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Abstract
In recent years, the landscape of digital biomedicine and health-
care has been reshaped due to the disruptive breakthroughs in AI–
facilitated by tremendous data and high-performance computers,
large language models (LLMs) have transformed information tech-
nology from accessing data to performing analytical tasks. While
demonstrating unprecedented capabilities, LLMs have been found
unreliable in tasks requiring factual knowledge and rigorous reason-
ing. Biomedicine and healthcare, as an important vertical domain
rapidly benefitting from progress in AI, necessitates strict require-
ments on the accuracy, controllability, and interpretability of ana-
lytical models, posing critical challenges for LLMs. Despite recent
studies addressing the hallucination problem of LLMs, research on
empowering LLMs with the ability to plan, reason, and ground with
explicit knowledge has also started to prosper, especially in the
biomedicine and healthcare domain. On the other hand, biomedical
data are enormous and notoriously complex, coming from various
sources (e.g., biomedical knowledge bases, online literature, and
hospitals) and bearing various modalities (e.g., tables, texts, images
and time-series). Healthcare professionals have spent decades col-
lecting, cleaning, and curating various types of data. The processes
are extremely costly, producing various datasets with different data
schemas, coding systems, and quality standards, many privately
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owned by the creators, making their integrative analysis and uti-
lization through unified AI techniques still rather challenging. The
generalizability of LLMs across different types of data endow them
strong promises in automating the processing of large-scale com-
plex healthcare data such as into unified knowledge graphs (KGs).
Our goal in this survey is to systematically investigate and sum-
marize recent studies on the unification of LLMs and KGs, towards
fully utilizing the value of complex data, unleashing the power of
generative AI, and expediting next-generation AI for biomedicine
and healthcare applications.
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1 Introduction
Large language models (LLMs) have reshaped AI research and im-
plementations, with unprecedented capabilities widely shown in
various text-related tasks, bringing humans ever close to general
AI. Recent research on multi-agent systems have further magni-
fied LLMs’ advantages of language comprehension, broad knowl-
edge and generalizability through conversations, showing strong
promises for deep human-model collaboration for critical appli-
cations [1]. In biomedicine and healthcare, extensive enthusiasm
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Figure 1: Overview of the proposed biomedical knowledge
language models framework.

has been witnessed on the exploration and evaluation of LLMs in
answering medical questions [2], extracting clinical information
[3] and assisting clinical decisions [4]. Studies have also revealed
the limitations of LLMs regarding their lack of knowledge [5], fuzzy
inference [6], and hallucination [7]. Specifically, in biomedicine and
healthcare, the lack of knowledge can be caused by the lack of
access to high-quality data about various biomedical concepts and
patient conditions, as well as the rapidly evolving new biomedical
knowledge; the fuzzy inference nature can lead to difficulties in
conducting reliable comprehension and stable predictions for com-
plex medical questions; and hallucination creating factual errors
and misinformation can cause fatal and life-threatening problems
in the healthcare workflows [8].

Knowledge graph (KG) has been widely studied across academia
and industry, due to its advantages in storing accurate, explicit
and easily-modifiable knowledge [9]. In biomedicine and health-
care, researchers and professionals have spent decades collecting,
processing, and curating various types of biomedical and clini-
cal data towards the construction of medical KGs [10], which are
widely used to support basic science research [11], pharmaceutical
research [12], clinical decisions [13] and policy making [14]. How-
ever, biomedical data are notoriously noisy and complex, where
datasets about specific concepts and conditions come from vari-
ous sources such as institutions using different data schemas and
coding conventions [15], and the data can also include multiple
modalities such as tables, texts, images, and time-series [16]. While
such multi-source and multi-modality data hold great promises in
integrative and comprehensive biomedical analysis, extracting and
unifying high-quality knowledge from them is non-trivial.

Recently, significant research attention has been drawn to the
synergies between KGs and LLMs [17], due to their naturally com-
plementary advantages (Figure 1). The construction and modeling
of KGs have always relied on advances in natural language pro-
cessing (NLP) tools, and nowadays, researchers have intensively
explored language models towards the embedding [18], comple-
tion [19] and construction [20] of KGs. Studies in the recent years
have also bloomed to explore the utilization of KGs for enhanc-
ing LLMs through providing new sources of knowledge during
pre-training [21] or inference [22], and enabling knowledge-based
interpretation and evaluation [23]. In very recent years, pioneering
studies have also started to explore the combination of KGs and
LLMs for biomedicine and healthcare [24]. Most of these studies

have focused on specific healthcare applications and only imple-
mented shallow and straightforward technical designs, without
fundamentally improving the KGs and LLMs.

To expedite LLM-based research towards next-generation AI
for health, this survey will comprehensively investigate and sum-
marize recent works addressing the data, model and application
challenges of unifying KGs and LLMs for biomedicine and health-
care, through a systematic conceptual framework of BioMedKLM
(BioMedical Knowledge Language Models, Figure 1). We present
BioMedKLM to discuss major functionality needed to build high-
quality KGs that integrate complex biomedical data, enhance LLMs
to obtain reliable biomedical models, and properly employ the data
and model to enable critical and novel biomedical applications. This
survey, as illustrated in Figure 1, consists of three distinct but in-
terrelated research perspectives that address the data, model and
application challenges blocking the transformation of AI for health.

• Perspective P1: LLM-aidedKGconstruction frommulti-
source multi-modality biomedical data. We will discuss
LLM-based methods for unifying existing biomedical KGs
collectable from different sources (P1.1), continuously en-
hance biomedical KGs by extracting concepts and relations
from evolving biomedical literature, and (P1.3) comprehen-
sively augment biomedical KGs through the integration of
multi-modal biomedical data.

• Perspective P2: KG-guided LLM enhancement towards
reliable biomedical models. We will discuss the utiliza-
tion of biomedical KGs to enhance the capabilities of LLMs
through providing biomedical knowledge to enhance LLM
planning (P2.1), enabling biomedical neural symbolic rea-
soning with LLMs (P2.2), and enforcing post-hoc biomedical
error detection to verify LLMs’ knowledge and reasoning
(P2.3).

• Perspective P3: Knowledge language co-modeling to
facilitate reliable biomedical applications.We will dis-
cuss how the integration of KGs and LLMs enables critical
biomedical applications including clinical decision support
for enhanced diagnostics (P3.1), drug discovery and devel-
opment for accelerated pharmaceutical research (P3.2), and
biomedical knowledge management for organizing the vast
body of biomedical information (P3.3).

This survey establishes a systematic and comprehensive frame-
work of BioMedKLM that aims to enable the synergistic and progres-
sive improvements of KGs and LLMs for biomedicine and healthcare.
Techniques related to BioMedKLM reflect methodological innova-
tions in data mining and generative AI, fundamentally improving
KGs via automatic extraction and integration of multi-source multi-
modality knowledge, enhancing LLMs towards knowledge-guided
planning, reasoning and grounding, and unleashing the power of
generative AI towards ethical, trustworthy and human-centered
biomedical applications.

2 LLM-aided KG Construction
In this section, we examine the benefits of leveraging LLMs for med-
ical KG construction, particularly in accuracy, consistency, coverage,
and freshness of knowledge. Traditional approaches, as surveyed in
[10], often focus on specific disease areas or entity types. Efforts to
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build comprehensive biomedical KGs primarily rely on integrating
existing sources [25], using coding systems for entity alignment
[26]. However, these methods struggle with terminological vari-
ations, leading to redundancy and inconsistency. A few studies
have attempted to construct general-purpose medical KGs through
integrating existing ones [25, 27], but they heavily rely on existing
coding systems and thesauruses [26] for entity alignment across
KGs, which often fail in front of varying terminologies such as
due to different conventions or abbreviations, leading to high de-
grees of duplication and inconsistency. Recently, several studies
started to explore the potential of LLMs to automate KG construc-
tion [20, 28]. In the following, we discuss key applications of LLMs
and multi-modal foundation models (MMFMs) toward construct-
ing high-quality KGs using multi-modality biomedical data from
existing KGs, biomedical literature and medical institutions.

2.1 Integrating existing KGs
KG integration, often referred to as knowledge fusion or alignment,
involves merging KGs from diverse sources and formats. It is a core
challenge in knowledge engineering, requiring effective strategies
to ensure consistency and interoperability [29]. KG integration, also
known as knowledge fusion or knowledge alignment, represents
a fundamental challenge in the broader landscape of knowledge
engineering, which involves integrating multiple KGs that originate
from varied sources and formats [29]. While individual KGs often
excel in specific domains or use cases, their true potential can be
unlocked through effective integration, enabling more comprehen-
sive and robust knowledge representation [27]. As the number and
diversity of KGs continue to grow, the need for effective integration
methods becomes increasingly critical. However, the integration of
existing KGs faces several key challenges: (1) semantic heterogeneity
across sources: Different KGs often use varying terminologies, defi-
nitions, and contextual frameworks to represent similar concepts;
(2) varying granularity levels in knowledge representation: KGs may
differ in the detail and depth with which they describe entities and
relationships, impacting the consistency and usability of integrated
data. Although neural approaches have been proposed for entity
alignment on KGs, these methods generally depend heavily on la-
beled data for training. However, obtaining sufficient labeled data
often involves substantial manual effort and can be rather costly.
LLMs have emerged as a promising solution to these challenges
with unique advantages: First, their strong natural language under-
standing capabilities enable them to capture semantic relationships
among concepts that may be missed by traditional string-matching
or embedding-based approaches. Second, LLMs can draw on their
extensive knowledge acquired during pre-training to aid in dis-
ambiguating entities and mapping relationships across different
KGs. Third, LLMs possess robust few-shot learning abilities, mak-
ing them particularly valuable for specialized domain applications
where labeled data are limited.

Prior works [30, 31] explore the potential of linking biomedical
entities across KGs. Specifically, HiPrompt [30] aligns entities be-
tween biomedical KGs and standardized ontologies via a two-stage
approach: traditional information retrieval techniques (BM25) fol-
lowed by a LLM-based re-ranking using hierarchy-oriented prompts.
PromptLink [31] further improves this two-stage framework by

first eliciting the biomedical prior knowledge from the LLM for
the concept linking task and then enforcing the LLM to reflect on
its own predictions to further enhance their reliability. The im-
provements are especially significant for weaker LLMs, which is
intuitive and useful since not every medical institution can always
(safely) access the strongest LLMs. Besides, AutoAlign [32] utilizes
off-the-shelf LLMs to capture relationships between entity types
with a predicate-proximity graph and then aligns entities across
KGs by computing similarity in the embeddings space.

The above advances in LLM-aided KG integration suggest sev-
eral promising future directions. For example, future LLM-driven
KG integration could focus on enabling evolving knowledge graph
updates by resolving inconsistencies between new and existing
knowledge. Another key challenge in leveraging LLMs to enrich
KGs is the risk for misinformation [33]. To alleviate this, human-in-
the-loop frameworks play a critical role in verifying and refining
LLM-generated outputs [34].

2.2 Constructing and Completing KGs
KGs have high-standard requirements on the quality of knowl-
edge, regarding accuracy, consistency, coverage and freshness. No
matter constructed through manual curation, NLP tools, or their
combinations, KGs can unavoidably include erroneous knowledge.
Moreover, when multiple KGs are integrated, conflicting knowl-
edge can emerge. Finally, new knowledge is constantly generated
from new experiments and research, making existing knowledge
inaccurate and incomplete. LLMs have emerged as a promising
solution, leveraging the vast and adaptable knowledge acquired
during pre-training to overcome these limitations.

The key advantage of LLMs in this domain lies in their ability
to generate novel, semantically coherent information that can sup-
plement and enrich existing KGs. Unlike rule-based or supervised
machine learning approaches, LLMs can leverage their extensive
understanding of language and the world to infer missing connec-
tions, identify new entities, and uncover implicit relationships - all
without being constrained by the limitations of manually curated
training data.

As demonstrated in recent works, LLM-based approaches have
shown strong potential in KG construction and completion. Zhu et
al. [20] exploit in-context learning to predict missing entities and
relations, generating new triplets to expand existing KGs. Mean-
while, KC-GenRE [35] frames KG completion as a retrieval and
ranking problem. Their approaches first retrieve candidate enti-
ties and then employ LLMs to refine and reorder them, ultimately
forming additional knowledge triplets. Zhang et al. [36] further
incorporate the schema elements relevant to the prompt for stan-
dardizing the triplets and improving the generation quality of LLMs.
Inspired by recent progress of LLM reasoning, Nie et al. [37] fur-
ther chain-of-thought promoting techniques [38] to better guiding
LLMs in understanding triple knowledge in unstructured data with
improved triplet extraction accuracy.

Beyond traditional text-based prompting, code-based instruc-
tions offer an alternative approach for guiding LLMs in structured
knowledge generation. Code LLMs, designed for processing struc-
tured data like programming code, naturally align with the hierar-
chical and relational nature of KGs. Their training on structured
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inputs enables them to better capture and manipulate graph-based
representations, making themwell-suited for tasks requiring logical
consistency and precision [39, 40]. For ontology expansion task,
CodeTaxo [41] represents entity relationships with a hierarchical
structure inspired by programming syntax for better harnessing
LLMs’ ability to interpret structured patterns. By leveraging code-
like representations, it enables LLMs to systematically construct
taxonomies, improving the organization and completeness of KGs.
CodeKGC [42] encoded the schema of KGs by modeling code defini-
tions for capture the structural information inherent in the data. By
leveraging chain-of-thought prompting, it systematically generates
precise knowledge triples. To summarize, code-driven prompting
enables LLMs to structure and categorize concepts more efficiently
by leveraging syntax-based reasoning, improving KG organization
and consistency. This method outperforms conventional natural
language prompts by providing a more structured and logic-driven
way to enhance KG completion.

Apart from prompting, several studies explored fine-tuning to
adapt LLMs for KG completion. KG-LLM [43] directly performs
instruction tuning on KG completion tasks including triplet clas-
sification, relation prediction and link prediction and outperform
frontier models using lightweight backbones only. KOPA [44] first
conducts pretraining to obtain entity and relation embeddings,
which transforms them into virtual knowledge tokens within a uni-
fied textual space. These tokens then act as prefixes in LLM prompts
that enable structure-aware reasoning by combining LLM gener-
ation with KG-based retrieval. MKGL [45] structures knowledge
as three-word sentences (entity-relation-entity triplets), and then
finetunes LLMs to generate and complete KG triplets by leveraging
real-time KG context retrieval and token embedding augmentation
to enhance factual consistency. KG-FIT [46] attempts to exploit
open-world knowledge from LLMs to enhance KG embeddings. It
first constructs a semantically coherent, hierarchical structure of
entity clusters, then fine-tunes these embeddings by integrating
the hierarchical structure within textual embeddings. Such a hybrid
approach combines structural KG information with semantic depth
from LLMs for richer representations.

2.3 Enriching KGs with multi-modality data
Another property of biomedical KGs is the diverse sources and
modalities of useful knowledge. Besides existing KGs and online
literature, medical institutions including hospitals, clinics and med-
ical centers generate vast amounts of patient data daily, through
patient visits, clinical trials, health monitoring devices, and so on.
Traditionally, specialized models and algorithms have been devel-
oped to process and analyze various modalities of patient data such
as electronic health records (EHRs), medical images, physiological
waveforms, clinical notes and health insurance claims. These meth-
ods can hardly perform integrative analysis across data modalities
and generalize across different medical institutions. Recently, LLM-
based multimodality foundation models (MMFMs) have shown
strong promises in analyzing multi-modality data through the uni-
fied interface of languages [47]. However, studies on aligning gen-
eral MMFMs to real patient data have shown this task to be rather
challenging due to the lack of high-quality fine-grained pairs of
X-and-text labeled data for instruction tuning– let X be chest x-rays

and text be radiology reports, most reports do not include accurate
annotations (bounding boxes) of lesions in the lung [48]; let X be
spatiotemporal EEG/SEEG signals and text be nursing notes, most
notes do not indicate accurate time ranges and spatial locations of
epilepsies in the brain [49]. Besides the development of biomedical
MMFMs, how to utilize them for the extraction of novel knowledge
from multi-modality patient data that can be properly incorporated
into the biomedical KGs for further integrative utilization towards
empowering LLMs and facilitating various downstream biomedical
applications can highly impact AI practices in health informatics,
but this remains much under-explored.

To adapt MMFMs with domain-specific knowledges, BioMed-
VITAL [48] is designed for efficiently aligning biomedical MMFMs
with clinician preferences. Through novel designs in the three steps
of data generation, selection and instruction tuning, BioMed-VITAL
demonstrates significant improvements in medical visual chat and
VQA datasets, showing strong promises for further utilization to-
wards open-ended knowledge discovery from medical images. On
the other hand, OpenVik [50] explores prompting MMFMs to gener-
ate format-free visual knowledge from the detected regions. Open-
Vik further gathered novel relational knowledge generated from
images from Visual Genome [51] to form a novel KG, and demon-
strated its advantages over existing commonsense KGs such as
ConceptNet [52] and COMET [53] for various KG-supported down-
stream tasks. It opens up the new arena of utilizing MMFMs for au-
tomatic relational knowledge discovery. PromptCap [54] leverages
pre-trained multimodal large language models (MLLMs) to under-
stand both visual and textual information in a unified framework
for improved visual relation extraction. Yang et al. [55] introduce
an automated pipeline for building product KGs in e-commerce di-
rectly from raw images. It leveragesMMFMs to extract visual details
and utilizes an LLM to infer missing attributes and relationships. By
hierarchically structuring and linking entities, this pipeline enables
scalable KG construction without requiring manual intervention.

3 KG-guided LLM Enhancement
LLMs have shown impressive communication and question an-
swering capabilities, demonstrating strong promises in various
healthcare applications [2, 56]. However, to reliably model biomed-
ical data and generate factual and accurate answers, LLMs still
face the challenges of lacking domain knowledge, fuzzy inferences,
and hallucination [8]. Retrieval augmented generation (RAG) [57],
which aims at retrieving question-relevant evidences and gener-
ating evidence-based answers, has strong promises in evidence-
critical domains including biomedicine and healthcare. However,
effective and efficient RAG for biomedicine and healthcare is sel-
dom studied and requires solutions to practical challenges including
(1) how to find relevant evidences from complex biomedical data,
(2) how to conduct biomedically valid complex inference, and (3)
how to reliably guarantee the removal of biomedical errors. In this
section, we will comprehensively investigate these challenges and
demonstrate the advantages of utilizing KGs to enable reliable LLMs
for biomedicine and healthcare.
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3.1 Planning with domain knowledge
Modeling biomedical data is challenging because diseases are often
complicated and heterogeneous such as regarding the causes, symp-
toms, and treatment effects. Given a question seemingly as simple
as ‘Will patient 0315 with type 2 diabetes develop cardiovascular co-
morbidities in the next 5 years’, an experienced doctor will naturally
expand the question into a set of related questions– e.g., ‘Does the
patient suffer from obesity’, ‘Does the patient take metformin’, ‘Does
the patient smoke’, ‘What is the patient’s current and historical blood
pressure’, etc., so as to find and retrieve necessary evidences for an-
swering the original question. This process is referred to as query
planning in LLM research [58], and LLMs are known to perform
poorly and hallucinate when planning for complex queries even
with explicit and deliberately designed prompts [59]. Moreover,
LLMs also lack concrete knowledge about biomedicine and health-
care to generate faithful retrieval plans– e.g., for calling tools to
retrieve existing patient data, asking the patient through a chatting
interface, or ordering new tests for the patient, especially facing
the complexity of diseases and biomedical data.

Early works have primarily relied on external retrievers to ac-
quire relevant factual knowledge to enhance LLM reasoning. For
instance, Baek et al. [60] proposed a direct retrieval method to ex-
tract pertinent triples from KGs. However, the retriever, being a
shallow embedding model, may not consistently retrieve the most
relevant facts, particularly in the complex medical domain. KGs en-
compass a wealth of domain-specific knowledge, posing challenges
for LLMs with limited domain expertise in comprehending and uti-
lizing this information for answering medical questions. To further
harness the potential of LLMs in leveraging domain knowledge,
the plan-and-solve paradigm [61] has been introduced, where LLMs
are first prompted to generate a plan. Based on the generated plan,
LLMs can retrieve the relevant domain knowledge and perform
reasoning to generate answers [62]. However, existing approaches
fall short in handling the complex structured knowledge within
KGs to enable effective planning and reasoning. To address this
limitation, Luo et al. [63] proposed a planning-retrieval-reasoning
framework, RoG, which empowers LLMs to plan and reason over
KGs . The overall framework is depicted in Figure 2.

KG

Q: Who is the spouse of
the ex-president of USA?

LLM 1. Planning
Relation path 

Step 1. Find the ex-president of USA.
Step 2. Find the spouse of that person.

2. Retrieval

Reasoning path 

Execute the plan on KGs to retrieve reasoning paths.

3. Reasoning

Step 1. The ex-president of “USA” is
“Donald Trump”

Step 2. “Donald Trump” is the spouse of
“Melania Trump”

Thus, the answer is “Melania Trump”.

Figure 2: The overall framework of planning and reasoning
on KGs (RoG).

RoG first generates multiple relation paths, grounded in knowl-
edge graphs (KGs), which are used as structured plans. Relation
paths, which represent semantic relationships between entities,
have been widely applied in various reasoning tasks on KGs [64]
by decomposing a complex reasoning into multiple simple steps.
Leveraging these relation paths, one can efficiently retrieve up-
to-date knowledge from KGs through a constrained breadth-first

search. Consequently, relation paths act as reliable plans that guide
both the retrieval and reasoning processes on domain-specific KGs.
Furthermore, by treating relation paths as plans, one ensures that
these plans are firmly grounded in KGs, enabling large language
models (LLMs) to retrieve pertinent knowledge and perform ac-
curate reasoning. To formalize this approach, RoG is framed as an
optimization problem aimed at maximizing the probability of de-
riving an answer from a KG G with respect to a given question 𝑞,
by generating relation paths 𝑧 as the guiding plan:

𝑃𝜃 (𝑎 |𝑞,G) =
∑︁
𝑧∈Z

𝑃𝜃 (𝑎 |𝑞, 𝑧,G)𝑃𝜃 (𝑧 |𝑞), (1)

where 𝜃 denotes the parameters of LLMs and 𝑎 denotes the final
answer. To enable accurate planning with domain knowledge, two
instruction tuning tasks are designed: 1) planning optimization,
which distills the knowledge from KGs into LLMs to generate faith-
ful relation paths as plans; 2) retrieval-reasoning optimization, which
enables LLMs to reason based on the retrieved reasoning paths. The
final objective function of RoG is the combination of the planning
optimization and retrieval-reasoning optimization, which can be
formulated as

L = log 𝑃𝜃 (𝑎 |𝑞,Z∗
𝐾 ,G)︸             ︷︷             ︸

Retrieval-reasoning

+ 1
|Z∗ |

∑︁
𝑧∈𝑍 ∗

log 𝑃𝜃 (𝑧 |𝑞)︸                      ︷︷                      ︸
Planning

, (2)

where the shortest pathsZ∗ ⊆ Z between 𝑞 and 𝑎 in KGs are used
as supervision signals. The probability of LLMs generating faith-
ful relation paths is maximized through distilling the knowledge
from KGs. In this way, with the proposed RoG, LLMs can effec-
tively retrieve domain knowledge from KGs with planning, which
significantly enhances the reasoning capability of LLMs.

3.2 Reasoning with structured knowledge
After retrieving evidences, LLMs need to follow them and gener-
ate answers. While evidence following has been shown achievable
through prompt designs [65, 66], LLMs will struggle to generate the
correct answers when important supporting evidences are missing,
which is very common in biomedicine and healthcare due to the
sparse and incomplete patient data especially regarding rare dis-
eases. With strong prior knowledge of LLMs and available partial
evidences, it is promising to infer missing evidences with LLMs
between the retrieval and generation steps, which ideally requires
the LLMs to be able to conduct accurate and efficient biomedically
valid reasoning. Recently, extensive research has been conducted
on enabling LLMs for knowledge-based reasoning, which can be
roughly divided into embedding-based (neural) approaches [67]
and rule-based (symbolic) approaches [68]. However, the neural
approaches loose interpretability and can hardly work with sparse
KGs, while the symbolic approaches are resource-consuming due
to large amounts of paths that do not encode valid logic rules. LLMs
are neural models that can also naturally work with embeddings,
making it an ideal backbone for combining neural and symbolic ap-
proaches towards accurate and efficient reasoning, which, however,
is hardly studied.

Recent efforts have focused on enabling LLMs to perform rea-
soning on structured KGs through retrieval-based methods and
prompting techniques [68]. CoK [69] and KD-CoT [70] retrieve
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facts from external KGs to guide the chain-of-thought (CoT) rea-
soning process conducted by LLMs. To capture graph structures,
GNN-RAG [71] utilizes a lightweight graph neural network to effi-
ciently retrieve knowledge fromKGs, formatted as sentence paths to
stimulate the reasoning process in LLMs. Mindmap [72] introduces
a prompt-based approach that equips LLMs with the ability to com-
prehend and reason over KGs. Despite the success of these methods,
challenges persist in the development of principled prompts for
KG representation and reasoning. Furthermore, LLMs continue
to face limitations in their understanding of graph structures and
reasoning with text-based graph prompts [73].

Unlike previous approaches that necessitate a computationally
intensive fine-tuning phase or the design of ad-hoc prompts for
LLMs, Luo et al. [74] recently proposed the KG-constrained reason-
ing (GCR) paradigm. GCR integrates unstructured reasoning in LLMs
with structured knowledge in knowledge graphs (KGs), aiming to
enable efficient and effective reasoning over structured knowledge.
The overall framework is depicted in Figure 3.

Q: Who is the
spouse of the
ex-president

of USA?

KG-Trie
Constraint 

# Reasoning Path:

# Answer:
Melania Trump

KG

LLM

1. KG retrieval

3. Graph-constrained
Decoding

2. KG-Trie
Construnction

Figure 3: The overall framework of KG-constrained reason-
ing (GCR).

Graph-constrained reasoning, inspired by the concept that LLMs
reason through decoding [38], incorporates the KG structure into
the LLM decoding process. This enables LLMs to directly reason on
graphs by generating reliable reasoning paths grounded in KGs that
lead to correct answers. Specifically, given a question, a retrieval
module is first adopted to find a relevant KG that is helpful for
reasoning. Then, the KG is converted into a structured index, KG-
Trie, to facilitate efficient reasoning on KG using LLMs. Trie is
also known as the prefix tree [75] that compresses a set of strings,
which can be used to restrict LLM output tokens to those starting
with valid prefixes. KG-Trie encodes the reasoning paths in KGs as
formatted strings to constrain the decoding process of LLMs. Then,
graph-constrained decoding is proposed that employs a lightweight
KG-specialized LLM to generate multiple KG-grounded reasoning
paths and answers. With the constraints from KG-Trie, one ensures
faithful reasoningwhile leveraging the strong reasoning capabilities
of LLMs to efficiently explore paths on KGs in constant time. In
this way, GCR bridges the gap between structured knowledge in
KGs and unstructured reasoning in LLMs, allowing for efficient
reasoning on KGs via LLM decoding.

3.3 Reflecting with atomic knowledge
Biomedicine and healthcare have high requirements on factuality
and accuracy. While the previous subtasks can improve factuality
via planning and accuracy via reasoning, errors can still occur
due to LLM’s failure to follow evidences, misunderstanding and

hallucination. Therefore, we propose to utilize KGs to add post-hoc
knowledge grounding, further ensuring the LLM reliability. While
existing works on KG-based RAG mostly use KGs as additional
resources of factual knowledge [76], post-hoc error detection will
be conducted on the LLM outputs. This is fundamentally different
and more challenging, as the outputs often blend facts from diverse
sources and involve multiple reasoning steps.
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Figure 4: The illustration of LLM reflection with KGs. (a) The
evaluation of the factual knowledge inside LLMs. (b) The
evaluation of the reaosning process of LLMs with KGs.

The hallucination phenomenon in LLMs is commonly attributed
to their limited factual knowledge. To systematically evaluate the
factual knowledge embedded in LLMs and enable faithful respond
in solving medical problem, we propose a novel framework, as illus-
trated in Figure 4a, which leverages Knowledge Graphs (KGs) [77].
In contrast to traditional approaches that rely on human-annotated
question-answer datasets, our method generates valid and diverse
questions from KGs at varying levels of difficulty while ensuring
comprehensive knowledge coverage. Specifically, we extract atomic
knowledge from KGs in the form of sets of triples. These triples
are then converted into question-answer pairs using various ques-
tion generation techniques, such as template-based and LLM-based
methods. The generated question-answer pairs are subsequently
used to assess the factual knowledge of LLMs by comparing the
model-generated answers with the corresponding ground-truth
answers. The evaluation outcomes provide insights into the factual
accuracy of LLMs and can be used to better understand their halluci-
nation behaviors. This approach facilitates a systematic evaluation
of LLMs’ factual knowledge and offers valuable guidance for en-
hancing their reliability across a range of high-stakes applications.

In addition to factual knowledge, the structure of knowledge
graphs (KGs) can be leveraged to justify the reasoning process of
large language models (LLMs). Minh-Vuong et al. [78] developed
a framework that explores the chain-of-thought (CoT) reasoning
capabilities of LLMs in multi-hop question answering by utilizing
KGs, as illustrated in Figure 4b. The framework includes two evalu-
ation modules: discriminative evaluation and generative evaluation.
The discriminative evaluation assesses whether LLMs possess suffi-
cient knowledge to conduct faithful reasoning. It inputs both valid
and invalid reasoning paths, retrieved from KGs, into LLMs and
requests them to predict the validity of these paths. Conversely, the
generative evaluation aims to assess the faithfulness of the LLMs’
reasoning process by grounding it in KGs. For a reasoning process
generated by LLMs, the generative evaluation module retrieves
relevant facts from KGs and compares them with the ground-truth
reasoning paths. The evaluation results serve to reflect the reason-
ing capabilities of LLMs and offer insights into the faithfulness of
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their reasoning. Despite demonstrating impressive reasoning abili-
ties, LLMs face ongoing challenges in ensuring faithful reasoning,
particularly in multi-hop question answering.

4 Applications in Biomedicine and Healthcare
Biomedicine and healthcare represent ideal domains for the inte-
gration of KGs and LLMs due to their critical need for both struc-
tured knowledge and natural language understanding. The mo-
tivation for applying MedKLM in these domains stems from the
complexity of biomedical data, the high stakes of healthcare deci-
sions, and the necessity for interpretable AI systems that clinicians
can trust. Healthcare applications face unique challenges including
data fragmentation across institutions, strict requirements for accu-
racy and reliability, privacy concerns, and the need to incorporate
domain-specific expertise. Despite these challenges, BioMedKLM
offers promising directions for transforming healthcare through:
(1) enhancing clinical decision support with reasoning grounded
in biomedical knowledge; (2) accelerating drug discovery and de-
velopment by connecting molecular structures with biomedical
insights; and (3) improving biomedical knowledge management to
organize, integrate, and apply the vast amount of healthcare infor-
mation available. The following subsections explore these specific
applications where the synergy between KGs and LLMs has shown
particular promise in addressing complex healthcare needs.

4.1 BioMedKLM for clinical decision support
Clinical decision support represents a key application domain for
BioMedKLM, where the synergy between KGs and LLMs enables
more accurate and interpretable clinical decisions. By combining
structured biomedical knowledge with advanced language under-
standing capabilities, these systems help clinicians analyze complex
patient data and make informed medical decisions. We categorize
existing approaches into two categories:

Patient EHR

LLM

Patient KG

EHR 
database

Biomedical 
database Clinical KG LLM

Clinical 
Predictions

Mortality 
Prediction

Length of Stay
Prediction

Readmission
Prediction

Drug 
Recommedation

……

Figure 5: An example application of BioMedKLM for clinical
decision support.

(1) IntegratedKG+LLMapproaches.Recent developments demon-
strate how the integration of KGs and LLMs can enhance clinical
tasks through complementary strengths. GraphCare [79] uses LLMs
to construct patient-specific KGs, enabling more personalized and
accurate clinical predictions. RAM-EHR [80] integrates a hyper-
graph that captures complex biomedical concept relationships and
LLM-summarized medical context to improve clinical predictions.
EMERGE [81] demonstrates effective fusion of KGs with clinical
notes for enhanced prediction accuracy. MedIKAL [24] reimagines
the biomedical KG as an assistant that guides LLM decision-making,
whereas KARE [82] introduces a novel framework combining LLM’s

reasoning capability and precise biomedical knowledge retrieval
with its constructed comprehensive biomedical KG community
summaries. ComLLM [83] introduces a method prompting LLMs
with a disease-specific KG for disease progression prediction, while
MedTok [84] introduces multi-modal (KG and LLM) medical code
learning to enhance clinical predictions. MedRAG [85] combines
a four-tier hierarchical diagnostic KG with RAG to enable accu-
rate diagnosis of diseases with similar manifestations, while also
providing personalized treatment recommendations and proactive
follow-up questions. We show an example of using BioMedKLM for
clinical predictions in Figure 5.
(2) KG/Graph-only and LLM-only foundations. Earlier ap-
proaches focused on either structured knowledge or language un-
derstanding independently. Graph-based methods [86] established
the fundamental importance of structured biomedical knowledge
representation for clinical predictions. These methods could be sig-
nificantly enhanced by incorporating LLMs for automated graph
construction and natural language explanation generation. Con-
versely, pure LLM approaches [87, 88] and domain-specific language
models [3] demonstrated remarkable natural language understand-
ing capabilities in the medical domain, but their potential could be
further realized through integration with KGs for improved factual
accuracy and reasoning capabilities.

4.2 BioMedKLM for drug discovery and
development

Drug discovery and development represents another key appli-
cation domain for BioMedKLM, where the synergy between KGs
and LLMs enables more accurate and efficient drug design and
evaluation.

Biomedical KG

Molecule

Molecule Subgraph

Chemical LLM Textual Molecule Info.

Molecular 
Property 

Predictions

Figure 6: An example application of BioMedKLM on molecular
property prediction tasks for drug discovery.

(1) Drug discovery.Molecules inherently possess graph structures,
making them natural candidates for graph-based representation
learning. Recent work has explored various approaches to enhance
molecular representations [89], with a particularly promising direc-
tion being the integration of knowledge graphs [90]. For instance, Ye
et al. [91] pioneered the incorporation of static KG embeddings into
molecular fingerprints to improve drug-target interaction predic-
tion. KANO [92] constructed Element-KG that augments molecular
representations at the chemical element level through contrastive
learning. Taking a different approach, Gode [90] developed a com-
prehensive biomedical KG that treats molecules as graph-in-graph
structures, enabling deeper integration of biomedical knowledge
into molecular representations. The field has recently seen excit-
ing developments in leveraging LLMs’ reasoning capabilities to
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enhance molecular property predictions [93], opening new oppor-
tunities for BioMedKLM to synergistically combine KGs and LLMs in
drug discovery applications. Figure 6 illustrates an example of ap-
plying BioMedKLM to drug discovery, where we generate molecular
representation by integrating structured knowledge from biomedi-
cal KGs [90] with textual understanding from chemical LLMs [94].
This knowledge-enriched representation is then learned by LLM
to make accurate and interpretable property prediction for highly
reliable drug discovery.
(2) Drug development. Drug development requires deep under-
standing of biological mechanisms, disease pathways, and drug
effects. Recent advances leverage both KGs and language models to
accelerate this process. KGWAS [95] and TxGNN [96] exemplified
this trend as graph foundation models: KGWAS used functional
genomics KGs to detect disease-associated genetic variants in rare
diseases, while TxGNN learned from biomedical KGs for drug repur-
posing. These systems could be enhanced by using LLMs to enrich
their knowledge graphs with literature-derived relationships and
translate graph reasoning into natural language explanations. Malas
et al. [97] demonstrated KG-based drug prioritization by extracting
semantic features between drugs and diseases to train a classifier
that successfully identified promising candidates for polycystic kid-
ney disease. In clinical trials, LINT [98] combined medical code
KGs with LLM embeddings to predict trial outcomes. While Tri-
alGPT [99] demonstrated strong performance using LLMs alone
for trial matching, its retrieval-matching-ranking pipeline presents
promising opportunities for incorporating KGs to further enhance
matching accuracy and interpretability in drug evaluation studies.

4.3 BioMedKLM for biomedical knowledge
management

Biomedical knowledge management is a critical aspect of modern
healthcare, requiring systematic organization, curation, and integra-
tion of information from diverse sources such as clinical guidelines,
research literature, and patient data. The combination of LLMs and
KGs offers a powerful framework for automating knowledge ex-
traction, integration, and maintenance while ensuring accuracy,
consistency, and interpretability. This section explores the applica-
tion of BioMedKLM for biomedical knowledge management.
Biomedical Knowledge Graph Construction and Updates.
Construction and maintenance of biomedical KGs are fundamental
to many healthcare applications. BioMedKLM facilitates automatic
construction and continuous updating of KGs through several ap-
proaches: Graphusion [100] utilizes LLMs for KG construction with
a global perspective, employing retrieval-augmented generation
(RAG) to extract and integrate knowledge from diverse sources.
KG-RAG [101] optimizes prompt generation for LLMs to enhance
accuracy and relevance of extracted biomedical knowledge. Domain-
specific KGs have been developed using LLMs, such as KGs for dia-
betes [102], traditional Chinese medicine [103], heart failure [104],
rare disease [105], and Alzheimer’s disease research [106].
Data Generation and Knowledge Application. BioMedKLM ex-
tends beyond knowledge organization to practical applications: (1)
ClinGen [107] leverages LLMs to generate synthetic clinical text
data while ensuring accuracy and alignment with real-world sce-
narios. (2) Clinical decision support systems integrate KGs and

Medical KG 
Construction

Clinical Data
Generation

QA & Evidence 
Discovery

Figure 7: An example application of BioMedKLM for biomedical
knowledge management.

LLMs to enhance prediction accuracy and interpretability [82, 108].
(3) Risk prediction models utilizing KGs have been developed for
various conditions such as macular edema [109], adverse drug re-
actions [110], and cancer [111].
Question Answering and Evidence Discovery. BioMedKLM plays
a crucial role in medical question answering and knowledge valida-
tion: (1) Studies [112, 113] demonstrate effective QA systems using
LLM-KG combinations, including specialized systems for hepatitis
B [114] and hypertension [115]. KGARevion [116] combines LLMs
with KGs for medical QA through an iterative generate-verify-refine
pipeline, improving accuracy over existing methods by dynami-
cally refining generated answers using structured knowledge from
KGs. This integration enables extraction of complex relationships
and evidence from biomedical literature. (2) The framework shows
potential in detecting medical fraud and waste, analyzing patterns
in healthcare data to identify potential cases of fraud [117, 118].
BioMedKLM also leverages LLMs and KGs to automate the process
of literature synthesis [119], enabling researchers and clinicians to
efficiently identify and integrate key findings from vast amounts of
text.

This integration of LLMs and KGs in biomedical knowledge man-
agement demonstrates significant potential for improving health-
care information organization, accessibility, and application, while
maintaining high standards of accuracy and reliability.

5 Conclusions and Future Directions
In this paper, we discuss the trending efforts of knowledge and
language co-modeling. We showcase promising attempts to utilize
LLMs to automate the construction, integration, and enrichment
of KGs, and discuss how KGs can help with planning paths, guide
reasoning with structure, and ground knowledge with reflection,
enhancing the reliability of LLMs. We also provide a detailed review
of knowledge and language co-modeling for real-world applications
in biomedicine and healthcare.While this nascent research direction
holds great potential, we envision several specific problems worthy
of further exploration including the development of more powerful
and generic KGs, the trade-off between unified and specialized KGs,
the evaluation of knowledge in LLMs, and the resolution of conflicts
between KGs and LLMs for biomedicine and healthcare.
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