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Abstract. Heterogeneous information networks (HINs) with rich se-
mantics are ubiquitous in real-world applications. For a given HIN, many
reasonable clustering results with distinct semantic meaning can simul-
taneously exist. User-guided clustering is hence of great practical value
for HINs where users provide labels to a small portion of nodes. To cater
to a broad spectrum of user guidance evidenced by different expected
clustering results, carefully exploiting the signals residing in the data is
potentially useful. Meanwhile, as one type of complex networks, HINs
often encapsulate higher-order interactions that reflect the interlocked
nature among nodes and edges. Network motifs, sometimes referred to
as meta-graphs, have been used as tools to capture such higher-order
interactions and reveal the many different semantics. We therefore ap-
proach the problem of user-guided clustering in HINs with network mo-
tifs. In this process, we identify the utility and importance of directly
modeling higher-order interactions without collapsing them to pairwise
interactions. To achieve this, we comprehensively transcribe the higher-
order interaction signals to a series of tensors via motifs and propose
the MoCHIN model based on joint non-negative tensor factorization.
This approach applies to arbitrarily many, arbitrary forms of HIN mo-
tifs. An inference algorithm with speed-up methods is also proposed to
tackle the challenge that tensor size grows exponentially as the number
of nodes in a motif increases. We validate the effectiveness of the pro-
posed method on two real-world datasets and three tasks, and MoCHIN
outperforms all baselines in three evaluation tasks under three different
metrics. Additional experiments demonstrated the utility of motifs and
the benefit of directly modeling higher-order information especially when
user guidance is limited. 1

Keywords: heterogeneous information networks · user-guided clustering · higher-
order interactions · network motifs · non-negative tensor factorization

? These authors contributed equally to this work.
1 The code and the data are available at https://github.com/NoSegfault/MoCHIN.
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Fig. 1: Overview of the proposed method MoCHIN that directly models all nodes in
higher-order interactions where each type of nodes in the HIN corresponds to a color
and a shape in the figure.

1 Introduction

Heterogeneous information network (HIN) has been shown to be a powerful ap-
proach to model linked objects with informative type information [33,35,36,41].
Meanwhile, the formation of complex networks is often partially attributed to the
higher-order interactions among objects in real-world scenarios [4,28,50], where
the “players” in the interactions are nodes in the network. To reveal such higher-
order interactions, researchers have since been using network motifs. Leveraging
motifs is shown to be useful in tasks such as clustering [4, 51], ranking [52] and
representation learning [30]. 2

Clustering is a traditional and fundamental task in network mining [14]. In
the context of an HIN with rich semantics, reasonable clustering results with
distinct semantic meaning can simultaneously exist. In this case, personalized
clustering with user guidance can be of great practical value [13, 18, 27, 33, 42].
Carefully exploiting the fine-grained semantics in HINs via modeling higher-
order interaction is a promising direction for such user-guided clustering since
it could potentially generate a richer pool of subtle signals to better fit different
users’ guidance, especially when users cannot provide too much guidance and
the supervision is hence weak.

However, it is non-trivial to develop a principled HIN clustering method that
exploits signals revealed by motifs as comprehensively as possible. This is be-
cause most network clustering algorithms are based on signals derived from the
relatedness between each pair of nodes [14]. While a body of research has shown

2 Higher-order interaction is sometimes used interchangeably with high-order inter-
action in the literature, and clustering using signals from higher-order interactions is
referred to as higher-order clustering [4,51]. Motifs in the context of HINs are some-
times called the meta-graphs, and we opt for motifs primarily because meta-graphs
have been used under a different definition in the study of clustering [40].
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that it is beneficial for clustering methods to derive features for each node pair
using motifs [12,16,18,26,53], this approach essentially collapses a higher-order
interaction into pairwise interactions, which is an irreversible process. Such ir-
reversible process is not always desirable as it could cause information loss. For
example, consider a motif instance involving three nodes – A, B, and C. After
collapsing the higher-order interaction among A, B, and C into pairwise inter-
actions, we are still able to sense the tie between A and C, but such a tie would
no longer depend on B – a potentially critical semantic facet of the relationship
between A and C. Such subtle information could be critical to distinguishing
different user guidance. We will further discuss this point by real-world example
in Section 4 and experiments in Section 7. Furthermore, although it is rela-
tively easy to find semantically meaningful HIN motifs [12, 16], motifs in HINs
can have more complex topology compared to motifs in homogeneous networks
do [4, 51]. In order to fully unleash the power of HIN motifs and exploit the
signals extracted by them, we are motivated to propose a method that applies
to arbitrary forms of HIN motifs.

To avoid such information loss with a method applicable to arbitrary forms
of motifs, we propose to directly model the higher-order interactions by com-
prehensively transcribing them into a series of tensors. As such, the complete
information of higher-order interactions is preserved. Based on this intuition, we
propose the MoCHIN model, short for Motif-based Clustering in HINs, with
an overview in Figure 1. MoCHIN first transcribes information revealed by mo-
tifs into a series of tensors and then performs clustering by joint non-negative
tensor decomposition with an additional mechanism to reflect user guidance.

In this direction, an additional challenge arises from inducing tensor via cor-
responding motif – the size of the tensor grows exponentially as the number
of nodes involved in the motif increases. Fortunately, motif instances are often
sparse in real-world networks just as the number of edges is usually significantly
smaller than the number of node pairs in a large real-world network. This fact
is to be corroborated in Section 3 of the supplementary file. We hence develop
an inference algorithm taking advantage of the sparsity of the tensors and the
structure of the proposed MoCHIN model.

Lastly, we summarize our contributions as follows: (i) we identify the utility
of modeling higher-order interaction without collapsing it into pairwise interac-
tions to avoid losing the rich and subtle information captured by motifs; (ii) we
propose the MoCHIN model that captures higher-order interaction via motif-
based comprehensive transcription; (iii) we develop an inference algorithm and
speed-up methods for MoCHIN; (iv) experiments on two real-world HINs and
three tasks demonstrated the effectiveness of the proposed method as well as the
utility of the tensor-based modeling approach in user-guided HIN clustering.

2 Related Work

Network motifs and motifs in HINs. Network motifs, or graphlets, are usu-
ally used to identify higher-order interactions [4,28,50,51]. One popular research
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direction on network motifs has centered on efficiently counting motif instances
such as triangles and more complex motifs [1, 39]. Applications of motifs have
also been found in tasks such as network partition and clustering [4, 22, 51, 54]
as well as ranking [52].

In the context of HINs, network motifs are sometimes referred to as meta-
graphs or meta-structures and have been studied recently [12, 16, 18, 25, 26, 30,
48, 53]. Many of these works study pairwise relationship such as relevance or
similarity [12,16,25,26,53], and some other address the problem of representation
learning [30, 48] and graph classification [49]. Some of these prior works define
meta-graphs or meta-structures to be directed acyclic graphs [16, 53], whereas
we do not enforce this restriction on the definition of HIN motifs.

Clustering in heterogeneous information networks. As a fundamental
data mining problem, clustering has been studied for HINs [23, 33, 34, 41–43].
One line of HIN clustering study leverages the synergetic effect of simultaneously
tackling ranking and clustering [34,43]. Clustering on specific types of HINs such
as those with additional attributes has also been studied [23]. Wu et al. [47] resort
to tensor for HIN clustering. Their solution employs one tensor for one HIN and
does not model different semantics implied by different structural patterns.

User guidance brings significantly more potentials to HIN clustering by pro-
viding a small portion of seeds [33,42], which enables users to inject intention of
clustering. To reveal the different semantics in an HIN, pioneering works exploit
the meta-path, a special case of the motif, and reflect user-guidance by using
the corresponding meta-paths [27,42].

To the best of our knowledge, a recent preprint [7] is the only paper that
tackles HIN clustering and applies to arbitrary forms of HIN motifs, which is
not specifically designed for the scenario with user guidance. Given an HIN and
a motif (i.e., typed-graphlet), this method filter the original adjacent matrix to
derive the typed-graphlet adjacency matrix and then perform spectral clustering
on the latter matrix. While being able to filter out information irrelevant to the
given motif, this method essentially exploits the edge-level pairwise information
in the adjacent matrix rather than directly modeling each occurrence of higher-
order interaction. Other related works include a meta-graph–guided random walk
algorithm [18], which is shown to outperform using only meta-paths. Note that
this method cannot distinguish motif AP4TPA from meta-path APTPA, which
are to be introduced in Section 4. Sankar et al. [30] propose a convolutional neural
network method based on motifs which can potentially be used for user-guided
HIN clustering. This approach restricts the motifs of interest to those with a
target node, a context node, and auxiliary nodes. Gujral et al. [13] propose a
method based on tensor constructed from stacking a set of adjacency matrices,
which can successfully reflect user guidance and different semantic aspects. This
method essentially leverages features derived for node pairs.

We additionally review the related work on matrix and tensor factorization
for clustering in the supplementary file for this paper. These studies are relevant
but cannot be directly applied to the scenario of higher-order HIN clustering.
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Fig. 2: Examples of schema and motif in the DBLP network.

3 Preliminaries

In this section, we define related concepts and notations.

Definition 1 (Heterogeneous information network and schema [41]).
An information network is a directed graph G = (V, E) with a node type mapping
ϕ : V → T and an edge type mapping ψ : E → R. When |T | > 1 or |R| > 1,
the network is referred to as a heterogeneous information network (HIN).
The schema of an HIN is an abstraction of the meta-information of the node
types and edge types of the given HIN.

As an example, Figure 2a illustrates the schema of the DBLP network to be
used in Section 7. We denote all nodes with the same type t ∈ T by Vt.

Definition 2 (HIN motif and HIN motif instance). In an HIN G = (V, E),
an HIN motif is a structural pattern defined by a graph on the type level with
its node being a node type of the original HIN and an edge being an edge type of
the given HIN. Additional constraints can be optionally added such as two nodes
in the motif cannot be simultaneously matched to the same node instance in the
given HIN. Further given an HIN motif, an HIN motif instance under this
motif is a subnetwork of the HIN that matches this pattern.

Figure 2c gives an example of a motif in the DBLP network with four distinct
terms referred to as AP4TPA. If a motif is a path graph, it is also called a meta-
path [42]. The motif, APTPA, in Figure 2b is one such example.

Definition 3 (Tensor, k-mode product, mode-k matricization [29]). A
tensor is a multidimensional array. For an N -th–order tensor X ∈ Rd1×...×dN ,
we denote its (j1, . . . , jN ) entry by Xj1,...,jN . The k-mode product of X and a
matrix A ∈ Rdk×d is denoted by Y = X×kA, where Y ∈ Rd1×...×dk−1×d×dk+1×...×dN ,
and Y...,jk−1,j,jk+1,... =

∑dk
s=1 X...,jk−1,s,jk+1,...As,j. We denote matrix X(k) ∈

R(d1·...·dk−1·dk+1·...·dN )×dk the mode-k matricization, i.e., mode-k unfolding,
of the tensor X , where the i-th column of X(k) is obtained by vectorizing the
(n− 1)-th order tensor X...,:,j,:,... with j on the k-th index.
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Fig. 3: A subnetwork of DBLP. According to the ground truth data, Eric Xing and
David Blei were graduated from the same research group.

For simplicity, we denote X ×Ni=1 Ai := X ×1 A1×2 . . .×N AN . Additionally,

we define [⊗N\ki=1 Ai] := A1 ⊗ . . . ⊗ Ak−1 ⊗ Ak+1 ⊗ . . . ⊗ AN , where ⊗ is the
Kronecker product [29].

Lastly, we introduce a useful lemma that converts the norm of the difference
between two tensors to that between two matrices.

Lemma 4 ( [10] ). For all k ∈ {1, 2, . . . , N},∥∥∥X − Y ×Ni=1 Ai

∥∥∥
F

=
∥∥∥X(k) −AkY(k)[⊗N\ki=1 Ai]

>
∥∥∥
F
,

where ‖·‖F is the Frobenius norm.

4 Higher-Order Interaction in Real-World Dataset.

In this section, we use a real-world example to motivate the design of our method
that aims to comprehensively model higher-order interactions revealed by motifs.

DBLP is a bibliographical network in the computer science domain [45] that
contains nodes with type author, paper, term, etc. In Figure 3, we plot out
a subnetwork involving five authors: Eric Xing, David Blei, Hualiang Zhuang,
Chengkai Li, and Pascual Martinez. According to the ground truth labels, Xing
and Blei graduated from the same research group, while the other three authors
graduated from other groups. Under meta-path APTPA, one would be able to
find many path instances from Xing to authors from different groups. However,
if we use motif AP4TPA, motif instances can only be found over Xing and Blei,
but not between Xing and authors from other groups. This implies motifs can
provide more subtle information than meta-paths do, and if a user wishes to
cluster authors by research groups, motif AP4TPA can be informative.

More importantly, if we look into the AP4TPA motif instances that are
matched to Xing and Blei, the involved terms such as dirichlet are very specific
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to their group’s research interest. In other words, dirichlet represents an impor-
tant semantic facet of the relationship between Xing and Blei. Modeling the
higher-order interaction among dirichlet and other nodes can therefore kick in
more information. If one only used motifs to generate pairwise or edge-level sig-
nals, such information would be lost. In Section 7, we will further quantitatively
validate the utility of comprehensively modeling higher-order interactions.

5 The MoCHIN Model

In this section, we describe the proposed model with an emphasis on its intention
to comprehensively model higher-order interaction while availing user guidance.

Revisit on clustering by non-negative matrix factorization. Non-negative
matrix factorization (NMF) has been a popular method clustering [21,24]. Usu-
ally with additional constraints or regularization, the basic NMF-based algo-
rithm solves the following optimization problem for given adjacency matrix M

min
V1,V2≥0

∥∥∥M−V>1 V2

∥∥∥2
F
, (1)

where ‖·‖F is the Frobenius norm, A ≥ 0 denotes matrix A is non-negative, and
V1, V2 are two C × |V| matrices with C being the number of clusters. In this
model, the j-th column of V1 or that of V2 gives the inferred cluster membership
of the j-th node in the network.

Single-motif–based clustering in HINs. Recall that an edge essentially char-
acterizes the pairwise interaction between two nodes. To model higher-order in-
teraction without collapsing it into pairwise interactions, a natural solution to
clustering is using the inferred cluster membership of all involved nodes to re-
construct the existence of each motif instance. This solution can be formulated
by non-negative tensor factorization (NTF), and studies on NTF per se and
clustering via factorizing a single tensor can be found in the literature [29].

Specifically, given a single motif m with N nodes having node type t1, . . . , tN
of the HIN, we transcribe the higher-order interaction revealed by this motif to
a N -th–order tensor X with dimension |Vt1 |× . . .×|VtN |. We set the (j1, . . . , jN )
entry of X to 1 if a motif instance exists over the following n nodes: j1-th of
Vt1 , . . . , jN -th of VtN ; and set it to 0 otherwise. By extending Eq. (1), whose

objective is equivalent to
∥∥M−V>1 IV2

∥∥2
F

with I being the identity matrix, we
can approach the clustering problem by solving

min
V1,V2≥0

∥∥∥X − I ×Ni=1 Vi

∥∥∥2
F

+ λ

N∑
i=1

‖Vi‖1 , (2)

where I is the N -th order identity tensor with dimension C× . . .×C, ‖·‖1 is the
entry-wise l-1 norm introduced as regularization to avoid trivial solution, and λ
is the regularization coefficient. We also note that this formulation is essentially
the CP decomposition [29] with additional l-1 regularization and non-negative
constraints. We write this formula in a way different from its most common
form for notation convenience in the inference section (Section 6) considering
the presence of regularization and constraints.
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Symbol Definition Symbol Definition

V, E The set of nodes and the set of edges X (m) The tensor constructed from motif m

ϕ, ψ The node and the edge type mapping M(t) The seed mask matrix for node type t

T , R, M The set of node types, edge types,
V

(m)
i

The cluster membership matrix
and candidate motifs for the i-th node in motif m

Vt The set of all nodes with type t V∗t The consensus matrix for node type t
o(m) The number of nodes in motif m ∈M µ The vector (µ1, . . . , µ|M|) of motif weights

C The number of clusters ×k The mode-k product of a tensor and a matrix
λ, θ, ρ The hyperparameters ⊗ The Kronecker product of two matrices

Table 1: Summary of symbols

Proposed model for motif-based clustering in HINs. Real-world HINs
often contain rich and diverse semantic facets due to its heterogeneity [37,41,42].
To reflect the different semantic facets of an HIN, a set M of more than one
candidate motifs are usually necessary for the task of user-guided clustering.
With additional clustering seeds provided by users, the MoCHIN model selects
the motifs that are both meaningful and pertinent to the seeds.

To this end, we assign motif-specific weights µ = (µ1, . . . , µ|M|), such that∑
m∈M µm = 1 and µm ≥ 0 for all m ∈ M. Denote X (m) the tensor for mo-

tif m, V
(m)
i the cluster membership matrix for the i-th node in motif m, o(m)

the number of nodes in motif m, and ϕ(m, i) the node type of the i-th node in
motif m. For each node type t ∈ T , we put together cluster membership ma-
trices concerning this type and motif weights to construct the consensus matrix

V∗t :=
∑
ϕ(m,i)=t

µmV
(m)
i∑o(m)

i′=1
1[ϕ(m,i′)=ϕ(m,i)]

, where 1[P ] equals to 1 if P is true and 0

otherwise. With this notation,
∑o(m)
i′=1 1[ϕ(m,i′)=ϕ(m,i)] is simply the number of

nodes in motif m that are of type t.

Furthermore, we intend to let (i) each cluster membership V
(m)
i be close to

its corresponding consensus matrix V∗ϕ(m,i) and (ii) the consensus matrices not

assign seed nodes to the wrong cluster. We hence propose the following objective
with the third and the fourth term modeling the aforementioned two intentions

O =
∑
m∈M

∥∥∥X (m) − I(m) ×o(m)
i=1 V

(m)
i

∥∥∥2
F

+ λ
∑
m∈M

o(m)∑
i=1

∥∥∥V(m)
i

∥∥∥
1

+ θ
∑
m∈M

o(m)∑
i=1

∥∥∥V(m)
i −V∗ϕ(m,i)

∥∥∥2
F

+ ρ
∑
t∈T

∥∥∥M(t) ◦V∗t

∥∥∥2
F
, (3)

where ◦ is the Hadamard product and M(t) is the seed mask matrix for node

type t. Its (i, c) entry M
(t)
i,c = 1 if the i-th node of type t is a seed node and it

should not be assigned to cluster c, and M
(t)
i,c = 0 otherwise.

Finally, solving the problem of HIN clustering by modeling higher-order in-
teraction and automatically selecting motifs is converted to solving the following
optimization problem with ∆ being the standard simplex

min
{V(m)

i ≥0},µ∈∆
O. (4)
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6 The Inference Algorithm

In this section, we first describe the algorithm for solving the optimization prob-
lem as in Eq. (4). Then, a series of speed-up tricks are introduced to circumvent
the curse of dimensionality, so that the complexity is governed no longer by the
dimension of the tensors but by the number of motif instances in the network.

Update V
(l)
k and µ. Each clustering membership matrix V

(l)
k with non-negative

constraints is involved in all terms of the objective function (Eq. (3)), where
l ∈ M and k ∈ {1, . . . , o(l)}. We hence develop multiplicative update rules for

V
(l)
k that guarantees monotonic decrease at each step, accompanied by projected

gradient descent (PGD) to find global optimal of µ = [µ1, . . . , µ|M|]
>. Overall,

we solve the optimization problem by alternating between {V(l)
k } and µ.

To update V
(l)
k when {V(m)

i }(m,i)6=(l,k) and µ are fixed under non-negative
constraints, we derive the following theorem. For notation convenience, we fur-

ther denote V∗t =
∑
ϕ(m,i)=t η

m
i V

(m)
i , where ηmi := µm∑o(m)

i′=1
1[ϕ(m,i′)=ϕ(m,i)]

.

Theorem 5. The following update rule for V
(l)
k monotonically decreases the

objective function.

V
(l)
k ← V

(l)
k ◦

[
X (l)

(k)[⊗
o(l)\k
i=1 V

(l)
i ]I(l)>(k) + θ(1− ηlk)(V∗ϕ(l,k) − ηlkV

(l)
k )

V
(l)
k I

(l)

(k)[⊗
o(l)\k
i=1 V

(l)
i ]>[⊗o(l)\ki=1 V

(l)
i ]I(l)>(k) + ρηlkM

ϕ(l,k) ◦V∗ϕ(l,k)

+θηlk
∑(m,i)6=(l,k)

ϕ(m,i)=ϕ(l,k)[V
(m)
i −V∗ϕ(l,k) + ηlkV

(l)
k ]+

+θηlk
∑(m,i)6=(l,k)

ϕ(m,i)=ϕ(l,k)([V
(m)
i −V∗ϕ(l,k) + ηlkV

(l)
k ]− + ηlkV

(l)
k ) + θ(1− ηlk)2V

(l)
k + λ

] 1
2

,

(5)

where for any matrix A, [A]+ := |A|+A
2 , [A]− := |A|−A

2 .

We defer the proof of this theorem to Section 1 of the supplementary file.

For fixed {V(m)
i }, the objective function Eq. (3) is convex with respect to µ. We

therefore use PGD to update µ, where the gradient can be analytically derived
with straightforward calculation.

Computational Speed-Up. Unlike the scenario where researchers solve the
NTF problem with tensors of order independent of the applied dataset, our
problem is specifically challenging because the tensor size grows exponentially
with the tensor order. For instance, the AP4TPA motif discussed in Section 4 is
one real-world example involving 8 nodes, which leads to an 8-th order tensor.

In the proposed inference algorithm, the direct computation of three terms
entails complexity subject to the size of the tensor: (i) the first term in the

numerator of Eq. (5), X (l)
(k)[⊗

o(l)\k
i=1 V

(l)
i ]I(l)>(k) , (ii) the first term in the denomina-

tor of Eq. (5), V
(l)
k I

(l)
(k)[⊗

o(l)\k
i=1 V

(l)
i ]> [⊗o(l)\ki=1 V

(l)
i ]I(l)>(k) , and (iii) the first term

of the objective function Eq. (3),
∥∥∥X (m) − I(m) ×o(m)

i=1 V
(m)
i

∥∥∥2
F

. Fortunately, all
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Algorithm 1: The MoCHIN inference algorithm

Input : {X (m)}, supervision M(t), the number of clusters C, hyperparameters
θ, ρ, and λ

Output: the cluster membership matrices {V∗t }
1 begin
2 while not converged do
3 for m ∈M do
4 while not converged do
5 for i ∈ {1, . . . , o(m)} do

6 Find local optimum of V
(m)
i by Eq. (5).

7 Find global optimum of µ by PGD.

these terms can be significantly simplified by exploiting the composition of dense

matrix [⊗o(l)\ki=1 V
(l)
i ]I(l)>(k) and the sparsity of tensor X (l) (X (m)).

Consider the example that motif l ∈M involves 5 nodes, each node type has
10, 000 node instances, and the nodes are to be clustered into 10 clusters. Then

the induced dense matrix [⊗o(l)\ki=1 V
(l)
i ]I(l)>(k) would have

∏o(l)
i=1
i 6=k
|Vϕ(l,i)| ·Co(l)−1 =

1020 entries. As a result, computing term (i), X (l)
(k)[⊗

o(l)\k
i=1 V

(l)
i ]I(l)>(k) , would in-

volve matrix multiplication of a dense 1020 entry matrix. However, given the
sparsity of X (l), one may denote the set of indices of the non-zero entries in
tensor X by nz(X ) := {J = (j1, . . . , jN ) | Xj1,...,jN 6= 0} and derive the following
equivalency

X (l)

(k)[⊗
o(l)\k
i=1 V

(l)
i ]I(l)>(k) =

∑
J∈ nz(X (l))

X (l)
j1,...,jo(l)

h(jk)

o(l)∏
i=1
i 6=k

(V
(l)
i )ji,:,

where
∏

is Hadamard product of a sequence and h(jk) is one-hot column vector
of size |Vϕ(l,k)| that has entry 1 at index jk. Computing the right-hand side
of this equivalency involves the summation over Hadamard product of a small
sequence of small vectors, which has a complexity of O(nnz(X (l)) · (o(l)− 1) ·C)
with nnz(·) being the number of non-zero entries. In other words, if the previous
example comes with 1, 000, 000 motif instances, the complexity would decrease
from manipulating a 1020-entry dense matrix to a magnitude of 4× 107.

Similarly, by leveraging the sparsity of tensors and composition of dense
matrices, one can simplify the computation of term (ii) from multiplication of
matrix with 1020 entries to that with 105 entries; and reduce the calculation of
term (iii) from a magnitude of 1020 to a magnitude of 108. We provide detailed
derivation and formulas in the supplementary file.

Finally, we remark that the above computation can be highly parallelized,
which has further promoted the efficiency in our implementation. An empirical
efficiency study is available in Section 3 of the supplementary file. We summarize
the algorithm in Algorithm 1.
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7 Experiments

We present the quantitative evaluation results on two real-world datasets through
multiple tasks and conduct case studies under various circumstances.

7.1 Datasets and Evaluation Tasks

In this section, we briefly describe (i) the datasets, (ii) the evaluation tasks, and
(iii) the metrics used in the experiments. All of their detailed descriptions are
provided in Section 4 of the supplementary file.

Datasets. We use two real-world HINs for experiments. DBLP is a heteroge-
neous information network that serves as a bibliography of research in computer
science area [45]. The network consists of 5 types of node: author (A), paper (P ),
key term (T ), venue (V ) and year (Y ). In DBLP, we select two candidate motifs
for all applicable methods, including AP4TPA and APPA. YAGO is a knowl-
edge graph constructed by merging Wikipedia, GeoNames and WordNet. YAGO
dataset consists of 7 types of nodes: person (P), organization (O), location (L),
prize (R), work (W ), position (S ) and event (E ). In YAGO, the candidate mo-
tifs used by all compared methods include P 6O23L, P 7O23L, P 8O23L, 2P2W ,
3PW .

Evaluation tasks. In order to evaluate models’ capability in reflecting different
user guidance, we use two sets of labels on authors to conduct two tasks in
DBLP similar to previous study [42]. Additionally, we design another task on
YAGO with labels on persons. DBLP-group – Clustering authors to 5 research
groups where they graduated. 5% of the 250 authors with labels are randomly
selected as seeds from user guidance. DBLP-area – Clustering authors to 14
research areas. 1% of the 7, 165 authors with labels are randomly selected as
seeds from user guidance. YAGO – Clustering people to 10 popular countries
in the YAGO dataset. 1% of the 11, 368 people are randomly selected as seeds
from user guidance.

Evaluation metrics. We use three metrics to evaluate the quality of the clus-
tering results generated by each model: Accuracy (Micro-F1), Macro-F1, and
NMI. Note that in multi-class classification tasks, accuracy is always identical
to Micro-F1. For all these metrics, higher values indicate better performance.

7.2 Baselines and Experiment Setups

Baselines. We use five different baselines to obtain insight on different aspects
of the performance of MoCHIN. KNN is a classification algorithm that assigns
the label of each object in the test set is according to its nearest neighbors.
In our scenario, the distance between two nodes is defined as the length of the
shortest path between them. KNN+Motifs uses signals generated by motifs,
but does not directly model all players in higher-order interactions. To extract
information from motifs, we construct a motif-based network for each candidate
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Table 2: Quantitative evaluation on clustering results in three tasks.

Task DBLP-group DBLP-area YAGO

Metric Acc./Micro-F1 Macro-F1 NMI Acc./Micro-F1 Macro-F1 NMI Acc./Micro-F1 Macro-F1 NMI

KNN 0.4249 0.2566 0.1254 0.4107 0.4167 0.2537 0.3268 0.0921 0.0810

KNN+Motifs 0.4549 0.2769 0.1527 0.4811 0.4905 0.3296 0.3951 0.1885 0.1660

GNetMine [17] 0.5880 0.6122 0.3325 0.4847 0.4881 0.3469 0.3832 0.2879 0.1772

PathSelClus [42] 0.5622 0.5535 0.3246 0.4361 0.4520 0.3967 0.3856 0.3405 0.2864

TGS [7] 0.6609 0.6513 0.3958 0.4391 0.4365 0.2790 0.6058 0.3564 0.4406

MoCHIN 0.7382 0.7387 0.5797 0.5318 0.5464 0.4396 0.6134 0.5563 0.4607

motif, where an edge is constructed if two nodes are matched to a motif in-
stance in the original HIN. KNN is then applied to each motif-based network.
Finally, a linear combination is applied to the outcome probability matrices gen-
erated by KNN from the motif-based networks and the original HIN with weights
tuned to the best. GNetMine [17] is a graph-based regularization framework
to address the transductive classification problem in HINs. This method only
leverages edge-level information without considering structural patterns such as
meta-paths or motifs. PathSelClus [42] is a probabilistic graphical model that
performs clustering tasks on HINs by integrating meta-path selection with user-
guided clustering. For this baseline, we additionally add APV PA, APTPA,
APT , APA, and, APAPA into the set of candidate meta-paths for both DBLP
tasks as suggested by the original paper [42] and add P 14O14P , P 15O15P , and
P 16O16P for YAGO task. TGS [7] leverages motifs but does not directly model
each occurrence of higher-order interaction. It is hence another direct compar-
ison to MoCHIN, besides KNN+Motifs, which is used to analyze the utility
of comprehensively transcribing motif instances into tensors. As the authors
did not discuss how to inject user guidance into their basic bipartitioning clus-
tering algorithm, we apply multi-class logistic regression on the accompanied
typed-graphlet spectral embedding algorithm proposed in the same paper. The
typed-graphlet adjacency matrices of multiple motifs are summed together to
derive the input for the algorithm as the author suggested in the paper.

Experiment setups. For MoCHIN, we set hyperparameters θ = 1, ρ = 100
and λ = 0.0001 across all tasks in our experiments. For each model involving
motifs, edge-level motifs corresponding to the edge types are included into the
set of candidate motifs. For each baseline in each task, we always tune its hy-
perparameters to achieve the best performance.

7.3 Quantitative Evaluation Result

We report the main quantitative results in Table 2. Overall, MoCHIN uniformly
outperformed all baselines in all three tasks under all metrics. Note that these
three metrics measure different aspects of the model performance. For instance,
in the DBLP-area task, PathSelClus outperforms GNetMine under Macro-F1
and NMI, while GNetMine outperforms PathSelClus under Acc./Micro-F1. Achiev-
ing superior performance uniformly under all metrics is hence strong evidence
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Table 3: Ablation study of the MoCHIN model on the DBLP-group task with the
non–edge-level motifs, APPA and AP4TPA, optionally removing from the full model.

Metric Acc./Micro-F1 Macro-F1 NMI
Result for
Eric Xing

W/o both 0.6567 0.6411 0.5157 7

W/ APPA 0.7039 0.7062 0.5166 7

W/ AP4TPA 0.6781 0.6589 0.5502 3

Full model 0.7382 0.7387 0.5797 3
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The APPA motif. The AP4TPA motif.

that MoCHIN with higher-order interaction directly modeled is armed with
greater modeling capability in the task of user-guided HIN clustering.

MoCHIN prevails in user-guided clustering by exploiting signals from
motifs more comprehensively. Recall that KNN+Motifs, TGS, and MoCHIN
all exploit signals from motifs. However, the two baselines do not directly model
each occurrence of motif instances and only preserve pairwise or edge-level infor-
mation. In our experiments, even though TGS can generally outperform other
baselines, it alongside KNN+Motifs still cannot generate results as good as
MoCHIN, which demonstrates the utility of more comprehensively exploiting
signals from motifs as MoCHIN does. We interpret this result as when user guid-
ance is limited, a fine-grained understanding of the rich semantics of an HIN is
instrumental in dissecting users’ intention and generating desirable results.

Impact of candidate motif choice. In this section, we study how the choice
of candidate motifs impacts MoCHIN and additionally use the concrete exam-
ple in Figure 3 to understand the model outputs. Particularly, we conducted an
ablation study by taking out either or both of the two non–edge-level motifs,
APPA and AP4TPA, in the DBLP-group task and reported the result in Ta-
ble 3. The full MoCHIN model outperformed all partial models, demonstrating
the utility of these motifs in clustering.

Moreover, we scrutinized the concrete example in Figure 3 and checked how
each model assigned cluster membership for Eric Xing. The result is also included
in Table 3, which shows only the model variants with AP4TPA made the correct
assignment on Eric Xing. In Section 2 of the supplementary file, a visualization
of this ablation study is provided to further corroborate our observation.

7.4 Varied Seed Ratio

In addition to using 1% people as seeds for the YAGO task reported in Table 2,
we experiment under varied seed ratio 2%, 5%, and 10%. The results are reported
in Figure 4. We omit Accuracy (Micro-F1), which has a similar trend with NMI.

For all methods, the performance increased as the seed ratio increased. No-
tably, MoCHIN outperformed most baselines, especially when seed ratio is
small. This suggests MoCHIN is particularly useful when users provide less
guidance for being able to better exploit subtle information from limited data.



14 Y. Shi, et al.

(a) Macro-F1. (b) NMI.

Fig. 4: Quantitative evaluation on the YAGO task under varied seed ratio.

Note that higher seed ratio is uncommon in practice since it is demanding for
users to provide more than a few seeds.

Lastly, an efficiency study that empirically evaluates the proposed algorithm
is provided in Section 3 of the supplementary file.

8 Discussion, Conclusion, and Future Work

One limitation of MoCHIN is that it may not be easily applied to very large
datasets even with speed-up methods due to the complexity of the model itself.
However, MoCHIN would stand out in the scenario where fine-grained under-
standing of the network semantics is needed. In the experiment, we have shown
that MoCHIN can scale to HINs with tens of thousands of nodes. We note that
for user-guided clustering, it is possible the users are mostly interested in the
data instances most relevant to their intention, which could be a subset of a
larger dataset. For instance, if a data mining researcher wanted to cluster DBLP
authors by research group, it is possible they would not care about the nodes not
relevant to data mining research. As such the majority of the millions of nodes
in DBLP can be filtered out in preprocessing, and this user-guided clustering
problem would become not only manageable to MoCHIN but also favorable
due to MoCHIN’s capability in handling fine-grained semantics. Moreover, in
the case where the network is inevitably large, one may trade the performance
of MoCHIN for efficiency by using only relatively simple motifs. It is also worth
noting that incremental learning is possible for MoCHIN – when new nodes are
available, one do not have to retrain the model from scratch.

In conclusion, we studied the problem of user-guided clustering in HINs with
the intention to model higher-order interactions. We identified the importance
of modeling higher-order interactions without collapsing them into pairwise in-
teractions and proposed the MoCHIN algorithm. Experiments validated the
effectiveness of the proposed model and the utility of comprehensively modeling
higher-order interactions. Future works include exploring further methodologies
to join signals from multiple motifs, which is currently realized by a simple linear
combination in the MoCHIN model. Furthermore, as the current model takes
user guidance by injecting labels of the seeds, it is also of interest to extend
MoCHIN to the scenario where guidance is made available by must-link and
cannot-link constraints on node pairs.
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Supplementary Materials

1 Additional Proof and Formulas

1.1 The Proof for Theorem 1 in the Main File

Inspired by prior art on non-negative matrix factorization [21], we provide the
proof for Theorem 1 in the main file on tensor factorization as follows.

Proof. With the equivalency given by Lemma 1 in the main file∥∥∥X (m) − I(m) ×o(m)
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Straightforward derivation can show the following three relations hold:
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3. Z(V
(l)
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k , Ṽ) = 0, one can find Z(V

(l)
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at Ṽ = Ṽopt, where Ṽopt is the righthand side of Eq. (5) in the main file, and
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to Ṽopt monotonically decreases the objective function O which is exactly the
update rule in Theorem 1.

1.2 Omitted Formulas for Inference Speed-Up Methods
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where
∏

is Hadamard product of a sequence. As such, instead of multiplying
a huge dense matrix, one may only compute Hadamard product and matrix
multiplication over a few relatively small matrices. Note that in the example

provided in Section 6 of the main file, [⊗o(l)\ki=1 V
(l)
i ]I(l)>(k) has 1020 entries, while

V
(l)
i has only 10000× 10 = 105 entries and o(l) = 5.

Lastly, evaluating the loss function Eq. (3) in the main file for determining
convergence involves the computation of the Frobenius norm of its first term,

i.e., X (m)−I(m)×o(m)
i=1 V

(m)
i , which is a huge, dense tensor. Again by exploiting

the desirable sparsity property of X (m), we can calculate the Frobenius norm of

X (m) − I(m) ×o(m)
i=1 V

(m)
i as follows∥∥∥X (m) − I(m) ×o(m)

i=1 V
(m)
i

∥∥∥2
F

=
∥∥∥X (m)

∥∥∥2
F
− 2

∥∥∥X (m) ◦ I(m) ×o(m)
i=1 V

(m)
i

∥∥∥
1

+
∥∥∥I(m) ×o(m)

i=1 V
(m)
i

∥∥∥2
F

=
∥∥∥X (m)

∥∥∥2
F
− 2

∑
j1,...,jo(m)

(X (m))j1,...,jo(m)

C∑
c=1

o(m)∏
i=1

(V
(m)
i )ji,c

+

C∑
c1=1

C∑
c2=1

o(m)∏
i=1

(V
(m)
i )>:,c1(V

(m)
i ):,c2 . (6)

This equivalency transforms the computation of a dense and potentially high-
order tensor to that of a sparse tensor accompanied by a couple of matrix manip-
ulation. The complexity of the first and the second term in the above formula are
O(nnz(X (m))) and O(C ·o(m)·nnz(X (m))), respectively, thanks to the sparsity of

X (m). With the complexity of the third term being O(C2 ·
∑o(m)
i=1 |Vϕ(m,i)|), the

overall complexity is reduced from O(
∏o(m)
i=1 |Vϕ(m,i)|) to O(C ·o(m)·nnz(X (m))+

C2 ·
∑o(m)
i=1 |Vϕ(m,i)|). That is, considering the previous example, the complexity
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of evaluating this Frobenius norm would decrease from a magnitude of 1020 to
a magnitude of 108.

It is worth noting that the trick introduced in the last equivalency, Eq. (6),
has already been proposed in the study of Matricized Tensor Times Khatri-Rao
Product (MTTKRP) [2, 9, 38]. MTTKRP and our model share a similarity in
this trick because, unlike update rule Eq. (5) in the main file, evaluating the loss
function Eq. (3) in the main file does not involve the non-negative constraints.

2 Visualization of the Ablation Study
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(b) Full model

Fig. 5: Visualization of the ablation study where the author nodes are color-coded
according to the truth label.

To better understand the impact of candidate motif choice discussed in Sec-
tion 7.3of the main file, we further visualized the inferred membership of each
node in Figure 5 by projecting its corresponding column in the consensus matrix
V∗t using t-Distributed Stochastic Neighbor Embedding (t-SNE). As discussed
in Section 4, dirichlet reflects a distinctive facet of the relationship between
Xing and Blei pertaining to their graduating group. The full model containing
AP4TPA inferred all of them to be close under the user guidance concerning re-
search group. In contrast, the partial model with only edge-level motifs not only
mistakenly assigned Xing to Faloutsos’s group but also learned dirichlet to be
far away from either Xing or Blei. This observation echos the intuition discussed
in Section 4that modeling higher-order interaction can introduce a richer pool
of signals, and such modeling should be comprehensive and fine-grained in the
task of user-guided clustering.

3 Efficiency Study

In this section, we empirically evaluate the efficiency of the proposed algorithm
with a focus on the speed-up tricks described in Section 6 of the main file.
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(a) APPA in DBLP.
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(b) AP4TPA in DBLP.
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(c) 2P2W in YAGO.
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(d) 3PW in YAGO.

Fig. 6: Wall-clock runtime for inferring all parameters of one motif and the number
of nodes against the number of motif instances in a series of downsampled HINs. The
proposed algorithm empirically achieves near-linear efficiency, and motif instances are
indeed sparse in HINs.

Specifically, we estimate the runtime for inferring all parameters involved in one
motif while all other parameters are fixed, or equivalently, reaching convergence
of the while-loop from line 4 to line 6 in Algorithm 1 in the main file.

This study was conducted on both the DBLP dataset and the YAGO dataset
for each of their respective non–edge-level motifs: APPA and AP4TPA in DBLP;
2P2W and 3PW in YAGO. The non–edge-level motifs are studied because (i)
they are more complex in nature and (ii) the tensors induced by edge-level motifs
are essentially matrices, the study of which degenerates to the well-studied case
of non-negative matrix factorization. To downsample the HINs, we randomly
knock out a portion of papers in DBLP or persons in YAGO. The involved edges
and the nodes that become dangling after the knock-out are also removed from
the network. The reason node type paper and person are used is that they are
associated with the most diverse edge types in DBLP and YAGO, respectively.
In the end, we obtain a series of HINs with 10%, 25%, 50%. 75%, 100% of papers
or persons left.

To more accurately evaluate the efficiency of the proposed algorithm in this
study, we turn off the parallelization in our implementation and use only one
thread. We record the wall-clock runtime for inferring all parameters of each

concerned motif, {V(l)
k }

o(l)
k=1, while fixing the motif weights µ and parameters of

other motifs, {V(m)
i }m 6=l. The experiment is executed on a machine with Intel(R)

Xeon(R) CPU E5-2680 v2 @ 2.80GHz. The result is reported in Figure 6.
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The proposed algorithm empirically achieves near-linear efficiency in
inferring parameters of each given motif. As presented in Figure 6, the
runtime for all motifs on both datasets are approximately linear to the number
of involved motif instances. This result is in line with the analysis provided in
Section 6 of the main file and justifies the effectiveness of the speed-up tricks.

Moreover, we also reported the number of motif instances against the number
of nodes regardless of type in each downsampled network. For all four studied
motifs, we do observe motif instances are sparse and do not explode quickly as
the size of the network increases.

4 Detailed Description of Datasets, Evaluation Tasks,
and Evaluation Metrics

In this section, we provide the detailed description of the datasets, evaluation
tasks, and metrics used in the experiments. Datasets. We use two real-world

HINs for experiments.

– DBLP is a heterogeneous information network that serves as a bibliography
of research in computer science area [45]. The network consists of 5 types of
node: author (A), paper (P ), key term (T ), venue (V ) and year (Y ). The
key terms are extracted and released by Chen et al. [8]. The edge types
include authorship, term usage, venue published, year published, and the
reference relationship. The first four edge types are undirected, and the last
one is directed. The schema of the DBLP network is shown in Figure 2a
in the main file. In DBLP, we select two candidate motifs for all applicable
methods, including AP4TPA and APPA, where APPA is also a meta-
path representing author writes a paper that refers another paper written
by another author and AP4TPA was introduced in Section 3 of the main
file.

– YAGO is a knowledge graph constructed by merging Wikipedia, GeoNames
and WordNet. YAGO dataset consists of 7 types of nodes: person (P), orga-
nization (O), location (L), prize (R), work (W ), position (S ) and event (E ).
There are 24 types of edges in the network, with 19 undirected edge types
and 5 directed edge types as shown by the schema of the YAGO network
in Figure 7. In YAGO, the candidate motifs used by all compared methods
include P 6O23L, P 7O23L, P 8O23L, 2P2W , 3PW , where the first three are
also meta-paths with the number in superscript being type of edge given in
Figure 7. 2P2W is the motif that 2 people simultaneously co-created (edge
type 14) two pieces of work, and 3PW is the motif that 3 people who created
(edge type 14), directed (edge type 15) and acted (edge type 16) in a piece
of work, respectively.

Evaluation tasks. In order to validate the proposed model’s capability in re-
flecting different guidance given by different users, we use two sets of labels on
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Fig. 7: The schema of YAGO [37].

authors to conduct two tasks in DBLP similar to previous study [42]. Addi-
tionally, we design another task on YAGO with labels on persons. We provide
datasets and labels used in the experiment along with the submission. DBLP-
group – Clustering authors to 5 research groups where they graduated, which
is an expanded label set from the “four-group dataset” [42]. The “four-group
dataset” includes researchers from four renowned research groups led by Chris-
tos Faloutsos, Michael I. Jordan, Jiawei Han, and Dan Roth. Additionally, we
add another group of researchers, who have collaborated with at least one of the
researchers in the “four-group dataset” and label them as the fifth group with
the intention to involve more subtle semantics in the original HIN. 5% of the 250
authors with labels are randomly selected as seeds from user guidance. We did
not use 1% for seed ratio as in the following two tasks because the number of
authors to be clustered in this task is small. The resulted HIN processed as such
consists of 19,500 nodes and 108,500 edges. DBLP-area – Clustering authors
to 14 research areas, which is expanded from the “four-area dataset” [42], where
the definition of the 14 areas is derived from the Wikipedia page: List of com-
puter science conferences3. 1% of the 7, 165 authors with labels are randomly
selected as seeds from user guidance. The HIN processed in this way has 16,100
nodes and 30,239 edges. YAGO – Clustering people to 10 popular countries in
the YAGO dataset. We knock out all edges with edge type wasBornIn, and if a
person had an edge with one of the 10 countries, we assign this country to be the
label of this person. Additionally, to avoid making our task trivial, we remove
all other types of edges between person and location. 1% of the 11, 368 people
are randomly selected as seeds from user guidance. There are 17,109 nodes and
70,251 edges in the processed HIN.

Evaluation metrics. We use three metrics to evaluate the quality of the clus-
tering results generated by each model: Accuracy (Micro-F1), Macro-F1, and
NMI. Accuracy refers to a measure of statistical bias. More precisely it is de-
fined by the division of the number of correctly labeled data by the total size

3 https://en.wikipedia.org/wiki/List of computer science conferences
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of the dataset. Note that in multi-class classification tasks, accuracy is always
identical to Micro-F1. Macro-F1 refers to the arithmetic mean of the F1 score
across all different labels in the dataset, where the F1 score is the harmonic
mean of precision and recall for a specific label. NMI is the abbreviation for
normalized mutual information. Numerically, it is defined as the division of mu-
tual information by the arithmetic mean of the entropy of each label in the data.
For all these metrics, higher values indicate better performance.

5 Related Work on Matrix and Tensor Factorization for
Clustering.

By factorizing edges that represent pairwise interactions in a network, matrix
factorization has been shown to be able to reveal the underlying composition
of objects [20]. In this direction, a large body of study has been carried out on
clustering networks using non-negative matrix factorization (NMF) [11, 21, 24].
As a natural extension beyond pairwise interaction, tensor has been used to
model interaction among multiple objects for decades [15, 46]. A wide range of
applications have also been discussed in the field of data mining and machine
learning [19,29].

For the study of clustering and related issues, many algorithms have been
developed for homogeneous networks by factorizing a single tensor [3,5,6,31,32].
A line of work transforms a network to a 3-rd order tensor via triangles, which
is essentially one specific type of network motif [3, 32]. Researchers have also
explored weak supervision in guiding tensor factorization based analysis [5]. A
large number of non-negative tensor factorization methods have been proposed
for practical problems in computer vision [31]. Besides, tensor-based approxi-
mation algorithms for clustering also exist in the literature [6, 44]. One recent
work on local network clustering considering higher-order conductance shares
our intuition since it operates on tensor transcribed by a motif without decom-
posing into pairwise interactions [54]. This method is designed for the scenario
where one motif is given. Different from the approach proposed in our paper,
all the above methods are not designed for heterogeneous information networks,
where the use of multiple motifs is usually necessary to reflect the rich semantics
in HINs. Finally, we remark that to the best of our knowledge existing tensor-
based clustering methods for HINs [13, 47] either do not jointly model multiple
motifs or would essentially decompose the higher-order interactions into pairwise
interactions.
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