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Abstract—The sparse interactions between users and items
have aggravated the difficulty of their representations in recom-
mender systems. Existing methods leverage tags to alleviate the
sparsity problem but ignore prevalent logical relations among
items and tags (e.g., membership, hierarchy, and exclusion),
which can be leveraged to enhance the accuracy of modeling
user preferences and conducting recommendations. To this end,
we propose to extract logical relations among item tags from
existing tag taxonomies and exploit the individual strengths of the
Poincaré and the Lorentz models in hyperbolic space for logical
relation modeling towards enhanced recommendations. More-
over, we find that the logical relations directly extracted from
existing tag taxonomies can be inaccurate and coarse. Therefore,
we further devise innovative consistency-based and granularity-
based weighting mechanisms based on user behavior patterns for
data-driven logical relation mining that can be jointly optimized
along with recommendations in an end-to-end fashion. Extensive
experiments on four real-world benchmark datasets show drastic
performance gains brought by our proposed framework, which
constantly achieves an average of 8.25% improvement over state-
of-the-art competitors regarding both Recall and NDCG metrics.
Insightful case studies further demonstrate that our automatically
refined logical relations are highly accurate and interpretable.

I. INTRODUCTION

Recommender systems based on traditional collaborative
filtering methods suffer from the sparsity issue of user-item
interactions. To address the sparsity challenge, it is a common
practice to combine collaborative filtering with auxiliary data.
Among them, item tags are one of the most commonly used
types of auxiliary data due to their vast availability and rich
semantics, which can be used to improve user modeling and
recommendation [6], [22], [24], [64].

However, existing tag-based methods ignore the preva-
lent membership relation among items and tags, hierarchi-
cal/exclusive relations among tags. We uniformly term the
above three relations as logical relations in taxonomies for
specific recommendation scenarios, which can be helpful in
producing accurate and consistent recommendations that re-
spect the inherent logical constraints among items as indicated
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Fig. 1: An illustrative example of recommendation with
refined logical relations. The tags are marked with <>.
Note that refined logical relations are not directly derived
from the existing tag taxonomies. Moreover, various levels of
hierarchies and exclusions have different degrees of impact.

by the tags. As shown in Fig. 1, an item London Call should
belong to tag t1 <Rock> (i.e., membership relation) if it
belongs to t4 <Alternative Rock> (according to hierarchical
relation) and should not belong to t2 <Classical> (according
to exclusive relation). Therefore, we can skip items under
t2 <Classical> when recommending items for Lisa or Linda
since they only interact with items under t1 <Rock>, which
can lead to more explainable and consistent recommendations
yet with significant reductions on computation cost [29].

To effectively and efficiently model the logical relations,
we notice the techniques of hyperbolic representation learning.
Since the volume of hyperbolic space expands exponentially,
it can reliably model objects with hierarchical relations [30],
[31], [40] (the detailed analysis can be found in Section III-B).
However, these studies fail to explore membership and exclu-
sive relations that are set-theoretic, which should be modeled
via convex regions rather than single points in the hyperbolic
space. Moreover, how to seamlessly integrate logical relation
modeling with recommender systems remains unclear, where
the key objective is to properly adjust the embedding spaces



of both users and items while maintaining the multiple types
of logical relations indicated by the item tags.

In this work, we propose to jointly model the Logical
relations and perform Recommendation (LogiRec), which
aims to make full use of tags to learn fine-grained represen-
tations and enhance recommendations (Section IV). Specif-
ically, we propose to leverage both points and hyperplanes
in the Poincaré model for logical relation modeling, where
we model tags as convex regions and items as points with
intuitive constraints. In this way, the logical relations among
items and tags can be modeled by the geometric relations
between their corresponding embeddings. Then, considering
the different advantages of the Poincaré [30] and the Lorentz
[31] models for the interpretability and the stable optimization
of models, respectively, we innovatively exploit these two
types of hyperbolic models together and design a hyperbolic
graph convolutional network for user and item representation
learning that can be seamlessly optimized towards the objec-
tive of recommendation.

One step further, we find that the logical relations directly
derived from the existing tag taxonomies can be inaccurate
and coarse [54], since the assumption that there is exclusion
between tags at the same taxonomic level when they share
the same parent tag and no common child tag may not always
hold. For example, the exclusive relation between tag <Heavy
Metal> and <Metal> can be inaccurate since the two are
actually overlapping concepts and both belong to tag <Hard
Rock>. Moreover, it is coarse to simply make tag <Punk
Rock> and <Alternative Rock> be exclusive to the same
degree as tag <Punk Rock> and <Blues Rock>, because
<Punk Rock> and <Alternative Rock> are both rebellious
music genre while <Blues Rock> is a soulful and emotional
guitar-driven music genre. Although tags can be helpful to
group items and users with similar properties and preferences,
without further refining logical relations to enhance their
accuracy and granularity, the model can fail to obtain accurate
and fine-grained representations for users and items, which can
even backfire the recommendation performance.

In light of this, we propose to refine logical relations via
a data-driven approach based on user behaviors. We deem
that users with consistent and specific preferences can be
more helpful in refining logical relations, and their interactions
should make larger impacts on the optimization of recommen-
dations. As shown in Fig. 1, Linda who has consistent prefer-
ences over items under tag t1 <Rock> can reasonably make
the originally exclusive t3 <Punk Rock> and t4 <Alternative
Rock> closer to each other; however, since her preferences
are not specific into different types of t4 <Alternative Rock>,
her preference should not impact the closeness between t8
<British Alternative> and t9 <American Alternative> much.
Therefore, we devise intuitive weighting mechanisms based
on the novel utilization of exclusive relations and hyperbolic
embeddings towards quantifications of user preference consis-
tency and granularity, so as to adaptively adjust the impacts
of different users for data-driven logical relation mining. We
term this improved version of LogiRec with logical relation

mining as LogiRec++ (Section V).
We evaluate both LogiRec and LogiRec++ with exten-

sive experiments on four real-world benchmark datasets for
recommendations. We compare them with 13 comprehensive
methods focusing on state-of-the-art metric learning-based,
tag-based, and graph-based recommendation methods. Exten-
sive experimental results show that LogiRec++ is able to
significantly improve the recommendation overall baselines
(e.g., with up to 14.43% improvements in Recall@10 on
Book over the best baseline). More comprehensive results and
discussion as well as ablation studies, hyperparameter studies,
and case studies are presented and analyzed in Section VI.

In summary, we mainly make the following contributions:
• Formulation of logic-enhanced recommendation.
LogiRec++ is the first recommendation framework
with explicit handling of logical relations, which can
provide consistent and interpretable predictions and refine
logical relations without additional supervision.

• Effective model designs. In LogiRec, we exploit the indi-
vidual strengths of two hyperbolic models (i.e., Poincaré
and Lorentz) to integrate logical relation modeling and
recommendation as a whole. In LogiRec++, we devise
intuitive consistency-based and granularity-based weighting
mechanisms based on user behaviors for effective joint
training of logical relation mining and recommendation.

• We conduct extensive experiments on four real-world
datasets, which demonstrate significant improvements of
the proposed LogiRec++ framework on recommendation
together with highly accurate and interpretable results of
logical relation mining.

II. RELATED WORK

A. Metric Learning for Collaborative Filtering

The metric learning methods for collaborative filtering use
different distances to measure the similarity between users
and items. Compared with methods based on matrix factor-
ization (MF) that assumes linear relations between users and
items [25], [34], [60], metric learning methods that satisfy the
triangle inequality can better model the complex interactions
in real-world applications [14], [39], [45], and thus can address
the limitations of MF. For example, Hsieh et al. [14] proposed
to learn a metric space to encode not only users’ preferences
but also the user-user and item-item similarities. Vinh Tran
et al. [48] proposed to learn one-to-one mappings between
Euclidean and hyperbolic spaces. Furthermore, to capture
higher-order graph structure for user (item) representation such
as neighbors-of-neighbors relations among users and items,
existing methods [46], [65] measured the proximity with graph
convolutional neural (GCN) networks model for collaborative
filtering. For example, Tian et al. [46] proposed a recurrent
graph convolutional network from both a user’s clicked history
and a knowledge graph. Zheng et al. [65] proposed an end-to-
end diversified recommendation model based on GCN.

However, the above metric learning methods can be lim-
ited by the sparse user-item interactions [27], [63]. Some
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studies [14], [53] tried to alleviate the sparsity problem via
leveraging auxiliary data, such as review [38] and tags [44].
For example, Shuai et al. [38] proposed a review-aware graph
contrastive learning framework for recommendation. To the
best of our knowledge, there is no metric learning work that
has explicitly leveraged set-theoretic logical relations (e.g.,
membership relation and exclusive relation) for accurate and
interpretable recommendations.

B. Taxonomy-based Recommendation

Taxonomies have garnered considerable interest across var-
ious fields for their intrinsic value and the inherently tree-
like hierarchy [2], [33], [43]. In recommender systems, tax-
onomies are often employed to address issues of data sparsity
and computational intensity. For instance, Ziegler et al. [67]
exploited taxonomic background knowledge to infer users’
profiling effectively. Tan et al. [44] constructed a tag taxonomy
automatically to leverage structural knowledge among tags.

While taxonomies provide a structural understanding,
knowledge graphs (KGs) have also been widely used to
mitigate the sparsity challenge [7], [50], [56], [58]. KGs encap-
sulate a variety of semantic relations, whereas tag taxonomies
typically embody structural relations (e.g., hierarchy). The
integration of taxonomies into recommender systems presents
distinct advantages over KGs. Firstly, KGs include numerous
relations that may be irrelevant to recommendation tasks,
which can blindly incur excessive computational costs and
potentially deteriorate recommendation quality [44]. Secondly,
by concentrating on structural relations, taxonomies can be
mapped into hyperbolic spaces, leveraging their tree structures
for effective embedding learning [1], [55], thereby enhancing
the accuracy and interpretability of recommendations.

Despite the apparent benefits of taxonomies in enhancing
recommendations, recent taxonomy-aware approaches [15],
[23], [44], [61], [67] have overlooked some logical relations
beyond mere hierarchy, such as exclusive relation. Drawing
inspiration from Xiong et al. [54], we propose to capture three
logical relations derived from existing tag taxonomies.

C. Hyperbolic Embedding Learning

Various data exhibit an underlying hierarchical structure
that the Euclidean space embeddings suffer from distortion
issues [9], [48]. To mitigate this problem, Nickel et al. [30]
proposed to learn representation in the Poincaré ball model
of hyperbolic space, which can naturally accommodate hierar-
chical structures and is convenient for visualization. By taking
advantage of the Poincaré model, Hui et al. [16] proposed to
learn hyperbolic embeddings based on tensor decomposition,
and Iyer et al. [17] proposed to learn hyperbolic and heteroge-
neous relations of knowledge graphs. Furthermore, expanding
on [30], Nickel et al. [31] found that learning representations
based on the Lorentz formulation of the hyperbolic space
are well-suited for Riemannian optimization. By constraining
embedding in the Lorentz model, Dai et al. [8] proposed
a hyperbolic-to-hyperbolic graph convolutional network for
avoiding distortion; Sun et al. [41] proposed to learn dynamic
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Fig. 2: (a) Hyperplane (light blue shallow) in Poincaré model.
(b) The connection between the Poincaré and Lorentz models.

graph representation for inferring stochastic node representa-
tions; Chen et al. [7] attempted to learn Lorentzian embeddings
for knowledge graphs. Moreover, based on a hyperbolic graph
attention network, Wang et al. [51] proposed the hyperbolic
embedding model for knowledge graph reasoning.

Recently, hyperbolic representation learning has also been
applied to recommender systems [5], [10], [18]. For example,
Mirvakhabova et al. [28] used a single-layer autoencoder in
hyperbolic space to learn user and item embeddings. Chami
et al. [5] proposed a weighted margin rank batch loss to learn
a hyperbolic model and generated user representation by item
aggregation in hyperbolic space via Einstein midpoint. Zhang
et al. [62] learned geometric disentangled representations for
user intentions, and Yang et al. [57] designed a geometric-
aware collaborative hyperbolic regularizer. Zhou et al. [66]
regarded each user-item interaction as an event in hyperbolic
space and modeled the probability of event occurrence for
temporal recommendation. Our approach is related to these
works in that we also learn user and item representations
in hyperbolic space. However, a key difference is that our
approach jointly exploits the individual strengths of the dif-
ferent hyperbolic models to mine logical relations, so as to
deliver accurate and interpretable recommendations through
the existing tag taxonomies.

III. PRELIMINARIES

A. Hyperbolic Models

The Poincaré model. The Poincaré model Pd = {x ∈ Rd :
∥x∥ < 1} is defined as a set of d-dimensional vectors with
Euclidean norm smaller than 1. The Poincaré distance metric
is defined as: dP(x,y) = cosh−1

(
1 + 2

∥x−y∥2
2

(1−∥x∥2
2)(1−∥y∥2

2)

)
. A

sample in the Poincaré model Pd can be represented via either
a point or a Poincaré hyperplane [54]. Specifically, let Bd

denote the set of d-balls in Rd whose boundaries ∂Bd intersect
the Poincaré ball Pd perpendicularly. Poincaré hyperplanes are
defined by ∂Bd ∩ Pd plus all linear subspaces going through
the origin (i.e., the light blue shallow in Fig. 2(a)). Hence,
a Poincaré hyperplane can be uniquely defined by its center
point c that has a minimal distance to the origin [54]. The
Poincaré hyperplane can be defined as Hc = {x ∈ Pd :
gP(logc(x), c⃗) = 0}, where c ̸= 0 denotes the center point,
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Fig. 3: The comparison between two-dimensional hyper-
bolic space (left) and Euclidean space (right), where the tag
A is <Rock>, B is <Blues Rock>, and C is <Alternative
Rock>. Note that, all the black edges have identical lengths.

c⃗ ∈ TcPd denotes the normal vector passing through the origin
0, and gP is a Riemannian metric. Note that the tangent space
TcPd is a Euclidean subspace of Rd. An enclosing d-ball
Bd (oc, rc) can be defined as Bd (oc, rc) = {x : ∥x− oc∥ ≤
rc}, where (oc, rc) =

(
1+∥c∥2

2∥c∥ c, 1−∥c∥2

2∥c∥

)
. In particular, the

hyperplane Hc is a subset of the d-ball Bd (oc, rc).
The Lorentz model. The Lorentz model is the only un-
bounded hyperbolic model [59] and is defined as Ld =
(Hd, gL) with points constrained by Hd = {x ∈ Rd+1 :
⟨x,x⟩L = 1,x0 ≥ 0}, where ⟨x,y⟩L is the Lorentzian
scale inner product: ⟨x,y⟩L = −x0y0 +

∑d
i=1 xiyi, and

the metric tensor is: gL(x) = diag(−1, 1, . . . , 1). The as-
sociated distance function in the Lorentz model is given as:
dH(x,y) = cosh−1(−⟨x,y⟩L).
Strengths and connections between hyperbolic models. The
metric in the Poincaré model satisfies all the properties of a
distance metric and is interpretable for visualization [31]. Due
to its characteristic of curvature space, the Poincaré model
exists infinitely many non-parallel hyperplanes (i.e., Poincaré
hyperplanes) which do not intersect [54]. Furthermore, each
Poincaré hyperplane can be interpreted as a convex region. In
this way, the Poincaré hyperplanes can support models to cap-
ture complicated set-theoretic interactions such as implication
and exclusion, which can be respectively modeled by geo-
metric insideness and disjointness between the corresponding
regions. The Lorentz model allows for an efficient closed-form
computation of the geodesics on the manifold and is suited for
Riemannian optimization [4], [20], [31].

Due to the equivalence of the Poincaré and the Lorentz
models [31], we can exploit the models’ individual strengths
simultaneously. In particular, as shown in Fig. 2(b), points in
the Lorentz model can be mapped into the Poincaré model via
diffeomorphism p as:

p(x0,x1, · · · ,xd) =
(x1, · · · ,xd)

x0 + 1
. (1)

Furthermore, points in the Poincaré model can be mapped into
the Lorentz model via diffeomorphism p−1 as:

p−1 (x1, · · · ,xd) =

(
1 + ∥x∥2, 2x1, · · · , 2xd

)
1− ∥x∥2

. (2)

B. Comparison between Hyperbolic and Euclidean spaces

Existing studies have found flaws in Euclidean space [30],
[31], [35], where the polynomial expansion has bounded the

ability of the model to represent complex patterns by the
dimensionality of embedding space. In particular, Euclidean
space cannot fully capture the beneficial structural properties
existing in tag taxonomy (e.g., hierarchy), which may cause
high-distortion embeddings. Many recent studies demonstrate
that hyperbolic space is capable of modeling such reliably
hierarchical structure [40], [49], [44], whose volume expands
exponentially. Specifically, the sum of the distances between
the points and the origin in hyperbolic space is larger than
that in Euclidean space, providing a clearer arrangement to
separate embeddings of data points in more fine-grained levels
of the hierarchy. Therefore, hyperbolic space has a stronger
representation ability than Euclidean space [49].

Taking tags modeling for example, as shown in Fig. 3,
with the requirement of clearly distinguishing relations among
tags in the area of BAC, the number of tags that hyperbolic
space can carry is greater than that of Euclidean space. Note
that all the black edges have identical lengths, which also
demonstrates that the volume of hyperbolic space is larger.
Since the limited sum of the distances between the tags and
the origin in Euclidean space will make it hard to arrange
all hierarchical tags properly [36], [18]. The suboptimal tag
embedding optimization in Euclidean space will lead to sub-
optimal taxonomy construction, which may cause incorrect
hierarchical relations modeling and weakly constructed tag
taxonomies. As shown in the left of Fig. 3, we can observe
that clear and correct hierarchical structures meet our goal of
properly arranging tags in the taxonomy in hyperbolic space.
The tag B <Blues Rock> can be closer to its immediate parent
A <Rock>, while distant from its sibling C <Alternative
Rock> (i.e., B̄A = ĀC < B̄C). However, as shown in the
right of Fig. 3, Euclidean space fails to model the relations
among tags with BA = AC = BC.

IV. THE LOGIREC FRAMEWORK

In this section, we present our joint Logical relation mod-
eling and Recommendation (LogiRec) framework, as shown
in Fig. 4. We first give an overview of LogiRec. Then,
we explore membership, hierarchical, and exclusive relations
in the Poincaré model. Finally, we perform logic-based rec-
ommendation based on the item embeddings constrained by
logical relations.

A. Method Overview

To explicitly model logical relations for recommendations,
we first initialize tag embeddings in the Poincaré model and
denote them as T = {t1, . . . , tS}. Specifically, ti ∈ Pd is
assigned as a corresponding Poincaré hyperplane and S is the
number of tags. According to the item-tag matrix Q, we pro-
pose to model the membership relations among items and tags
via a membership objective function LMem, where we denote
the item embeddings in the Poincaré model as vP ∈ Pd. Then,
we transform the logical relations between tags into geometric
relations between their corresponding Poincaré hyperplanes,
where the hierarchical relation is modeled by the geometric
insideness via LHie while the exclusive relation is modeled
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Fig. 4: Overview of our proposed LogiRec and LogiRec++ framework. Specifically, LogiRec explicitly models three
logical relations (i.e., membership, hierarchy, and exclusion) in Poincaré model. Then we perform logic-based recommendation
based on the item embeddings constrained by logical relations and user embeddings in the Lorentz model. LogiRec++ further
devises consistency-based and granularity-based weighting mechanisms based on the novel utilization of exclusive relations
and hyperbolic embeddings in (3), so as to adaptively adjust the impacts of different users in logical relation mining.

by the geometric disjointness via LEx. Furthermore, we map
the learned item embedding vP into the Lorentz model as vH

and denote user embedding uH, so as to stably optimize the
representation of users and items. Finally, we perform logic-
based recommendation via the objective function LRec based
on the user embedding uH and the item embedding vH.

B. Logical Relation Modeling
As motivated in Section I, it is important to model logical re-

lations for interpretable recommendations, where membership,
hierarchical, and exclusive relations can be extracted from
the existing tag taxonomies together with item-tag relations
according to [54]. However, the above relations come from set-
theoretic semantics, which should be measured via the region-
based rather than point-based representations [47], [54], and
thus the recent studies in hyperbolic space [36], [18] based
on point-based embeddings fail to accurately model such set-
theoretic logical relations.

Recall that Poincaré hyperplanes are interpreted as convex
regions to layout sets in Section III, we propose to leverage
both points and hyperplanes in the Poincaré model for the
logical relation modeling of our LogiRec. For example, an
item point London Call can be included by a tag hyperplane
<Alternative Rock>, where the region of <Alternative Rock>
can be further included by a larger hyperplane <Rock> that
represents more abstract concepts than <Alternative Rock>.
Fig. 4 shows how these three relations are transformed into
soft geometric constraints in hyperbolic space and we describe
each relation in detail.

1) Membership Relation Modeling: Since an item can
have multiple tags that are recorded in the item-tag matrix
Q, we propose to leverage both points and hyperplanes for
modeling the membership relations among items and tags.

Lemma 1: (Membership property). An instance v is inside
a d-ball Bd

t (ot, rt) if and only if ∥v − ot∥ < rt.
In particular, items are modeled as points and tags are

modeled as hyperplanes. For example, an item vi can be
described by a tag t, hence the corresponding geometric
relation is a point vP

i ∈ Pd being inside a d-ball Bd
t . Then, we

define the membership objective function LMem by measuring
the geometric membership (i.e., ∥vP

i − ot∥ < rt) as follows:

LMem(vP
i ,Bd

t ) = max{0, ∥vP
i − ot∥ − rt}, (3)

where vP
i denotes the item embedding and Bd

t = (ot, rt).
2) Hierarchical Relation Modeling: Since tags can provide

abstract concepts for multiple items and a parent tag can
include its children geometrically, we propose to leverage
the geometric insideness between the Poincaré hyperplanes of
corresponding d-ball Bd(oc, rc) for hierarchical relations.

Lemma 2: (Hierarchical property). A d-ball Bd
ti(oti , rti)

contains a Bd
tj (otj , rtj ) if and only if ∥oti −otj∥+rtj < rti .

According to the hierarchical relations in the hyperbolic
hyperplane, we transform the logical constrain into soft ge-
ometric constraint in the embedding space, where we propose
a hierarchy loss as follows:

LHie(Bd
ti ,B

d
tj ) = max{0, ∥oti − otj∥+ rtj − rti}, (4)

where d-ball Bd
ti(oti , rti) contains d-ball Bd

tj (otj , rtj ).
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3) Exclusive Relation Modeling: Similarly, to properly
model the exclusions between tags, we interpret the exclusion
of tags as geometric disjointness between Bd(oc, rc).

Lemma 3: (Exclusive property). A d-ball Bd
ti(oti , rti) dis-

connects from a d-ball Bd
tj (otj , rtj ) if and only if rti + rtj <

∥oti − otj∥.
Then, we propose an exclusion loss for exclusive relation

modeling as follows:
LEx(Bd

ti ,B
d
tj ) = max{0, rti + rtj − ∥oti − otj∥}, (5)

where d-ball Bd
ti(oti , rti) disjoints from d-ball Bd

tj (otj , rtj ).

C. Logic-based Recommendation
Since the logical modeling based on the existing tag tax-

onomies has not considered the modeling of complex relations
between users and items, how to seamlessly integrate logical
relation modeling with recommender systems is still an en-
deavor. Note that the logical relation modeling leverages the
Poincaré model to capture complex set-theoretic interactions,
while the Lorenz model is stable for numeric optimization of
sparse interactions [31], [4], [20]. In light of this, we propose
to leverage the individual strengths of both the Poincaré
and the Lorentz models for the logic-based recommendation,
where a hyperbolic graph convolution network (i.e., Hyper-
bolic GCN) is devised to capture complicated effects for both
logical relation modeling and user decision-making. We name
such an integrated framework as LogiRec.

In particular, we first denote a learnable user embedding
in the Lorentz model as uH ∈ Hd. Then, we map item
embeddings vP ∈ Pd learned via Eq. 3 in the logical relation
modeling module (cf., Section IV-B) into the Lorentz model
via diffeomorphism p−1 in Eq. 2 (cf., Section III), where we
have vH = p−1(vP) ∈ Hd. In this way, we can jointly
perform recommendation and logical relation modeling in a
unified framework.

Since we cannot apply Euclidean mean aggregation in
hyperbolic space, it is needed to project the embeddings
to the corresponding tangent space as [40] to obtain the
initialization for graph convolution as zH,0

u and zH,0
v . Taking

user embedding for example, we project uH to tangent space
ToHd via the logarithmic map logo : Hd → ToHd as follows:

zH,0
u = logo(u

H)

= arcosh
(
−⟨o,uH⟩L

) uH + ⟨o,uH⟩Lo
∥uH + ⟨o,uH⟩Lo∥L

,
(6)

where o = (1, 0, . . . , 0) ∈ Hd is the referred origin, ∥uH∥L =√
⟨uH,uH⟩L, and ToHd is a Euclidean subspace of Rd+1.
Then, we can aggregate neighborhood representations and

further aggregate them from all intermediate layers:

zH,l+1
u = zH,l

u +
∑
v∈Nu

1

|Nu|
zH,l
v , zH

u =

L∑
l=1

zH,l
u ,

zH,l+1
v = zH,l

v +
∑
u∈Nv

1

|Nv|
zH,l
u , zH

v =

L∑
l=1

zH,l
v ,

(7)

where Nu = {v|Ruv = 1} ∈ V is the item set that user u
interacts with. Nv = {u|Ruv = 1} ∈ U is the user set who
interact with item v. L is the total number of graph layers.

(a) (b)

Fig. 5: (a) User distribution across different numbers of tag
types on the CD dataset. (b) The relation between the number
of users’ interacted tag types and the corresponding distance
to the origin on the CD dataset.

To project the final embedding back into the Lorentz model,
we apply an exponential map as follows:

uH = expo(z
H
u )

= cosh
(
∥zH

u ∥L
)
o+ sinh

(
∥zH

u ∥L
) zH

u

∥zH
u ∥L

.
(8)

Similarly, we can obtain final item embeddings by replacing
the inputs of Eq. 6 with vH, and then apply the exponential
map as Eq. 8.

Finally, we utilize the largest margin nearest neighbor
algorithm (LMNN) to perform logic-based recommendation
as follows:
LRec =

∑
(u,vp)∈I

∑
(u,vq)/∈I

[
m+ d(uH,vH

p )− d(uH,vH
q )

]
+
,

(9)
where d(x,y) = cosh−1(x0y0−

∑d
i=1 xiyi) is the Lorentzian

distance measurement. I is the set of positive user-item pairs
derived from the implicit feedback data X. m is a margin to
enforce the difference between triplets which we empirically
set to 0.1 by default in our experiments. [(x)]+ = max(x, 0)
is a standard hinge loss.

The objective function of LogiRec is calculated as follows:
min

uH,vH,T
LRec + λ(LMem + LHie + LEx), (10)

where λ is a weight hyperparameter to control the regulariza-
tion for logical relation modeling.

V. LOGIREC WITH LOGICAL RELATION MINING BASED
ON USER BEHAVIORS (LOGIREC++)

The proposed LogiRec essentially performs recommen-
dation with logical relations modeling via Eq. 10. However,
the logical relations directly extracted from the existing tag
taxonomy can be inaccurate and coarse. For example, the ex-
clusive relation between tag <Heavy Metal> and <Metal> is
inaccurate for actually overlapping concepts; making (<Punk
Rock>, <Alternative Rock>) and (<Punk Rock> and <Blues
Rock>) the same degree of exclusion is coarse, since <Punk
Rock> and <Alternative Rock> are both rebellious music
genre while <Blues Rock> is soulful and emotional. In this
way, it is hard to ensure that the accurate logical relations are
always available (shown in the right of Fig. 1).

To deal with the above problems, we propose to leverage
users’ preferences based on their behaviors to further mine
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logical relations. Specifically, we propose user consistency and
granularity for adjusting users’ impacts on the optimization of
recommendations.

The first insight is: users with consistent preferences
should have a large impact on adjusting the logical relations.
For example, as shown in Fig. 1, rather than leveraging Tom’s
diverse preferences across six tags (e.g., t1 <Rock> and t2
<Classical>), we can leverage Linda’s consistent preferences
with t1 <Rock> to make the interacted t3 <Punk Rock> and
t4 <Alternative Rock> be close. As shown in Fig. 5(a), the
number of tag types that users interact with is around 10.
Although most users have consistent preferences with specific
tag types, there are still many long-tail users who interact with
more than 20 tag types. This diversity of preferences makes
it challenging to accurately profile these users, as well as to
train logical relations based on user preferences without being
swayed by their extreme diversity. Therefore, we propose to
measure the consistency of users by counting the frequency of
users’ exclusive tags at different levels so as to weigh users’
impacts towards the mining of accurate logical relations.

The second insight is: As shown in Fig. 5(b), users with
specific preferences (i.e., with less # of tags) are embedded
far away from the origin in the hyperbolic space. Due to the
exponential growth of the volume of hyperbolic space along
the distance to the origin [30], [31], they need large weights to
properly rearrange the fine-grained tag embeddings. For exam-
ple, as shown in Fig. 1, compared with Linda who has coarse-
granularity preferences with t1 <Rock> and makes the third
level t3 <Punk Rock> and t4 <Alternative Rock> close, Lisa
who has finer-granularity preferences with t4 <Alternative
Rock> needs more effort to make the forth level t8 <British
Alternative> and t9 <American Alternative> close in the
larger fine-grained space. Therefore, we propose to measure
user granularity via the distance between each user embedding
and the space origin, and then pay more attention to users with
specific preferences for mining fine-grained logical relations.
We name our framework of LogiRec with logical relation
mining based on user behaviors as LogiRec++ (shown in
the right of Fig. 2).

A. Consistency-based Weighting Mechanism

We observe that users with diverse preferences are usually
not constrained by tags, and thus can exist many exclusive
relations among their interacted tags. As shown in the bottom
right of Fig. 4, the orange area represents the tag of user ui

while the yellow one is for uj , where Tu denotes the list of
tags that user u interacts with. We can observe that ui only
has one pair of exclusive tags at the fourth level; while uj

contains 5 pairs of exclusions, where the levels range from 2
to 4. It is reasonable that ui is regarded as a more consistent
user than uj . Such observation also implies that there exists a
negative correlation between user consistency and the users’
interacted exclusive tags. In particular, the less frequent and
lower level of exclusive tags that the user has interacted with,
the user has more consistent preferences.

Inspired by the above argument, we propose a consistency-
based weighting mechanism as CONu based on exclusive
relations of tags. Specifically, we first define TF(ti, Tu) as
the normalized frequency of each tag ti ∈ Tu as follows:

TF(ti, Tu) =
log(|Tu,i|+ 1)

log(|Tu|)
, (11)

where Tu denotes the list of tags that user u interacts with. |Tu|
denotes the total number of tags in Tu, and |Tu,i| denotes the
number of occurrences of tag ti in Tu. Then, we consider both
the level and frequency of the pairwise tag exclusive relations,
and define user consistency CONu as follows:

CONu =exp(−
η∑

k=1

∑
ti,tj∈Tu

I(ti, tj)

∗ TF(ti, Tu) ∗ TF(tj , Tu) ∗ exp((η − k))),

(12)

where I(ti, tj) is an indicator function to judge whether there
exists exclusion between ti and tj or not. η denotes the total
number of levels in tag taxonomy and is empirically set as 4.

The idea behind Eq. 12 is to leverage the tripartite user-
item-tag graph to calculate the ratio and level of the exclusive
tags in the whole interacted tag list, i.e., user u has the less and
the lower level of exclusive tags, user u with a larger CONu

has more consistent preferences towards these tags, and thus
the more weights of user u’s impacts should be considered for
mining accurate logical relations.

B. Granularity-based Weighting Mechanism

To provide intuitive visualization and find the insightful
correlation between users and tags, we project the learned
user embedding uH in the Lorentz model into the Poincaré
model. As shown in the upper right of Fig. 4, tag t7 <Ballets
& Dances> with a specific concept (i.e., fine-grained tag) has
small radiuses and the shortest distance from t7 <Ballets &
Dances> hyperplane to the space origin is large; while tag t2
<Classical> that has a more abstract concept than t7 <Ballets
& Dances> (i.e., coarse-grained tag) has a large radius and
its shortest distance to the origin is small. According to an
inversely proportional relation between the tag granularity and
the distance between tag embedding to the space origin, we
can infer that users who have fine-granularity preferences that
interacted with fine-grained tags are also far away from the
origin. In the upper right of Fig. 4, we can observe that the
distance between the user embedding uP

i and the origin o
is larger than the distance between uP

j and o, which shows
that user ui has finer-granularity preferences than user uj .
Considering a larger moving distance of fine-granularity users
due to the exponential growth of the volume of hyperbolic
space along the distance to the origin [30], [31], a greater
optimization effort is required to properly rearrange the fine-
grained tag embeddings.

Based on the above argument, we propose a granularity-
based weighting mechanism and associate it with the distance
between user embedding uH and the origin o as follows:

GRu = cosh−1(−⟨o,uH⟩L). (13)
In this way, the farther distance of u away from the origin, the
user u with a larger value of user granularity GRu is regarded
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as a fine-granularity user, thus the more weights of user u’s
interactions should be considered for refining logical relations.

To ensure the weighting strategy satisfies both user consis-
tency and granularity, we have the following design similar to
[37], [44]:

αu =
√
CONu ·GRu, (14)

where CONu can be referred in Eq. 12, and GRu can be
referred in Eq. 13. With such personalized weight αu, we
rewrite Eq. 10 to obtain the objective function of LogiRec++
as follows:

min
uH,vH,T

∑
u

αuLu
Rec + λ(LMem + LHie + LEx), (15)

where λ is a weight hyperparameter to control the regulariza-
tion for logical relation modeling. In this way, the user with
a large impact αu can hold a large proportion of the gradient
feedback, which can make full use of their consistent and fine-
granularity preferences for reorganizing the embedding space
and further refining the logical relations; while the user with a
low value of αu can make a small impact on the optimization
of model, which can reduce the user’s impact on the mining
of accurate logical relations.

C. Riemannian Optimization

Different from traditional Euclidean gradient descent opti-
mization, we apply the Riemannian SGD [3] for optimization.
The Riemannian gradient grad(L(Xt)) can be obtained by

grad(L(Xt)) = (I −XtX T
t )∇(L(Xt)). (16)

Denoting the X as the variable set, the parameters are up-
dated by Xt+1 = expXt

(−βt grad(L(Xt))), where the exp
operations in the Poincaré model and the Lorentz model are
different and will be introduced as follows:
Optimizating LHie, LEx, and LIn. In this scenario, items
and tags are embedded in the Poincaré model. Therefore, we
use Möbius exponential map and we take tag embeddings T
as an example:

expT (η) = T ⊕
Å
tanh

Å∥η∥
2

ã
η

∥η∥

ã
= T ⊕ y, (17)

where T ⊕ y =
(1+2⟨T ,y⟩+∥y∥2)T+(1−∥T ∥2)y

1+2⟨T ,y⟩+∥T ∥2∥y∥2 is the Möbius

addition, and y = tanh
Ä
∥η∥
2

ä
η

∥η∥ .
Optimizating LRec. In this scenario, the embeddings are
computed in the Lorentz model. We take vH for example and
show how to optimize. The exponential map is defined as:

expvH(η) = cosh(∥η∥L)vH + sinh(∥η∥L)
η

∥η∥L
. (18)

VI. EXPERIMENTS

In this section, we evaluate our proposed LogiRec and
LogiRec++ framework focusing on the following four re-
search questions:
• RQ1: How do LogiRec and LogiRec++ framework

perform in comparison to state-of-the-art recommendation
methods?

• RQ2: What are the effects of the model components?
• RQ3: How do the hyperparameters affect the recommenda-

tion performance and how to choose optimal values?

TABLE I: Statistics of the datasets used in our experiments.

Ciao CD Clothing Book
# User 5180 32589 63986 79368
# Item 8836 20559 19727 62385

# Interaction 104905 515562 704325 4657501
Density(%) 0.2292 0.0769 0.0558 0.0941

# Tag 28 379 3051 510
# Membership 8900 45976 86639 124394

# Hierarchy 16 361 4804 636
# Exclusion 22 1572 195004 5392

• RQ4: How does LogiRec++ improve recommendations
with interpretability via logical relation mining?

A. Experimental Setup

1) Datasets: In order to comprehensively verify the effec-
tiveness of compared methods, we use four real-world datasets
from different application domains with different sizes and
interaction densities, i.e., Ciao1, Amazon CDs & Vinyl (CD)2,
Amazon Clothing (Clothing)2, and Amazon Books (Book)2.
These datasets have been widely adopted in previous literature
[32], [48], [42], and their statistics are summarized in Table I.

2) Evaluation protocols: We split the data into training,
validation, and testing sets based on timestamps given in
the datasets to provide a recommendation evaluation setting.
For each user, we use the first 60% of data as the training
set, 20% data as validation set, and 20% data as the testing
set. We evaluate the recommendation performance using two
metrics: Recall@K and NDCG@K instead of sampled metrics
as suggested in [19]. Intuitively, the Recall metric considers
whether the ground-truth is ranked amongst the top K items
while the NDCG metric is a position-aware ranking metric.

3) Methods for comparison: The following represen-
tative state-of-the-art baselines can be divided into four
groups: (1) general recommendation methods (BPRMF [34],
NeuMF [12]), (2) metric learning methods (CML [14],
SML [21], HyperML [48]), (3) tag-based methods
(CMLF [14], AMF [13], TransC [26], AGCN [53]), and
(4) graph-based methods (LightGCN [11], HGCF [40],
GDCF [62], HRCF [57]).

4) Implementation Details: We implement our LogiRec
and LogiRec++ framework with Pytorch. The full code for
this work is available3. Implementations of the general recom-
mendation methods are either from open-source projects or the
original authors (BPRMF/CML4, NeuMF5, SML6, HyperML7,
LightGCN8, HGCF9, GDCF10, and HRCF11). Implementations
of the tag-based methods are constrained to leverage item tags

1https://www.cse.msu.edu/ tangjili/datasetcode/truststudy.htm
2http://jmcauley.ucsd.edu/data/amazon/
3https://github.com/Melinda315/LogiRec
4https://github.com/cheungdaven/DeepRec
5https://github.com/hexiangnan/neural collaborative filtering
6https://github.com/MingmingLie/SML
7https://github.com/lucasvinhtran/hyperml
8https://github.com/gusye1234/LightGCN-PyTorch
9https://github.com/layer6ai-labs/HGCF
10https://github.com/ydzhang-stormstout/GDCF
11https://github.com/marlin-codes/HRCF
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TABLE II: Experimental results (%) on four benchmark datasets, where * denotes a significant improvement according to the
Wilcoxon signed-rank test [52]. The best performances are in boldface and the second runners are underlined.

Method Recall@10 Recall@20 NDCG@10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20
Ciao CD

BPRMF 3.18±0.13 4.90±0.15 2.26±0.10 3.15±0.16 6.18±0.21 9.55±0.26 4.42±0.20 5.37±0.24
NeuMF 3.27±0.18 5.13±0.20 2.73±0.19 3.26±0.20 6.06±0.21 8.44±0.23 4.19±0.23 4.96±0.22
CML 3.67±0.23 5.84±0.26 2.68±0.19 3.40±0.21 6.22±0.15 9.60±0.17 4.55±0.14 5.66±0.19
SML 3.60±0.17 5.76±0.19 2.75±0.16 3.44±0.15 6.33±0.25 9.83±0.22 4.92±0.18 6.06±0.20
HyperML 3.81±0.21 6.17±0.26 2.96±0.16 3.74±0.21 7.89±0.25 12.03±0.21 5.79±0.21 7.11±0.26
CMLF 3.73±0.21 5.92±0.24 2.79±0.18 3.52±0.18 6.32±0.25 9.71±0.23 4.72±0.24 5.79±0.24
AMF 3.56±0.21 5.46±0.23 2.65±0.24 3.41±0.28 6.25±0.27 9.61±0.25 4.72±0.22 5.82±0.24
TransC 4.68±0.14 7.40±0.13 3.87±0.15 4.77±0.11 8.10±0.16 12.89±0.14 6.32±0.14 7.33±0.18
AGCN 6.10±0.08 9.14±0.11 4.99±0.06 5.86±0.10 9.07±0.13 13.63±0.12 7.11±0.10 8.35±0.11
LightGCN 5.17±0.18 7.86±0.14 4.17±0.15 5.10±0.15 9.77±0.14 14.22±0.15 7.47±0.14 9.02±0.17
HGCF 5.98±0.13 9.35±0.11 4.80±0.13 5.90±0.11 10.01±0.12 14.56±0.12 7.58±0.16 9.21±0.17
GDCF 6.06±0.07 9.50±0.09 4.85±0.06 6.07±0.04 10.14±0.11 14.79±0.13 7.91±0.07 9.46±0.08
HRCF 6.25±0.06 9.72±0.11 4.87±0.04 6.18±0.05 10.49±0.13 15.14±0.16 8.07±0.08 9.65±0.10
LogiRec 6.54±0.08 10.11±0.10 5.11±0.05 6.30±0.06 10.81±0.10 15.59±0.08 8.26±0.11 9.87±0.13
LogiRec++ 6.67±0.05* 10.30±0.06* 5.21±0.04* 6.39±0.03* 11.04±0.12* 15.83±0.11* 8.49±0.09* 10.04±0.07*

Clothing Book
BPRMF 12.04±0.15 13.43±0.12 10.32±0.13 12.19±0.10 4.14±0.14 7.26±0.13 5.34±0.12 6.23±0.18
NeuMF 12.38±0.16 14.06±0.17 12.47±0.14 12.62±0.14 4.22±0.15 7.28±0.16 5.41±0.14 6.31±0.15
CML 13.90±0.15 16.01±0.16 12.24±0.15 13.16±0.13 4.53±0.11 7.64±0.15 5.85±0.09 6.92±0.06
SML 13.63±0.14 15.79±0.13 12.56±0.13 13.31±0.11 4.42±0.18 7.57±0.11 5.65±0.11 6.62±0.14
HyperML 14.42±0.19 16.91±0.17 13.52±0.15 14.47±0.16 4.79±0.21 7.94±0.23 6.18±0.17 7.20±0.18
CMLF 14.13±0.13 16.23±0.16 12.75±0.09 13.62±0.10 4.63±0.14 7.66±0.13 5.87±0.07 6.95±0.12
AMF 13.48±0.15 14.96±0.18 12.11±0.13 13.20±0.12 4.57±0.13 7.60±0.19 5.79±0.18 6.73±0.14
TransC 20.32±0.13 23.18±0.15 18.59±0.11 19.51±0.16 4.82±0.09 7.76±0.11 6.09±0.12 7.12±0.08
AGCN 23.10±0.09 25.05±0.08 21.80±0.07 22.72±0.07 4.63±0.12 7.67±0.13 5.92±0.11 7.01±0.13
LightGCN 19.58±0.11 21.54±0.12 19.05±0.10 19.74±0.12 4.36±0.10 7.11±0.09 5.53±0.09 6.44±0.12
HGCF 22.34±0.14 24.58±0.13 20.69±0.11 21.84±0.10 4.84±0.12 7.99±0.11 6.15±0.15 7.18±0.15
GDCF 22.61±0.13 24.97±0.14 21.14±0.11 22.52±0.09 4.88±0.13 8.01±0.12 6.26±0.12 7.25±0.09
HRCF 22.76±0.14 25.36±0.10 21.36±0.13 22.58±0.06 5.06±0.05 8.06±0.06 6.39±0.05 7.36±0.04
LogiRec 24.53±0.12 27.62±0.14 23.17±0.10 24.04±0.11 5.49±0.10 8.83±0.09 7.04±0.07 8.08±0.08
LogiRec++ 25.26±0.14* 28.23±0.12* 23.71±0.11* 24.73±0.09* 5.79±0.07* 9.10±0.09* 7.27±0.06* 8.33±0.08*

according to the original authors (CMLF4, AMF12, TransC13,
and AGCN14, where TransC is constrained to model tag-tag,
item-tag, and user-item relations. We optimize the compared
Euclidean baselines with standard SGD and the hyperbolic
ones with Riemannian SGD. We tune all hyperparameters
through grid search. In particular, learning rate in {1e-5, 5e-
5, 1e-4, 5e-4, 1e-3}, the number of graph layer L in {1,
2, 3, 4}, the weight λ in {0, 0.01, 0.1, 1.0, 1.5}, margin
m in {0, 0.1, 0.2, 0.3}, and the embedding dimension d
in {32, 64, 128}. The batch size is set to 10000. We also
carefully tuned the hyperparameters of all baselines through
cross-validation as suggested in the original papers to achieve
their best performance.

B. Overall Performance Comparison (RQ1)

We compare the performance of our LogiRec and
LogiRec++ frameworks to those of the baselines and have
the following observations:

In general, LogiRec and LogiRec++ both outperform
all 12 baselines across all evaluation metrics on all datasets.
This answers RQ1, showing that the recommender systems
with explicit handling of the logical relations are capable of
effective collaborative ranking. The ranking of many baselines
is fluctuating across datasets, where the model of second-best

12https://github.com/cthurau/pymf
13https://github.com/davidlvxin/TransC
14https://github.com/yimutianyang/AGCN

performance scatters between AGCN and HRCF. Compared
with the second-best performance, the performance gains of
LogiRec++ on Ciao, CD, Clothing, and Book range from
reasonably large (3.40% achieved with NDCG@20 on Ciao)
to significantly large (14.43% achieved with Recall@10 on
Book). Note that the improvements of LogiRec++ are more
significant when the number of logical relations is larger
and the interactions of users and items are sparse, like with
Clothing and Book, which supports the appropriate design of
our model to make full use of tags and alleviate the sparsity
problem in recommendations.

In particular, by considering latent hierarchies in hyperbolic
space, HRCF performs better than AGCN in many cases.
Compared with HRCF in the Lorentz model, LogiRec++
exploits the individual strengths of the Poincaré and the
Lorentz models for interpretability and optimization. In this
way, LogiRec++ can leverage set-theoretic relations rather
than the only point-based hierarchical relation of HRCF for
jointly logical relation mining and recommendation. There-
fore, LogiRec++ outperforms HRCF by up to 14.43% in
Recall@10 on Book.

However, the learned hierarchies do not always perfectly
match reality without the help of tag information, and
thus AGCN can sometimes achieve better performance by
considering flat item tags directly. Compared with AGCN,
our LogiRec++ not only considers hierarchical tags but
also models exclusive tags and membership relations among
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TABLE III: Ablation results (%) of our proposed LogiRec++ on the four datasets.

Method Ciao CD
Recall@10 Recall@20 NDCG10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20

LogiRec++ 6.67 ± 0.05 10.30 ± 0.06 5.21 ± 0.04 6.39 ± 0.03 11.04 ± 0.12 15.83 ± 0.11 8.49 ± 0.09 10.04 ± 0.07
- w/o. LMem 5.71 ± 0.05 9.08 ± 0.07 4.73 ± 0.11 5.86 ± 0.09 9.73 ± 0.13 14.27 ± 0.12 7.75 ± 0.10 9.24 ± 0.09
- w/o. LHie 6.43 ± 0.07 9.95 ± 0.08 4.98 ± 0.06 6.04 ± 0.06 10.49 ± 0.11 15.25 ± 0.10 8.16 ± 0.08 9.76 ± 0.09
- w/o. LEx 6.49 ± 0.08 10.04 ± 0.10 5.06 ± 0.05 6.22 ± 0.07 10.68 ± 0.09 15.48 ± 0.07 8.23 ± 0.10 9.82 ± 0.06
- w/o. HGCN 5.29 ± 0.06 8.47 ± 0.09 4.04 ± 0.10 5.03 ± 0.08 8.74 ± 0.14 13.06 ± 0.11 6.59 ± 0.13 7.87 ± 0.12
- w/o. LRM 6.54 ± 0.08 10.11 ± 0.10 5.11 ± 0.05 6.30 ± 0.06 10.81 ± 0.10 15.59 ± 0.08 8.26 ± 0.11 9.87 ± 0.13
- w/o. Hyper 5.32 ± 0.10 8.60 ± 0.07 4.24 ± 0.08 5.34 ± 0.08 10.28 ± 0.11 14.68 ± 0.12 7.91 ± 0.09 9.33 ± 0.08

Method Clothing Book
Recall@10 Recall@20 NDCG10 NDCG@20 Recall@10 Recall@20 NDCG@10 NDCG@20

LogiRec++ 25.26 ± 0.14 28.23 ± 0.12 23.71 ± 0.11 24.73 ± 0.09 5.79 ± 0.07 9.10 ± 0.09 7.27 ± 0.06 8.33 ± 0.08
- w/o. LMem 22.05 ± 0.10 24.52 ± 0.09 20.64 ± 0.13 21.72 ± 0.08 5.12 ± 0.08 8.20 ± 0.13 6.64 ± 0.10 7.67 ± 0.08
- w/o. LHie 23.54 ± 0.13 26.68 ± 0.12 21.87 ± 0.09 23.26 ± 0.10 5.32 ± 0.11 8.66 ± 0.10 6.85 ± 0.07 7.93 ± 0.11
- w/o. LEx 24.12 ± 0.11 27.36 ± 0.10 22.76 ± 0.08 23.98 ± 0.12 5.41 ± 0.12 8.74 ± 0.08 6.92 ± 0.13 8.01 ± 0.10
- w/o. HGCN 17.85 ± 0.13 21.09 ± 0.11 16.07 ± 0.12 17.21 ± 0.10 4.57 ± 0.12 7.52 ± 0.10 5.68 ± 0.09 6.53 ± 0.12
- w/o. LRM 24.53 ± 0.12 27.62 ± 0.14 23.17 ± 0.10 24.04 ± 0.11 5.49 ± 0.10 8.83 ± 0.09 7.04 ± 0.07 8.08 ± 0.08
- w/o. Hyper 23.10 ± 0.11 25.46 ± 0.13 21.07 ± 0.10 22.13± 0.09 5.36 ± 0.13 8.44 ± 0.12 6.79 ± 0.08 7.76 ± 0.10

items and tags in hyperbolic space. Moreover, the proposed
LogiRec++ refines logical relations based on user behaviors,
and thus makes full use of tags for accurate and fine-grained
user preferences, where LogiRec++ can outperform AGCN
ranging from 4.41% in NDCG@10 on Ciao to 25.05% in
Recall@10 on Book.

C. Model Ablation (RQ2)

To study the effectiveness of components, we compare 6
LogiRec++ variants on four datasets, which can be divided
into six components as follows:
• LogiRec++ w/o. LMem is our proposed LogiRec++

without membership relation modeling.
• LogiRec++ w/o. LHie is our proposed LogiRec++ with-

out hierarchical relation modeling.
• LogiRec++ w/o. LEx is our proposed LogiRec++ with-

out exclusive relation modeling.
• LogiRec++ w/o. HGCN is our proposed LogiRec++

without the hyperbolic graph convolutional network.
• LogiRec++ w/o. LRM is our proposed LogiRec++

without logical relation mining based on user behaviors (i.e,
LogiRec).

• LogiRec++ w/o. Hyper is our proposed LogiRec++
projected from hyperbolic to Euclidean space.
From Table III, we have the following observations:
Compared with LogiRec++ w/o. logical relation mod-

eling including LMem, LHie, and LEx, LogiRec++ leads
to the performance gains ranging from 2.24% (achieved in
NDCG@20 on CD) to 16.81% (achieved in Recall@10 on
Ciao). Such results are consistent with those in Table II,
showing the effectiveness of modeling logical relations among
items and tags. Since the logical relations between tags can be
inaccurate and coarse, we observe that the impact of removing
exclusion loss is marginal, where LogiRec++ w/o. LEx

achieves the best performance among all the three variants
that remove different logical relations.

Furthermore, the impact of removing the Hyperbolic GCN
is the greatest compared with other ablations, where the
performance gains of LogiRec++ over LogiRec++ w/o.
HGCN ranges from 21.01% (achieved in Recall@20 on Book)

TABLE IV: Hyperparameter studies (%) on CD and Clothing.

Param. Recall@10 NDCG@10 Recall@10 NDCG@10
CD Clothing

L = 1 10.29±0.11 7.94±0.10 22.85±0.13 21.86±0.10
L = 2 10.58±0.12 8.27±0.11 24.20±0.13 22.96±0.12
L = 3 11.04±0.12 8.49±0.09 25.26±0.14 23.71±0.11
L = 4 10.63±0.14 8.30±0.10 24.03±0.15 23.23±0.13
λ = 0.0 9.73±0.12 7.75±0.11 22.05±0.12 20.64±0.09
λ = 0.01 10.82±0.09 8.31±0.08 24.42±0.11 23.05±0.10
λ = 0.1 11.04±0.12 8.49±0.09 25.26±0.14 23.71±0.11
λ = 1.0 10.76±0.13 8.24±0.12 25.47±0.10 23.88±0.13
λ = 1.5 10.59±0.10 8.01±0.09 24.20±0.13 22.96±0.11
m = 0.0 10.81±0.10 8.32±0.11 23.94±0.12 21.82±0.14
m = 0.1 11.04±0.12 8.49±0.09 25.26±0.14 23.71±0.11
m = 0.2 10.89±0.10 8.41±0.13 24.87±0.11 23.46±0.08
m = 0.3 10.78±0.11 8.35±0.09 23.80±0.12 21.63±0.12
d = 32 7.86±0.09 5.74±0.10 16.92±0.13 15.60±0.11
d = 64 11.04±0.12 8.49±0.09 25.26±0.14 23.71±0.11
d = 128 12.38±0.12 9.64±0.08 26.73±0.10 25.59±0.08

to 47.54% (achieved in NDCG@10 on Clothing). This indi-
cates that higher-order relations are helpful to learn complex
relations among users, items, and tags.

Moreover, since inaccurate logical relations can affect
LogiRec++ w/o. LRM (i.e., LogiRec), LogiRec++ over-
performs LogiRec++ w/o. LRM by refining logical relations
without additional supervision. Specifically, LogiRec++
measures user consistency and granularity only based on
the exclusive relations and the learned embedding, which
can effectively improve performance ranging from 1.43% in
NDCG@20 on Ciao to 5.46% in Recall@10 on Book.

Compared with LogiRec++ w/o. Hyper, LogiRec++
leads to significant performance gains ranging from 7.07%
in NDCG@10 on Book to 25.38% in Recall@10 on Ciao.
Such observation strongly indicates that metric learning in
hyperbolic space can effectively and efficiently model the
logical relations via Poincaré hyperplanes, which is consistent
with those in Table II.

D. Effect of Hyperparameters (RQ3)

Our proposed LogiRec++ framework mainly introduces
three hyperparameters, i.e., L, λ and m. Here we show
how these three hyperparameters impact the performance and
clarify how to set them.
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(a) Varying λ on Ciao (b) Varying λ on CD (c) Varying λ on Clothing (d) Varying λ on Book

Fig. 6: Performance regarding Recall@10 and NDCG@10 of the best baseline and LogiRec++ with varying weights on
logical relation modeling regularizer on the four datasets.

TABLE V: Examples of tag-based user profiles modeled by the proposed LogiRec++ with user consistency CON, user
granularity GR, and personalized weights α. The corresponding items are also recommended by our LogiRec++.

User Tag Item

C
D

User1
CON1 = 0.91

<Alternative Rock>; <Goth & Industrial>;
<Industrial>; <Industrial Dance>; . . .

Industrial Dance; Industrial Strength Machine Music:
1978-1995; Gothic Industrial: The Remixed Collection; Metal
Dance 2: Industrial New Wave & EBM Classics; . . .

GR1 = 0.83
α1 = 0.87

User2
CON2 = 0.25

<Pop>; <Jazz>; <Latin Music>;
<Rock>; . . .

Best of the Cardigans; Long Gone Before Daylight; Gran
Turismo; Other Side of the Moon; Life; First Band On The Moon;
Gran Turismo Overdrive; Super Extra Gravity; . . .

GR2 = 0.39
α2 = 0.31

B
oo

k

User3
CON3 = 0.84

<Teen & Young Adult>; <Romance>;
<Romantic Comedy>; . . .

First Comes Revenge; Best Frenemies; Things We Left Behind
(Knockemout Book 3); Wildfire: A Novel (The Maple Hills
Series); The Way I Hate Him; Happy Place; . . .

GR3 = 0.78
α3 = 0.81

User4
CON4 = 0.75 <Teen & Young Adult>; <Romance>;

<Romantic Suspense>; <Fantasy
Romance>; <Romantic Comedy>; . . .

Never Fall For The Fake Boyfriend: A Grumpy Sunshine
Romance (Never Say Never Book 3); Hands Off: A Steamy
Romantic Suspense; The Second Chance Shoppe; . . .

GR4 = 0.46
α4 = 0.59

From Table IV, we have the following observations:

• L is the layer of hyperbolic GCN. LogiRec++ achieves the
best performance with L = 3. Since both CD and Clothing
have sparse interactions with 0.0769% and 0.0558% density,
more neighbor aggregation can be helpful to alleviate the
data sparsity issue. When L continues to increase to 4, too
many neighbors can lead to an over-smoothing problem.

• λ is the weight of controlling the regularization for LMem,
LHie, and LEx. Too small λ will cause inadequate modeling
logical relations and cause the model to ignore the inherent
logical relations among tags, while too large λ will likely
ignore the complex interactions between users and items and
cause a decrease in the performance of item recommenda-
tion. As shown in Fig. 6, we can observe that the optimal λ
values on Ciao, CD, Clothing and Book are about 0.1, 0.1,
1.0 and 1.0, respectively. The choice of λ should depend
on the number of tags and logical relations numbers on the
dataset. Particularly, for the dataset that has many tags and
logical relations (e.g., Clothing), λ = 1.0 should be chosen.
Whereas, λ = 0.1 should be chosen (e.g., CD). The same
can be done for a new dataset.

• m is the margin to enforce the difference between positive
and negative triplets. The optimal m value on CD and
Clothing is about 0.1, and m can be obtained by slight
tuning, which is consistent with [40].

• d is the embedding dimension. Overall, we can observe that
LogiRec++ achieves an average of 47.41% improvement
on CD and Clothing when d increases from 32 to 64;
whereas, as d increases to 128, LogiRec++ shows a
modest average gain of 9.85%. Since a larger embedding

dimension d may cause more storage costs and waste
the high-dimensional representation capability of hyperbolic
space [40], we set d = 64 as a balanced choice.

E. Interpretable Case Studies (RQ4)

To provide more insights into the advantages of
LogiRec++ in providing interpretable recommendations, we
demonstrate four example users on CD and Book. All of the
recommended tags and the corresponding items are retrieved
based on the user-tag relations and user-item interactions,
which are learned by LogiRec++.

Mining User Consistency for Accurate Recommenda-
tion. As shown in Table V, we can perform accurate recom-
mendations via user consistency CON, where the higher value
of CON, and the item included in more specific tags is recom-
mended. For example, User 1’s preference is consistent with
tag <Industrial Dance> from historical interactions, where
user consistency CON1 is 0.91. As a consequence, we profile
User 1 via <Industrial Dance>, and the recommendations
are highly related, such as Metal Dance 2: Industrial New
Wave & EBM Classics. However, User 2 that interacts with
diverse CDs is with a low value of CON2, where we reduce the
optimization weight α2 to avoid modeling inaccurate logical
relations derived from User 2. In this way, we pay more
attention to his interactions that are mostly from the band The
Cardigans with diverse musical styles, and it is reasonable
that we recommended the CDs of The Cardigans (e.g., Super
Extra Gravity) to User 2.

Mining User Granularity for Fine-grained Recommen-
dation. As shown in Table V, when user consistency of User
3 and User 4 are relatively close, we can further leverage user
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Hardcore & Punk
Indie & Lo-Fi
Goth & Industrial

Forms & Genres
Symphonies

(a) AGCN (b) HRCF (c) LogiRec (d) LogiRec++

Fig. 7: Visualizations of item embeddings learned by AGCN, HRCF, LogiRec, and LogiRec++ on CD.

Romantic Suspense
Fantasy Romance
Romantic Comedy

Legal Thriller
Cozy Mystery

(a) AGCN (b) HRCF (c) LogiRec (d) LogiRec++

Fig. 8: Visualizations of item embeddings learned by AGCN, HRCF, LogiRec, and LogiRec++ on Book.

granularity GR for distinguishing user preferences, so as to
achieve fine-grained recommendation. Specifically, the value
of GR3 is higher than GR4, indicating that the preference of
User 3 is more specific than User 4 and needs more effort
α to make the interacted tags closer. Therefore, we profile
User 3 with a fine-grained tag <Romantic Comedy> and
recommend items such as Best Frenemies and Happy Place
to him/her; while we profile User 4 with a coarse-grained
tag <Romance> and make recommendations from <Romantic
Suspense>, <Fantasy Romance>, or <Romantic Comedy>.

Refining Logical Relations for Interpretable Recom-
mendation. To demonstrate the advantages of logical relation
mining for recommendations, we visualize the item embedding
vectors on CD and Book learned by AGCN, HRCF, LogiRec,
and LogiRec++, respectively (shown in Fig. 7 and Fig 8).
The items with the same color spectrum represent that they
belong to the same tags. In AGCN, HRCF, LogiRec, and
LogiRec++, the items from more exclusive tag pairs are
well separated (e.g., <Forms & Genres> and <Hardcore
& Punk> on CD, <Fantasy Romance> and <Cozy Mys-
tery> on Book). However, the separation becomes challenging
in the embedding spaces of AGCN, HRCF, and LogiRec
when dealing with less exclusive tag pairs (e.g., <Goth &
Industrial>, <Indie & Lo-Fi>, and <Hardcore & Punk> on
CD, <Romantic Suspense>, <Cozy Mystery>, and <Legal
Thriller> on Book). With our proposed logical relation min-
ing, the items from less exclusive tag pairs are also well
separated in the embedding spaces of LogiRec++.

Moreover, the tag relation after refinement can also well
retain the originally accurate relations. For example, we can
observe that <Romantic Suspense> learned by LogiRec and
LogiRec++ locates in the middle of romantic books and
mystery books, which is consistent with the hierarchical rela-
tions that <Romantic Suspense> belongs to both <Romance>

and <Mystery>. However, this distinctive positioning isn’t
observed in the embedding spaces of AGCN and HRCF.
Finally, implement a hyperbolic projection into a 3D plane
to decompose the embeddings learned by LogiRec++. This
offers a clearer delineation among items from different tags
on the CD and Book datasets (as shown in the right-hand part
of Fig.7(d) and Fig.8(d)). The combined use of 2D and 3D
visualizations enhances our understanding of the hyperbolic
embedding space. It clearly illustrates LogiRec++’s unique
strength in refining logical relations among tags by alleviating
the bias from data projection. The two visual perspectives
together underscore the potential of LogiRec++ to improve
the organization of tags.

VII. CONCLUSION

In this paper, we propose to enhance recommendations via
explicitly logical relation modeling and mining in hyperbolic
space, which can effectively alleviate the sparsity problem
and provide interpretable prediction results. Specifically, by
exploiting the individual strengths of two hyperbolic models,
we leverage both points and hyperplanes to learn fine-grained
representations for users, items, and tags. Then, we achieve
logical relation refinement based on user behaviors via innova-
tive consistency-based and granularity-based weighting mech-
anisms. Extensive experiments demonstrate the clear improve-
ments of LogiRec++ over the state-of-the-art baselines and
insightful case studies show the accuracy and interpretability
of our logical relation mining.

In the future, it would be interesting to further consider more
complicated set-theoretic logical relations (e.g., intersection)
from geometric insight, the linguistic information (e.g., tag’s
name) from semantic insight, and the application of fine-
grained user-item-tag relations for tasks such as accurate user
profiling and personalized recommendation.
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