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Abstract—Implicit feedback is widely explored by modern
recommender systems. Since the feedback is often sparse and
imbalanced, it poses great challenges to the learning of complex
interactions among users and items. Metric learning has been
proposed to capture user-item interactions from implicit feed-
back, but existing methods only represent users and items in a
single metric space, ignoring the fact that users can have multiple
preferences and items can have multiple properties, which leads
to potential conflicts limiting their performance in recommenda-
tion. To capture the multiple facets of user preferences and item
properties while resolving their potential conflicts, we propose
the novel framework of Multi-fAcet Recommender networks
with Spherical optimization (MARS). By designing a cross-
facet similarity measurement, we project users and items into
multiple metric spaces for fine-grained representation learning,
and compare them only in the proper spaces. Furthermore,
we devise a spherical optimization strategy to enhance the
effectiveness and robustness of the multi-facet recommendation
framework. Extensive experiments on six real-world benchmark
datasets show drastic performance gains brought by MARS,
which constantly achieves up to 40% improvements over the
state-of-the-art baselines regarding both HR and nDCG metrics.1

I. INTRODUCTION

With the rapid growth of various activities on the Web,
recommender systems become fundamental in helping users
alleviate the problem of information overload. Compared with
explicit feedbacks (e.g., 1-5 star ratings), implicit feedbacks
(e.g., purchase records and browsing history, as shown in
Figure 1(a)) are much more abundant and accessible in real-
world online applications [21]. Due to the extreme sparsity
and imbalance of implicit feedbacks, several methods based
on metric learning [15], [33], [40], [55] have been proposed
recently, which have been shown advantageous over the classic
matrix factorization based methods [12], [16], [35], [47], [56].

However, in many real-world applications, users can have
multiple preferences and items can have multiple properties
(uniformally termed as multi-facet). As an example, in Figure
1(a), the movie Love Actually belongs to both romantic
and comedy categories, so user B may be attracted by its
romantic plots, whereas user C by its humorous actors. By
using a single metric space to project all users and items,
existing metric learning based recommender systems ignore
the possible multi-facet user preferences and item properties.
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As shown in Figure 1(b), the preference of user C would
require items 2 and 4 to be close, while those of users A and
B would require items 2 and 4 to stay away from each other,
leading to an unresolvable conflict in the single embedding
space. Particularly, the two items cannot simultaneously be
close and far away regardless of the embedding dimension.
Our solution is to allow users and items to reside in multiple
embedding spaces and compute their similarity only in the
proper spaces. In this way, the two items can be close in one
space (corresponding to user C’s preference), while far away
in another (corresponding to the preference of users A and
B), which effectively resolves the potential conflicts caused
by multi-facet user preferences and item properties (as shown
in Figure 1(c).

In this work, we enable such a framework of Multi-fAcet
Recommender networks (MAR), whose major goal is to simul-
taneously learn multiple expressive metric (embedding) spaces
of users and items directly from the implicit feedback data
(Section III-A). The task is challenging in several perspectives.

Firstly, although multi-space representation learning has
been explored very recently [8], [20], [27], [44], existing works
have only studied it with traditional network data instead of
recommendation data, which is close to an extremely sparse
bipartite network. Moreover, they learn different embedding
spaces under the help of additional graph clustering algorithms
[8], [27], auxiliary category information [44], or pre-defined
textual patterns [20]. Instead of relying on any of those
external help, which is often unavailable in recommender
systems, we propose a cross-facet similarity measurement,
which naturally connects multi-space representation learning
with metric learning based recommendation, and allows the
simultaneous learning of multiple facet-specific embedding
spaces for users and items in a both memory and computation
efficient way (Section III-B).

Secondly, the standard optimization objectives of recom-
mender systems are not designed towards the learning of mul-
tiple metric spaces, where the key idea is to properly combine
and fully utilize the representation power of multiple spaces.
To this end, we design a series of multi-facet optimization
objectives, most of which are inspired by existing works in
other lines of research such as CV [39] and social science
[23], and novelly integrate them as a whole (Section III-C).

Finally, we further find flaws in the standard constraints of
metric learning on the norms of user and item embeddings.
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Fig. 1. A toy example illustrating the limitation of single-facet recommendation. (a) shows the implicit feedback data and their underlying multi-facet
distribution to be modeled by a recommender system. (b) shows users and items in a single metric space. Assuming users (A, B) and items (1-5) are arranged
in the black and green locations, where the blue arrows faithfully preserve the interactions between users (A, B) and items (1-5), it is then impossible to put
user C anywhere in that space without violating her interactions with items (2-4) as shown by the red arrows. (c) shows the same users and items in multiple
metric spaces, which implicitly captures user-item interactions regarding different facets and naturally overcomes the limitation of (b).

We deem the norm constraints not strong enough and prone
to trivial optimization with dif�cult users and items, which
is especially concerning in the multi-space setting as more
representation power can be wasted. In light of this, we devise
a spherical optimization strategy based on recent research on
machine learning for NLP [30] and CV [34], which strictly
constrains the norms of user and item embeddings in all
facet-speci�c metric spaces. The whole MAR with Spherical
optimization framework is named MARS (Section IV).

We evaluate both MAR and MARS with experiments on
six real-world benchmark datasets for recommendation with
implicit feedback. We compare them with a comprehensive
set of eight recommendation methods focusing on the classic
and state-of-the-art metric learning based methods. Extensive
experimental results show that MAR alone is able to signif-
icantly improve the recommendation over all baselines (e.g.,
with up to 27.53% relative improvements on HR@10 over the
best baselines across all datasets), whereas MARS can further
drastically improve over MAR especially in the harder cases
(e.g., with up to 47.07% relative improvements on HR@10
over the best baselines). More comprehensive results and
discussions as well as ablation study, hyperparameter study
and case study are all presented in Section V.

II. RELATED WORK

A. Recommender systems

Over the past decade, matrix factorization (MF) has become
the de factomethod for recommendation, which uses inner
products to model the similarity of user-item pairs [16], [29],
[32], [35], [49]. However, MF assumes linear relationships
between users and items, which limits the model capacity,
since the interactions between users and items in real-world
applications are often much more complex. In particular, the
inner product used by MF cannot satisfy the triangle inequality,
which limits the capabilities of the models to capture �ne-
grained user-user and item-item similarities [15].

Recently, metric learning for recommendations has attracted
signi�cant research attention [15], [38], [46], [51], [53]. Ex-
isting methods in this line seek appropriate distance functions
for input points instead of inner products, which can address

the limitations of MF. Based on the Euclidean distance, [15]
�rst proposed a method called collaborative metric learning
(CML), which learns a metric space to encode not only users'
preferences but also the user-user and item-item similarity.
To avoid pushing possible recommendation candidates too far
away, [55] proposed a metric factorization method only with
the pulling operation in contrast to CML, which only has a
pushing term. Since CML has a one-to-many mapping problem
which limits the representation of users and items, [33] turned
this problem to multiple one-to-one mappings and [42] turned
this problem to one-to-one mappings between Euclidean and
hyperbolic spaces. Then, inspired by the success of relational
metric learning in knowledge graphs [45], it constructed
user-item translation vectors by employing the neighborhood
information of users and items. In this case, the model can
not only push the negative items away from the user but also
pull a user closer to all of the interacted items. Considering
that CML has a geometrically restrictive scoring function and
it has been proven to be an ill-posed algebraic system, [40]
learned latent user-item interaction relations based on memory
network and attention mechanism, which helps to alleviate the
potential geometric problem.

Although the above single-space metric learning methods
achieve promising performance, the representation capacity of
a single space is limited and they cannot explicitly decompose
the multiple facets and similarities of users and items. Recent
research on network representation learning has shown the
necessity and effectiveness of multi-space embedding [6],
[8], [20], [27], [44]. The idea is extensible to recommender
systems, where the multiple spaces can be naturally used
to model the multi-facet user preferences and item proper-
ties. Beyond matrix factorization and metric learning, recent
recommendation methods like [22] leveraged cokriging for
active item retrieval to capture user's multiple interests under
minimal user input, whereas [50] adopted external context to
explicitly model the multi-facet interactions among items to
handle �exible user preferences. Their focuses on minimal user
input and external context are different from ours, but they also
show the potential of modeling multi-facet user preferences
and item properties for effective recommendation.



B. Spherical optimization

Most of the existing metric learning methods for recom-
mendation only adopt the relaxed embedding norm constraints
as CML [15], which requires all user and item embeddings
to lie in a unit sphere. However, there is no optimization
for recommendation based on the strict spherical constraints,
resulting in the discrepancy between the potentially more
robust objective and its proper optimization.

Since the simultaneous modeling of multiple spaces will
increase the learning burden, the optimization process has
to be effective to fully exploit the increased representation
capacity of the multi-space model. To properly optimize our
model w.r.t. the strict spherical constraints on embedding
norms, we get inspired by recent advances in hyperspherical
representation learning that have shown the effectiveness of
Riemannian optimization in spherical spaces by focusing on
the directional (cosine) similarity among embedding vectors
[30], [31], [34], [36]. For example, spherical generative mod-
eling [2], [18], [54], [57] captures the distribution of words on
the unit sphere, motivated by the effectiveness of directional
metrics over word embeddings. Recently, spherical models
also show great success in deep learning. Spherical normal-
ization [28] on the input leads to easier optimization, faster
convergence and better accuracy of neural networks, which
helps regularize the vector against the input length and leads to
better document clustering performance. Also, a spherical loss
function can be used to replace the conventional softmax layer
in language generation tasks, which results in faster and better
generation quality [24]. Motivated by the success of these
models, we propose to directly optimize our recommender
networks in the spherical space, with the properly designed
calibrated Riemannian optimization which for the �rst time
�lls the gap between multi-space metric learning and spherical
optimization.

III. T HE MAR FRAMEWORK

In this section, we present our proposed framework of
Multi-fAcet Recommender networks (MAR), as shown in
Figure 2. Speci�cally, we �rstly de�ne a cross-facet similarity
measurement, which projects users into multiple spaces to
model their preferences from multiple perspectives. Then, we
detail the optimization for MAR, which achieves effective
personalized recommendation through the learning of multi-
facet user and item embeddings.

A. Overall framework

We use u and v to denote users and items, and use
u 2 RD � 1 and v 2 RD � 1 to denote user and item embed-
dings, whereD is the dimension of the embedding space.
We consider recommendation based on the implicit feedback
matrix X , whereX uv = 1 corresponds to a positive sample
(u ; vp), where useru interacted with itemvp, andX uv = 0
corresponds to a negative sampe(u ; vq), where the interaction
betweenu andvq is missing.

To capture the multi-facet user preference and item property,
a single universal embeddingu for user u (universal item

Fig. 2. Overview of our proposed multi-facet recommender networks.

embeddingv) is projected into multiple spaces by a series
of matrices� = f � k 2 RD � D gK

k=1 , which constitues the
facet-speci�c embeddingU f ,

�
u 1; u 2; : : : ; u K

� >
2 RK � D

for user u (V f similarly de�ned for item v with projection
matrices	 ). K is the prede�ned number of facets, whose
setting will be discussed in the experiments. Then we compute
the facet-speci�c similarityf gk (u k ; vk )gK

k=1 between useru
and itemv in all facet spaces, which is summed up as the
�nal similarity g(u ; v) through a learnable weight vector� 2
RK � 1.

B. Cross-facet similarity measurement

We observe that different behaviors of users come from
the expression of their different preferences. Merging these
different facets into a single-space representation with high
dimension cannot resolve the potential con�icts. As shown in
Figure 1, users may like movies of different categories at the
same time, and movies themselves may belong to multiple
categories simultaneously. In a single metric space, con�icts
can arise because movies from different categories are unlikely
to be close, and users cannot be close to movies of different
categories at the same time.

Inspired by the ambiguity embedding method derived from
word ambiguity in language modeling [17] and the argument
about single embedding being less generalizable from the
statistical, computational and representational point of view
[7], we propose to project users and items into multiple
embedding spaces and provide a mechanism for resolving
their potential con�icts. In this way, the useru's facet-speci�c
embeddingU f can approach items with different perspectives
regarding different facets at the same time. The recommended
items are then calculated according to the similarity across the
multi-facet user preferences.

However, existing similarity measurements are based on
single metric spaces without the consideration of multi-facet
embedding. To connect multiple spaces and integrate the
user's multi-facet representations, we propose a monotonic
cross-facet similarity measurement, which computes an overall
similarity score for each user-item pair.


