.17 0.21±0.006 1.59±0.10 6.47±0.11 0.38±0.003 2.86±0.18
MMGCL 3.82±0.18 0.19±0.002 1.70±0.09 5.84±0.13 0.29±0.006 2.59±0.13
SLMRec 5.12±0.16 0.29±0.001 2.19±0.19 8.03±0.13 0.36±0.001 4.36±0.10
MMSSL 5.45±0.15 0.28±0.007 2.31±0.06 8.56±0.13 0.39±0.005 4.39±0.04
AGCN 5.08±0.12 0.25±0.001 2.04±0.10 7.63±0.13 0.32±0.003 2.83±0.13
DualGNN 4.38±0.17 0.23±0.005 2.11±0.09 5.56±0.17 0.31±0.002 2.73±0.03
M3care 4.38±0.16 0.23±0.004 2.11±0.12 5.56±0.17 0.31±0.001 3.66±0.09
GCIMH 4.83±0.15 0.23±0.002 1.93±0.11 7.47±0.14 0.30±0.003 3.62±0.11
T2-GNN 5.01±0.18 0.24±0.003 2.01±0.08 7.54±0.12 0.31±0.002 3.77±0.09
MoMKE 5.26±0.16 0.29±0.002 2.51±0.12 8.42±0.11 0.38±0.003 4.55±0.10
CI2MG 5.54±0.15 0.30±0.001 2.68±0.13 8.57±0.17 0.39±0.004 4.86±0.08
HIRE 5.76±0.13∗ 0.31±0.004∗ 2.79±0.13∗ 8.85±0.13∗ 0.40±0.005∗ 5.02±0.04∗
HIRES 5.92±0.11∗ 0.32±0.003∗ 2.87±0.09∗ 9.08±0.10∗ 0.42±0.001∗ 5.21±0.02∗

Imp of HIRE 3.97% 3.33% 4.10% 3.27% 2.56% 3.29%
Imp of HIRES 6.86% 6.67% 7.09% 5.95% 7.69% 7.20%

with Precision@20 on Amazon-Baby) to significantly large (5.00% achieved with Precision@20 on Tiktok).
This experimental results show that our proposed modality-driven sparse constrain in HIRES is more effective
in capturing the higher-order relations with missing modalities where we can assign smaller weights to the
missing modalities, as we will further demonstrate in the optimization section. Compared with the second-best
performance, HIRES has significant performance improvements in Recall, Precision, and NDCG range from (5.95%
achieved with Recall@20 on Tiktok) to (9.09% achieved with Rrecision@20 on Amazon-Sports). It’s worth noting
that the improvements of HIRES are particularly significant in scenarios where user-item interactions are sparse,
like with Tiktok, which supports the appropriate design of unified heterogeneous hypergraph to make full use of
high-order similarity in the incomplete multimedia recommendation.
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Fig. 4. Performance about the comparison with different missing rates for multimedia recommendation regarding Recall@20
of the HIRES on the Amazon-Baby, Amazon-Sports, Amazon-Elec and Tiktok datasets.

In particular, by considering both implicit feedback and multi-modal features for recommendation, HIRES
performs better than single-modality baselines, which supports the appropriate using of multimodal information
that can enhance the recommender systems. The graph-based paradigm is an efficient way to exploit the user-item
interactions to involve the multimedia information. Compared with the existing method (e.g. LightGCN) with
only graph encoders, our proposed HIRE performs better than graph-based methods in many cases. For example,
HIRES framework outperforms LightGCN from 5.01% (achieved in Precision@20 on Tiktok) to 43.03% (achieved
in NDCG@20 on Tiktok). Moreover, the performance gains of proposed HIRES over graph-based method ranges
from 11.26% (achieved in NDCG@20 on Amazon-Sports) to 62.30% (achieved in NDCG@20 on Tiktok). This
observation illustrates that introducing the hypergraph structure can capture more effective set-to-set higher-
order relations in mining and completing the heterogeneous multimodal representation under the scenarios with
missing modalities. The main differences of hypergraph structures between HIRE and HIRES reside in properly
designing the missing-aware sparse constraint among multimodal node representations, where the experimental
results show that sparse hypergraph structures can enhance the incomplete multimedia recommendations.
Besides, by considering the hypergraph structure in multimedia scenarios, we can not only capture the local
information but also the global collaborative filtering signals. However, exploiting the hypergraph directly may
ignore the multimodal relations across the modalities, which is helpful to the missing modalities. For example,
although HCCF can jointly capture local and global user-item relations with a hypergraph-enhanced cross-view
contrastive learning architecture, it fails to capture the complex relations across modalities. In this way, HIRE
outperforms HCCF up to 21.31% in NDCG@20 on Baby dataset, up to 24.17% in Recall@20 on Sports dataset, up
to 24.55% in NDCG@20 on Electronics dataset, and up to 53.84% in Precision@20 on Tiktok dataset. HIRES can
outperform HCCF by up to 22.36% in Recall@20 on Baby dataset, up to 29.21% in Recall@20 on Sports dataset,
up to 25.96% in Recall@20 on Electronics dataset, and up to 39.91% in Recall@20 on Tiktok dataset.
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Table 4. The ablation study on the HIRE and HIRES performance across Baby, Sports, Elec and Tiktok.

+Homo-Hypergraph +Hete-Hypergraph +Contrastive +Constraint Amazon-Baby
Recall@20 Precision@20 NDCG@20

× × × × 5.38 0.28 2.18
✓ × × × 6.01 0.33 2.86
✓ ✓ × × 7.65 0.40 3.24
✓ ✓ ✓ × 8.54 0.46 3.00
✓ ✓ ✓ ✓ 8.81 0.47 3.78

+Homo-Hypergraph +Hete-Hypergraph +Contrastive +Constraint Amazon-Sports
Recall@20 Precision@20 NDCG@20

× × × × 3.65 0.23 2.35
✓ × × × 4.86 0.36 2.97
✓ ✓ × × 7.52 0.41 3.12
✓ ✓ ✓ × 8.63 0.46 3.45
✓ ✓ ✓ ✓ 8.98 0.48 3.59

+Homo-Hypergraph +Hete-Hypergraph +Contrastive +Constraint Amazon-Elec
Recall@20 Precision@20 NDCG@20

× × × × 3.59 0.21 1.59
✓ × × × 4.68 0.25 1.98
✓ ✓ × × 5.03 0.28 2.45
✓ ✓ ✓ × 5.57 0.31 2.79
✓ ✓ ✓ ✓ 5.92 0.32 2.87

+Homo-Hypergraph +Hete-Hypergraph +Contrastive +Constraint Tiktok
Recall@20 Precision@20 NDCG@20

× × × × 6.47 0.38 2.86
✓ × × × 7.46 0.38 3.56
✓ ✓ × × 8.08 0.39 4.77
✓ ✓ ✓ × 8.85 0.40 5.02
✓ ✓ ✓ ✓ 9.08 0.42 5.21

Moreover, the multimodal baselines (i.e., MMGCL, MMSSL, and CI2MG) can obviously outperform the without
multimedia competitors (e.g., MF-BPR, LightGCN, HCCF), which is consistent with the results in previous
work [69]. When the incomplete conditions (e.g., LATTICE andMMSSL) are not all considerable, those multimedia-
basedmethods cannot sustain competitive results. For example, the performance gains of HIRE over themultimodal
method without completing achieve an improvement up to 12.19% on Precision@20 on Baby dataset, up to
31.42% on Recall@20 on Sports dataset, up to 20.77% on NDCG@20 on Elec datasets, and 14.35% on Precision@20
on Tiktok dataset, respectively. Besides, the performance gains of HIRES over the multimodal method without
completing achieve an improvement up to 14.63% on Precision@20 on Baby dataset, up to 37.14% on Recall@20
on Sports dataset, up to 24.24% on NDCG@20 on Elec datasets, and 18.67% on Precision@20 on Tiktok dataset,
respectively. These results also show that most existing multimedia methods will suffer significant performance
degradation while simply discarding incomplete modalities in real missing scenarios, which also support the
significant design with modality completion.
Compared with the multi-modal methods targeting the incomplete scenarios (e.g. AGCN, DualGnn M3care,

GCIMH, T2-GNN, MoMKE and CI2MG), our proposed HIRE and HIRES can capture the multi-modal higher-order
user-item interactions tailored for the multimedia recommendation, which enhance the process of completing
multi-modal representation with missing values. For example, our proposed HIRE and HIRES methods gain an
improvement up to 5.76% and 10.04%with Rcall@20 in the Sports dataset over theMoMKE framework respectively,
which illustrates our proposed methods have more efficient capabilities of feature completing. Although CI2MG
with modality completing can achieve the second-best performance via reconstructing user-item interactions
and aligning modality features from both inter- and intra-modality perspectives in many cases, our proposed
HIRES can still gain improvements by capturing the complex high-order relations within multimodal data. The
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performance gains of HIRE and HIRES over CI2MG achieve an average improvement up to 4.63% and 7.53%,
respectively. Such observations strongly indicate that the optimal transport with sparse constraints is more useful
in the more difficult incomplete scenarios, which consists of modality-driven constrain and interaction-driven
constrain. Note that LightGcn ranks the second in NDCG@20 on Sports dataset. This is because missing values
may introduce additional noise, especially for the scenarios with high missing rates and sparser interactions.
However, existing incomplete multimedia recommendation methods assign the equal weights to both missing
and complete modalities, which can lead to negative transferring.
Furthermore, to provide a more comprehensive demonstration of our model in handling missing values on

recommendation tasks, we present the experimental results with different missing rates, shown in Figure 4,
following the setting [31]. In general, from the observations with the increase of missing modality, the overall
performance shows a downward trend, which shows that the missing modality will affect the model performance.
The proposed HIRES method can achieve best Recall@20 scores with all missing settings (30%, 50%, 70% and 90%)
on all datasets, for example the value of Recall@20 is up to 9.8 in Sports baseline with missing setting is 30%,
which illustrate HIRE and HIRES can construct heterogeneous hypergraph and execute recommender system, for
completing missing modality. Note that, our proposed HIRES framework may achieve the similar results under
both 70% and 90% missing rates on the Baby and Tiktok datasets. This is because we have the tailored design of
the modality-driven constrain and interaction-driven constrain, where we look for the node with the highest
confidence as the completion basis. The experimental results are also particularly evident for the robustness of
our proposed HIRES towards incomplete recommendation.

5.3 Ablation Experiment (RQ2)
To better understand our proposed techniques, we conducted ablation experiments on our framework by incre-
mentally adding components to answer RQ2. We begin with a widely-adopted general recommendation model,
LightGCN, as our base model. Subsequently, we introduce the homogeneous hypergraph structure (+Homo-
Hypergraph) by constructing modality-specific hypergraph, e.g., texual, visual, acoustic, and combine the local
graph with the global hypergraph representations to address incomplete multimedia recommendations. Then,
following the same architecture with +Homo-Hypergraph, we replace the homogeneous hypergraph structure
with a unified heterogeneous hypergraph structure (+Hete-Hypergraph) by the clustering-based mechanism,
where we perform a unified hypergraph convolution to update the multimodal representations under each
modality. Moreover, to make full use of the different modality information to supervise the learning of the unified
hypergraph structure, we add the self-supervised contrastive learning aligned with the textual view (+Contrastive)
to verify the effectiveness of the contrastive module. Finally, we analyze the sparse constraint with a differentiable
optimization strategy (+Constraint). Insights gleaned from Table 4 lead to the following observations:
Compared with the base models, the performance gains of Base+Homo-Hypergraph on four datasets fluc-

tuate, e.g., ranging from 26.38% to 33.15% (achieved in NDCG@20 and Recall@20 on Amazon-Sports). Such
observations strongly indicate that the hypergraph structure is capable of capturing higher-order relationships
between sets to enhance the multimedia recommendations. Similarly, we replace the homogeneous hypergraph
structure with a unified heterogeneous hypergraph structure (Base+Homo-Hypergraph+Hete-Hypergraph),
by considering the higher-order multimodal relationships across modalities, our tailored design of unified het-
erogeneous hypergraph structure can achieve an improvement up to 11.71% in Recall@20, up to 17.85% in
Precision@20, and up to 13.28 in NDCG@20 on Amazon-Baby. Then, to verify the ability of our proposed HIRES
to handle multimedia information, we ablate our design of the self-supervised contrastive learning aligned
with the textual view. The performance gains of Base+Homo-Hypergraph+Hete-Hypergraph+Contrastive over
Base+Homo-Hypergraph+Hete-Hypergraph on Amazon-Elec datasets range from 10.73% on Recall@20 to 13.87%
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Fig. 5. Performance of hyperparameter study regarding Recall@20 of the HIRES framework with varying hyperparameters
on Baby, Sports and Electronics datasets.

on NDCG@20, showing introducing text invariance into contrastive learning can enhance the extraction of mul-
timodal features. Finally, we analyze our sparse optimal transport framework with the modality-driven constrain,
modality-driven constrain and interaction-driven constrain. From the observations, our proposed Base+Homo-
Hypergraph+Hete-Hypergraph+Contrastive+Constraint achieves the highest performance. Compared with the
base model, Base+Homo-Hypergraph+Hete-Hypergraph+Contrastive+Constraint achieve a significant improve-
ment from reasonably large 5.01% (achieved in Precision@20 on Tiktok) to significant large 43.03% (achieved in
NDCG@20 on Tiktok). These results align with those presented in Table 3, demonstrating the effectiveness of
our proposed techniques.

5.4 Effect of Hyperparameters (RQ3)
Our proposed HIRES framework primarily introduces the hyperparameters, i.e., 𝜆, 𝜏 , 𝜂, 𝐿𝐺 , 𝐿𝐻 and 𝑑 . In order
to clarify the optimal number of hyperedges in the proposed hypergraph, we especially analyze the selecting
of hyperedges in our proposed HIRE and HIRES, where 𝐾𝑚 and 𝐾𝑠 means the number of hyperedges in HIRE
and HIRES, respectively. Here we show the impact of these hyperparameters on performance and explain their
optimal settings.

From Fig. 5, we have the following observations: (1) 𝜆 is the weight which controls the strength of the L𝑠 . Too
small 𝜆 will cause the weakening of strength for the positive modality pairs, while too large 𝜆 will cause the
overfitting problem. The optimal values are approximately 0.01 and 0.1. This experimental result demonstrates
that HIRES is sensitive to 𝜆. The setting 𝜆 = 0.1 appears to be the rule-of-thumb. (2) 𝜏 is the temperature parameter
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Fig. 6. Hyperparameter analysis for the number of hyperedges within the unified hypergraph in HIRE and HIRES on Baby,
Sports and Electronics datasets.

of contrastive learning. For hyperparameter 𝜏 , we found the optimal 𝜏 for different datasets is consistently 1.0.
Specifically, we observe that the effectiveness of 𝜏 increases with its value, leading to better performance when
the values are small. However, increasing 𝜏 beyond an optimal value tends to degrade performance. In practical
terms, 𝜏 = 1.0 seems to be the rule-of-thumb. (3) 𝑑 means the dimension of latent representations, where the
optimal value is 64 on all datasets. In particular, we observe the effectiveness of dimension 𝑑 always leads to the
performance gains when 𝑑 is less than 64. However, increasing it beyond the optimal value tends to deteriorate
the performance. In practice, setting 𝑑 as 64 appears to be the rule-of-thumb. (4) 𝜂 is the hyperparameter to
control the strength of sparse regularization in sparse optimal transport. From the experimental results, we can
observe that the optimal number is selected with 𝜂 set to 1, which illustrates the sparse constraint of appropriate
strength can effectively enhance the learning of hypergraph structures. From the observation, The model has not
achieved convergence when 𝜂 is set too small. However, the strong strength of sparse constraint can cause the
hypergraph structure to discard some side information, which may lead to the overfitting problem. Therefore,
it seems to be the rule-of-thumb to set the hyperparameter 𝜂 with optimal number 1. (5) 𝐿𝐺 means the graph
layers of HIRES, where the optimal values are about 2 layers. We can observe the performance improves when
the values are small. Besides, when layer greater than 2, as the number of layers increases, the performance
actually decreases, which is called overfitting problem. Given that additional message passing and aggregation
can exacerbate data sparsity issues, we set 𝐿 = 2 to alleviate the problem of over-smoothing. (6) 𝐿𝐻 means the
hypergraph convolution layers of our proposed HIRES. If 𝐿𝐻 is too small, the higher-order multimodal relations
between each modality may become weaker. However, too large 𝐿𝐻 will likely cause the performance decrease
from the experimental results. This may be due to the introduction of noise as the number of convolution layers
increases, which is a common problem in graph convolution.

Moreover, to illustrate how the varying 𝐾 impacts model performance, we analyze the number of hyperedges
within the hypergraph in our proposed HIRE and HIRES, as shown in Fig. 6. From the observations, we can
find that our proposed HIRE framework can achieve a significant performance improvement as the number of
hyperedges 𝐾𝑚 increases. However, the improvement of model performance is not positively correlated with the
number of hyperedges, where too large number of hyperedges 𝐾𝑚 can lead to redundant parameters in our HIRE,
resulting in overfitting problem. Besides, hypergraph with larger number of hyperedges may bring additional
computational cost. Therefore, to achieve the trade-offs between complexity and perfomance, the number of 𝐾𝑚
is set to 256. Besides, the number of hyperedges 𝐾𝑠 in our proposed HIRES has the same trend as 𝐾𝑚 , where the
optimal value is 256 on all datasets. Compared with the hypergraph proposed in HIRE, our proposed hypergraph
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Fig. 7. Examples of incomplete multimedia recommendation by the proposed HIRES with sparse hypergraph structure and
contrastive multimedia recommendation. The corresponding items are also recommended by proposed HIRES.

of HIRES is more sensitive to hyperparameter 𝐾𝑠 . This is because our sparse optimal transport mechanism in
HIRES introduces prior knowledge of missing-aware and interacting-aware information. Then, we can also
observe 𝐾𝑠 is not sensitive on the Amazon-Elec dataset with sparser user-item interactions, which illustrates the
effectiveness of our sparse optimization mechanism under sparse scenarios.

5.5 Case Study (RQ4)
In order to demonstrate the advantages of our proposed HIRES, we first provide interpretable recommendations
for more insights. Specifically, we demonstrate two example users on sports dataset. All of the recommended
corresponding items are retrieved based on the user-item relations and sparse hypergraph structure, which
are learned by HIRES. Furthermore, we visualize the clustering results of HIRE and HIRES to demonstrate the
effectiveness of structural learning. Then, we show the hypergraph structure with our sparse optimization and
the diversity analysis to give the more clear clarification.
Capturing high-order similarities with user-item interactions. As shown in Fig. 7, we can capture the

high-order simialrities modeled by the unified hypergraph structure via the user-item interactions. For example,
the preference of user1 is consistent with the category 𝑓 𝑜𝑜𝑡𝑏𝑎𝑙𝑙 from the historical interactions. Consequently,
𝑖𝑡𝑒𝑚_4991 and 𝑖𝑡𝑒𝑚_7399 may have the high-order similarities across the different modalities, due to the same
interactions with user1, which is modeled by the hyperedge1 in HIRES. In this way, we can jointly construct our
unified hypergraph structure to capture the high-order correlations with the help of user-item interactions.
Enhancing the incomplete multimedia recommendation with the sparse hypergraph structure. As

shown in Fig. 7, with the well-designed sparse hypergraph structure (e.g., hyperedge2), we can further leverage
the high-order similarties to distinguish user preferences, thereby achieving fine-grained recommendations.
Specifically, 𝑖𝑡𝑒𝑚_4308 and 𝑖𝑡𝑒𝑚_4991 belong to the same hyperedge modeled by the unified hypergraph structure
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    (b) Item Embedding for HIRES                (d) User Embedding for HIRES

    (a) Item Embedding for HIRE                  (c) User Embedding for HIRE (e) Embedding Before Convolution   

 (f) Embedding After Convolution   

Fig. 8. Visualizations of item embeddings learned by the HIRE and HIRES with the unified hypergraph convolution on the
sports dataset.

Epoch 1 Epoch 100 Epoch 200

Fig. 9. Visualizations for the unified hypergraph structure under sparse optimal transport mechanism of HIRES

since the visual modalities are relatively close. Therefore, we exploit such hypergraph structure to complete
missing modalities to enhance the incomplete multimedia recommendation, where the 𝑖𝑡𝑒𝑚_4308 and 𝑖𝑡𝑒𝑚_4991
are recommended to user2 with the calendar category. Besides, the sparse hypergraph structure can also enhance
the representations with complete modalities, e.g., the recommended 𝑖𝑡𝑒𝑚_7001 for user2. In this way, we can
jointly conduct hypergraph structure construction and incomplete multimedia recommendation, allowing them
supervise each other.

Moreover, to discuss how different modalities interact within the hypergraph and provide more insights into
our proposed HIRE and HIRES framework, we use T-SNE to visualize the representations of our proposed HIRE
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Fig. 10. Diversity analysis with ILCS metric for incomplete multimedia recommendation on Baby, Sports and Elec datasets.

and HIRES after our sparse optimization strategy. We first use the nodes with same color clustering to represent
the real different item categories in the sports dataset in Fig. 8 (a)-(d). Then, we provide the visualization of
item embedding with our hypergraph convolution under the sparse optimization strategy in in Fig. 8 (e)-(f).
As shown in Fig. 8 (a)-(d), Gun Scopes, Snow Sports, Folding Knives, LSGR and CMP represent labeled sports.
Besides, we select 200 nodes and construct five categories to illustrate our performance of HIRE and HIRES.
From the experimental T-SNE results, we can see that both HIRE and HIRES are effective in accurately grouping
all items into five categories only based on user-item interactions within the dataset. The visualization of the
experimental results indicates that our proposed HIRE and HIRES can learn distinctive representations with the
help of interactions across different modalities. Besides, benefiting from the complementary information between
different modalities, clear decision boundaries can be characterized when incomplete recommendation decisions
are executed. As shown in Fig. 8 (e)-(f), we illustrate more details on how different modalities interact within
the hypergraph. We first visualize the initialized embeddings under visual and textual modalities, where the
experimental results show that the initialized modality representations cannot be distinguished, especially for
the nodes near the decision boundaries. When we perform the unified hypergraph convolution to capture the
cross-modality relations within the hypergraph structure, the hard nodes near the decision boundaries can use
the higher-order relations from different modalities within a hyperedge to enhance the representation learning.
From the observation, we can find that interacting within the hypergraph can make the nodes near the modality
boundaries more discriminative to enhance the incomplete multimedia recommendation. From Fig. 8, we can also
observe that both HIRE and HIRES can perform well on dataset, where HIRES can achieve better performance
than HIRE.

Finally, we also show the unified hypergraph structure during the training process of our proposed HIRES in
Fig. 9 to help to understand how sparse optimal transport mechanism refines the learned structure. Specifically,
we first show the initialized dense hypergraph structure containing many irrelevant noisy connections. With
the execution of training, benefiting from the sparse optimal transport mechanism, our tailored cross-modality
hypergraph can remove the modality-driven and interaction-driven noisy relations out of the hyperedge, which
leads to a clear sparse structure. Besides, due to the exploiting of ℓ2,1-norm, our sparse unified hypergraph
structure have the column sparsity, which can enhance the representation learning of hyperedges in our proposed
unified hypergraph convolutions.
Diversity analysis for the incomplete multimedia recommendation. To illustrate the diversity of our

recommendation results, we show the diversity comparison with respect to the intra-List Category Similarity
(ILCS) metric in Fig. 10, where a small value of ILCS means great diversity of the recommendation results. From
the observation, we can learn that our proposed HIRE and HIRES surpass all baselines for the diversity evaluation,
which illustrates our methods can exploit side relations across modalities to enhance the recommendations.
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6 Conclusion
In this paper, we propose a novel framework designed to jointly learn a heterogeneous hypergraph and perform
accurate recommendations under incomplete scenarios named HIRE. HIRE first initializes the hypergraph struc-
ture by K-means algorithm and exploits a unified heterogeneous hypergraph convolution mechanism to complete
the missing multimodal features by high-order relations. Then, the contrastive multimodel recommendation is de-
signed with a textual-aligned self-supervised mechanism to enhance the incomplete multimedia recommendation.
Besides, we also devise the HIRE framework with Sparse optimization named HIRES. To refine the hypergraph
structure, we uniquely integrate optimal transport and a ℓ2,1-norm constraint and propose a novel optimization
strategy. Extensive experiments demonstrate the clear improvements of HIRES over the state-of-the-art baselines
and insightful case studies show the accuracy and interpretability of our proposed methods.
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