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ABSTRACT
Progressive diagnosis prediction in healthcare is a promising yet
challenging task. Existing studies usually assume a pre-defined
prior for generating patient distributions (e.g., Gaussian). However,
the inferred approximate posterior can deviate from the real-world
distribution, which further affects the modeling of continuous dis-
ease progression over time. To alleviate such inference bias, we
propose an enhanced progressive diagnostic prediction model (i.e.,
ProCNF), which integrates continuous normalizing flows (CNF) and
neural ordinary differential equations (ODEs) to achieve more accu-
rate approximations of patient health trajectories while capturing
the continuity underlying disease progression.We first learn patient
embeddings with CNF to construct a complex posterior approxi-
mation of patient distributions. Then, we devise a CNF-enhanced
neural ODE module for progressive diagnostic prediction, which
aims to improve the modeling of disease progression for individual
patients. Extensive experiments on two real-world longitudinal
EHR datasets show significant performance gains brought by our
method over state-of-the-art competitors.
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1 INTRODUCTION
Diagnosis prediction, utilizing electronic health records (EHRs),
has become a pivotal area within AI-driven healthcare applications.
Many studies leverage deep learning techniques [1, 9, 11] to model
dynamic hospital visits, thereby facilitating clinical decision sup-
port. However, a challenge arises as most disease progressions and
changes in patient health are inherently continuous, while clini-
cal records are discrete due to irregular patient visits. To alleviate
the challenges posed by irregular timestamps, some studies have
adopted neural ordinary differential equations (ODEs) [15, 16], of-
fering a more comprehensive understanding of continuous-time
disease progression and enhancing diagnostic prediction.

However, existing studies usually assume a pre-defined prior
for the patient, e.g., Gaussian, which might result in the inferred
approximate posterior greatly deviating from the real-world dis-
tribution. Such biased inference gaps can affect the prediction of
individual disease progression, and thus limit the performance of
progressive diagnostic prediction models. Furthermore, without
additional supervision, it remains unknown how to close the gap
between approximate posterior and real posterior solely based on
the patient’s historical visits [20].

To this end, we propose a novel ProCNF framework, aimed at
enhancing progressive diagnosis prediction in healthcare with con-
tinuous normalizing flows (CNF). By novelly integrating CNF with
neural ODEs, we can effectively capture a more accurate posterior
approximation of the patient distributions as well as the continuity
underlying disease progression. Specifically, we first leverage CNF
to transform a patient from a simple base distribution (e.g., Gauss-
ian) into a more complex patient-specific distribution via a series of
invertible mappings when the base distribution is reparametrizable.
Then, based on the complex patient distributions, we propose a
CNF-enhanced neural ODEsmodule for diagnosis prediction, where
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Figure 1: The overall framework of ProCNF.

we can continuously model disease progression under the accurate
expressive patient embedding and discrete patient irregular visits.
Finally, we evaluate the proposed ProCNF framework with exten-
sive experiments on real benchmark electronic healthcare datasets
for progressive diagnosis prediction tasks. Extensive experimen-
tal results show the great potential for our ProCNF over the nine
representative state-of-the-art baselines.

2 RELATEDWORK
Utilizing EHR data, deep learning methods have significantly ad-
vanced predictive modeling in diagnosis. For example, RETAIN [4]
employed attention-based recurrent neural networks (RNNs), Dipole
[12] integrated bidirectional long-short-term memory networks
with attention, and Timeline [1] proposed time-aware attention
in RNNs, demonstrated this progression. Chet [9] introduced dy-
namic graph learning for disease combinations, while GRAM [5],
CGL [10], MedPath [19], and HealGCN [18] enhanced disease rela-
tion modeling using medical knowledge graphs.

Despite these advancements, irregular visit times and heteroge-
neous disease effects remain challenges. HiTANet [11] and Con-
care [14] alleviated these issues by incorporating time embeddings
for temporal dependencies. As closest to us, Qian et. al [15] pro-
posed LHM to describe continuous disease progression dynamics
via neural ODEs, but they failed to capture complex distributions
behind patients in EHR data.

3 THE PROCNF FRAMEWORK
3.1 Patient Embedding with CNF
Traditional approaches [7, 15] often rely on simple Gaussian as-
sumptions for posterior distribution approximation, which are ill-
equipped to model patient trajectories with underlying complex
distributions and may lead to limited model performance. Address-
ing these constraints is crucial for developing more personalized
and accurate healthcare predictive models.

To this end, we propose to learn patient embeddings based on
CNF, which is promising in reversibly transforming a base distri-
bution (e.g., Gaussian) to the complicated patient-specific patient
distribution for accurate patient representations. In this way, we
can reduce the gap between approximate posterior and true pos-
terior by employing such richer posterior/prior distributions [2].
Specifically, the learning of CNF is initiated with a known probabil-
ity distribution variable 𝒛0

𝑖,0, such as a Gaussian, and needs to apply
a differential function 𝛽 that is uniformly Lipschitz continuous in
both 𝒛𝑖,0 and step𝜓 .

Firstly, we apply thewidely adopted reparameterization trick [15]
for the formulation of 𝒛𝑖,0 involves, where we utilize MLP as an en-
coder to sample a latent initial state 𝒛𝑖,0 for each patient as follows:

[𝝁 𝒊,𝝈𝒊] = Encoder(𝑿𝑖 ;ℎ𝜃 ),
𝒛𝑖,0 = 𝝁 𝒊 + 𝜖 ⊙ 𝝈𝒊, 𝜖 ∼ N(0, 𝑰 ) . (1)

Here, 𝑿𝑖 represents the aggregated patient’s historical visit em-
beddings processed through a self-attention mechanism [13, 17]
(i.e., 𝑿𝑖 = Self-Att(𝑬𝑖 )), with the visit embedding of patient 𝑖 (i.e.,
𝑬𝑖 = (𝑬𝑖,0, 𝑬𝑖,1, . . . , 𝑬𝑖, 𝑗−1)). The calculation of Self-Att with three
learnable projection matrices (i.e.,W𝑄 ,W𝐾 , andW𝑉 ) is written as

Self-Att(𝑬𝑖 ) = softmax
(
(𝑬𝑖W𝑄 ) (𝑬𝑖W𝐾 )𝑇 /

√
𝐷

)
𝑬𝑖W𝑉 , (2)

where the 𝐷 is the embedding dimension.
With the initial state 𝒛𝑖,0, we then apply a differential function 𝛽 ,

which enables the transformation of the initial Gaussian distribu-
tion into a more complex patient-specific distribution. In this way,
we can simplify the computation of the change in 𝒛𝑖,0 and its log
densities to transform 𝑞(𝑧𝑖,0 |𝑿𝑖 ) in a continuous way as follows:

𝑑𝒛
𝜓

𝑖,0/𝑑𝜓 = 𝛽 (𝒛𝜓
𝑖,0,𝜓 ), (3)

which describes a continuous transformation of 𝒛𝜓
𝑖,0. With the the-

orem of instantaneous change of variables [3], the change in log
densities log𝑞(𝒛𝜓

𝑖,0 |𝑿𝑖 ) also follows a differential equation:

𝑑 log𝑞(𝒛𝜓
𝑖,0 |𝑿𝑖 )/𝑑𝜓 = −Tr

(
𝜕𝛽 (𝒛𝜓

𝑖,0,𝜓 )/𝜕𝒛
𝜓

𝑖,0

)
, (4)

where Tr denotes the trace operation and can replace the intensive
determinant computation in normalizing flows [21].

Then, the latent variables 𝒛Ψ
𝑖,0 after step Ψ can be computed as:

𝒛Ψ𝑖,0 = 𝒛0𝑖,0 +
∫ Ψ

0
𝛽

(
𝒛
𝜓

𝑖,0,𝜓
)
𝑑𝜓, (5)

and its log densities are formulated as follows:

log𝑞𝜙
(
𝒛Ψ𝑖,0 |𝑿𝑖

)
= log𝑞𝜙

(
𝒛0𝑖,0 |𝑿𝑖

)
−
∫ Ψ

0
Tr

(
𝜕𝛽/𝜕𝒛𝜓

𝑖,0

)
𝑑𝜓, (6)

where Ψ can be arbitrarily set for more transformations and we
empirically set Ψ as 1 which is consistent with [20].

Finally, with the approximated posterior distribution𝑞𝜙 , we have
the evidence lower-bound (ELBO) objective based on CNF, where
the formula is given as follows:

L𝐸 = E𝑞𝜙 [𝑝 (𝑬̂𝑖, 𝑗 |𝒛Ψ𝑖,0) − log
𝑞𝜙

(
𝒛0
𝑖,0 |𝑿𝑖

)
𝑝

(
𝒛0
𝑖,0

) ] = 𝑝 (𝑬̂𝑖, 𝑗 |𝒛Ψ𝑖,0)

+ E𝑞𝜙 [log𝑝
(
𝒛Ψ𝑖,0

)
− 𝑞𝜙

(
𝒛0𝑖,0 |𝑿𝑖

)
+
∫ Ψ

0
Tr ©­«

𝜕𝛽 (𝒛𝜓
𝑖,0,𝜓 )

𝜕𝒛
𝜓

𝑖,0

ª®¬𝑑𝜓 ] .
(7)
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Table 1: Experimental results on two benchmark EHRdatasets. The best performances are highlighted in boldface and the second
runners are underlined. ProCNF achieves the best performance on both datasets, where * denotes significant improvements
based on the Wilcoxon signed-rank test.

Method Recall@5 NDCG@5 Recall@10 NDCG@10 Recall@5 NDCG@5 Recall@10 NDCG@10
MIMIC-III NELL

RATAIN 0.1510±0.18% 0.4188±0.16% 0.2134±0.13% 0.3537±0.12% 0.6272±0.21% 0.5974±0.16% 0.7535±0.16% 0.6227±0.13%
Dipole 0.1442±0.24% 0.3999±0.18% 0.2038±0.28% 0.3378±0.18% 0.5989±0.21% 0.5705±0.18% 0.7195±0.17% 0.5946±0.15%
GRAM 0.1429±0.13% 0.4059±0.10% 0.2112±0.14% 0.3510±0.12% 0.6394±0.15% 0.6118±0.12% 0.7277±0.16% 0.6325±0.13%
Timeline 0.1487±0.15% 0.4123±0.13% 0.2100±0.12% 0.3482±0.10% 0.6174±0.15% 0.5881±0.15% 0.7417±0.16% 0.6129±0.13%
KAME 0.1353±0.14% 0.3992±0.13% 0.2055±0.13% 0.3070±0.11% 0.5620±0.12% 0.5353±0.10% 0.6751±0.15% 0.5579±0.13%
HiTANet 0.1502±0.21% 0.4166±0.17% 0.2122±0.18% 0.3518±0.16% 0.6446±0.18% 0.6186±0.15% 0.7701±0.15% 0.6502±0.12%
CGL 0.1538±0.22% 0.4265±0.19% 0.2173±0.26% 0.3602±0.21% 0.6387±0.18% 0.6084±0.15% 0.7673±0.13% 0.6341±0.10%
LHM 0.1768±0.18% 0.4489±0.16% 0.2437±0.20% 0.3902±0.19% 0.6570±0.15% 0.6237±0.17% 0.7752±0.18% 0.6521±0.19%
Chet 0.1636±0.13% 0.4403±0.08% 0.2312±0.12% 0.3719±0.10% 0.6182±0.15% 0.5913±0.12% 0.7381±0.13% 0.6181±0.13%
ProCNF 0.1869±0.17%* 0.4587±0.15%* 0.2665±0.19%* 0.4071±0.17%* 0.6910±0.18%* 0.6602±0.19%* 0.7952±0.17%* 0.6832±0.17%*

3.2 Progressive Diagnosis Prediction
With the learned sophisticated patient embeddings (i.e., 𝒛Ψ

𝑖,0), we
further design CNF-enhanced neural ODEs for progressive diagno-
sis prediction, so as to model continuous patient health status over
time. In this way, the patient status representation 𝒛𝑖, 𝑗 at time 𝑇𝑖, 𝑗
can be inferred by solvin the neural ODE as follows:

[𝒛𝑖,1, . . . , 𝒛𝑖, 𝑗 ] = ODESolve
(
𝑔𝑖 , 𝒛

Ψ
𝑖,0, [𝑇𝑖,1, . . . ,𝑇𝑖, 𝑗 ]

)
, (8)

where 𝑔𝑖 is a learnable neural network for each patient 𝑢𝑖 and we
adopt the fourth-order Runge–Kutta for an accurate and efficient
approximation [3, 8].

Since personalized diagnosis prediction is a multi-label classifica-
tion task, we use a dense layer with a softmax function to calculate
the predicted probability. Specifically, we fully leverage the histori-
cal visits to serve as supervision. The predicted visits 𝑽̂ 𝑖 is based on
the inferred patient status 𝑧𝑖 and the predictive objective function
L𝑃 are listed as follows:
𝑝 ( [𝑽̂ 𝑖,1, . . . , 𝑽̂ 𝑖, 𝑗 ] |𝑿𝑖 , 𝒛Ψ𝑖,0) = softmax(MLP( [𝒛𝑖,1, . . . , 𝒛𝑖, 𝑗 ])), (9)

L𝑃 = −
𝑁∑︁
𝑖=1

𝑀𝑖∑︁
𝑗=1

𝑽 𝑖, 𝑗 log
(
𝑽̂ 𝑖, 𝑗

)
+
(
1 − 𝑽 𝑖, 𝑗

)
log

(
1 − 𝑽̂ 𝑖, 𝑗

)
. (10)

where 𝑽 𝑖, 𝑗 is the ground-truth of patient 𝑢𝑖 ’s ( 𝑗 )-th diagnosis.
Finally, we have the overall objective function of our ProCNF:

minL = L𝑃 − 𝜆L𝐸 , (11)
where L𝑃 is calculated in Eq. 10 and the ELBO loss L𝐸 is calculated
in Eq. 7. 𝜆 is a hyperparameter to adjust the weight of L𝐸 .

4 EXPERIMENT
4.1 Datasets
We use two real-world EHR datasets to verify the effectiveness
of compared methods, i.e., MIMIC-III [6] and NELL. NELL is a
large-scale real-world clinical data collected by the Nell Hodgson
Woodruff School of Nursing at Emory University. Both datasets are
fully anonymized and carefully sanitized before our access. We split
dataset randomly according to patients into training/validation/test
sets (i.e., 2100/61/210 on MIMIC-III and 3125/391/391 on NELL),
which is consistent with [9, 10]. We chose patients who made at
least three visits for both datasets. We use Recall@𝑘 and NDCG@𝑘

metrics that are consistent with [9, 10, 18].

We adopt 9 representative state-of-the-art methods as baselines
for the performance comparison with our ProCNF including RE-
TAIN [4], Dipole [12], GRAM [5], Timeline [1], KAME [13], Hi-
TANet [11], CGL [10], LHM [15], and Chet [9].

4.2 Experimental Results
We present the Recall and NDCG metrics values achieved by our
proposed ProCNF and other nine baselines in Table 1. Overall, the
ProCNF achieves the best performance on the MIMIC-III and NELL
datasets, which constantly achieves an average of 4.99% improve-
ment over the state-of-the-art baselines regarding both Recall and
NDCG. These results affirm the effectiveness of ProCNF to model
disease progression under complex patient distributions with dis-
crete patient irregular visits.

Compared with the second-best model (i.e., LHM), the perfor-
mance gains of ProCNF ranges from 2.18% with NDCG@5 to on
MIMIC-III to 9.36% achieved with Recall@10 on MIMIC-III. Al-
though LHM adopts neural ODEs for continuous disease progres-
sion, it fails to capture complex distributions behind patients. While
other models like HiTANet and Chet show fluctuating ranks be-
tween datasets, ProCNF consistently demonstrates its robustness
across datasets. This underlines the advantage of the CNF-enhanced
neural ODEs module in ProCNF to accurately learn patient embed-
dings for progressive diagnosis prediction in healthcare.

4.3 Case Studies
To provide more insights into the advantages of ProCNF in mod-
eling continuous disease progression, we provide the predictive
diagnoses of one example patient (i.e., Jack) in Table 2. The analysis
of the disease progression for the diabetic patient Jack in Table 2
showcases the strength of ProCNF in capturing continuous disease
progression based on enhanced patient distributions. For instance,
ProCNF successfully predicts the recurrence of “Atrial fibrillation"
and “Other and unspecified hyperlipidemia" for visits 𝑘 + 2 and
𝑘 + 1 respectively, despite these diagnoses not being recorded in the
preceding visits. This reflects our method’s capability to understand
and predict the ongoing nature of chronic conditions, ensuring a
comprehensive and consistent monitoring of Jack’s health status. It
highlights how an enhanced patient distribution can lead to better
health management by predicting potential complications.
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Table 2: Predictive diagnoses for diabetic patient Jack (pseudonym) from the NELL dataset. Here “FN” in Red color refers to the
diagnoses that are in the ground-truth diagnosis sets but are not predicted, while “FP” in Blue color denotes the diagnoses
predicted but are not in ground-truth diagnosis sets (Best viewed in color).

Ground-truth diagnoses Predictive diagnoses

Visit
𝑘

250.00 Diabetes mellitus without mention of complication 250.00 Diabetes mellitus without mention of complication
401.9 Unspecified essential hypertension 401.9 Unspecified essential hypertension
272.4 Other and unspecified hyperlipidemia 272.4 Other and unspecified hyperlipidemia
300.00 Anxiety state unspecified 424.1 Aortic valve disorders

427.31 Atrial fibrillation

Visit
𝑘+1 250.00 Diabetes mellitus without mention of complication

250.00 Diabetes mellitus without mention of complication
427.31 Atrial fibrillation
401.9 Unspecified essential hypertension
272.4 Other and unspecified hyperlipidemia
414.01 Coronary atherosclerosis of native coronary artery

Visit
𝑘+2

250.00 Diabetes mellitus without mention of complication 250.00 Diabetes mellitus without mention of complication
401.9 Unspecified essential hypertension 401.9 Unspecified essential hypertension
272.4 Other and unspecified hyperlipidemia 272.4 Other and unspecified hyperlipidemia
300.00 Anxiety state unspecified 300.00 Anxiety state unspecified
786.09 Other respiratory abnormalities 427.31 Atrial fibrillation
311 Depressive disorder, not elsewhere

Last
Visit 427.31 Atrial fibrillation

427.31 Atrial fibrillation
401.9 Unspecified essential hypertension
414.01 Coronary atherosclerosis of native coronary artery
250.00 Diabetes mellitus without mention of complication
272.4 Other and unspecified hyperlipidemia

5 CONCLUSION
In this paper, we propose to make progressive diagnosis predictions
for patient visits with irregular intervals in healthcare. Specifi-
cally, we propose a novel progressive diagnostic prediction model
(ProCNF) with two pivotal techniques, which jointly perform com-
plex patient distributions and dynamic disease progression to achieve
a more accurate approximation of patient health trajectories. Exten-
sive quantitative experiments demonstrate the clear advantages of
our ProCNF, which is consolidated with our real case study results.
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